1
|
Lignocellulosic Biomasses from Agricultural Wastes Improved the Quality and Physicochemical Properties of Frying Oils. Foods 2022; 11:foods11193149. [PMID: 36230225 PMCID: PMC9564338 DOI: 10.3390/foods11193149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, the effects of using natural lignocellulosic-based adsorbents from sugarcane bagasse (SC), cornstalk piths (CP), and corn cob (CC) on the physicochemical properties and quality of fried oils were studied. The properties of lignocellulosic biomasses were examined using X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Moreover, the changes in the physicochemical properties of fresh, fried oils (for 4, 8, 12, 16 and 20 h) and adsorbents-treated oils were examined. The XRD results revealed that SC and CP biomasses have more amorphous regions than CC biomass, which had the highest crystallinity percentage. The results also showed that lignocellulosic biomasses enhanced the quality of the used oils. SC was the most effective biomass to enhance the properties of the used sunflower oil. For instance, the acid value of oil samples fried for 20 h reduced from 0.63 ± 0.02 to 0.51 ± 0.02 mg KOH/g oil after SC biomass treatment. For the peroxide value, the SC biomass treatment reduced it from 9.45 ± 0.56 (fried oil for 20 h) to 6.91 ± 0.12 meq O2/kg. Similarly, SC biomass adsorbent reduced the p-Anisidine Value (p-AV) of the used oil (20 h) from 98.45 ± 6.31 to 77.92 ± 3.65. Moreover, SC adsorbents slightly improved the lightness of the used oils (20 h). In conclusion, natural lignocellulosic biomasses, particularly SC, could be utilized as natural adsorbents to improve the oil quality. The results obtained from this study could help in developing sustainable methods to regenerate used oils using natural and cheap adsorbents.
Collapse
|
2
|
Zhan Y, Wang M, Ma T, Li Z. Enhancing the potential production of bioethanol with bamboo by γ-valerolactone/water pretreatment. RSC Adv 2022; 12:16942-16954. [PMID: 35754883 PMCID: PMC9171899 DOI: 10.1039/d2ra02421g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, the effect of the γ-valerolactone (GVL)/H2O pretreatment system on bamboo (Neosinocalamus affinis) for enzymatic hydrolysis and ethanol fermentation was investigated. The performance characterization of the pretreated bamboo substrates, including the chemical composition, the structural characteristics, and the ability to produce bioethanol, were evaluated. The recovered substrates were enzymatically hydrolyzed for 48 h and then fermented to bioethanol. For the cellulose in the raw bamboo material, the highest cellulose-to-glucose conversion yield (CGCY) was achieved at 140 °C for 2 h with GVL : H2O = 8 : 2, which was 73.39%, and the cellulose-to-ethanol conversion yield (CECY) was 67.00%. This indicated that 183.5 kg of bioethanol could be produced per ton of bamboo, which was 9.71-folds higher than that directly converted from the untreated raw bamboo powder. Under these conditions, 50.60% of the active lignin can be recovered and be used as a wood-derived feedstock for further high-valued utilization. Meanwhile, the maximum concentration of fermentation inhibitors formed after pretreatment was about 140.9 mmol L-1, and had weak inhibition to the subsequent reaction. It has been shown that the cellulose could be effectively separated from bamboo and converted into bioethanol through the GVL/H2O pretreatment system.
Collapse
Affiliation(s)
- Yawei Zhan
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102 China
| | - Meixin Wang
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102 China
| | - Tengfei Ma
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102 China
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology Beijing 100102 China
| |
Collapse
|
3
|
Zhang J, Zhang X, Yang M, Singh S, Cheng G. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. BIORESOURCE TECHNOLOGY 2021; 322:124522. [PMID: 33340950 DOI: 10.1016/j.biortech.2020.124522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
Processes that can convert lignocellulosic biomass into biofuels and chemicals are particularly attractive considering renewability and minimal environmental impact. Ionic liquids (ILs) have been used as novel solvents in the process development in that they can effectively deconstruct recalcitrant lignocellulosic biomass for high sugar yield and lignin recovery. From cellulose-dissolving ILs to choline-based and protic acidic ILs, extensive research in this field has been done, driven by the promising future of IL pretreatment. Meanwhile, shortcomings and technological hurdles are ascertained during research and developments. It is necessary to present a general overview of recent developments and challenges in this field. In this review paper, three aspects of advances in IL pretreatment are critically analyzed: biocompatible ILs, protic acidic ILs and combinatory pretreatments.
Collapse
Affiliation(s)
- Jinxu Zhang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Mingkun Yang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Seema Singh
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Gang Cheng
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Satria H, Yandri, Nurhasanah, Yuwono SD, Herasari D. Extracellular hydrolytic enzyme activities of indigenous actinomycetes on pretreated bagasse using choline acetate ionic liquid. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Lo AY, Cheng CT, Wang W, Chang CC, Jehng JM, Liu SB, Chen WH. Synthesis of a Homogeneous Propyl Sulfobetaine-Tungstophosphoric Acid Catalyst with Tunable Acidic Strength and Its Application to Waste Wood Hydrolysis. Catal Letters 2018. [DOI: 10.1007/s10562-018-2531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Ninomiya K, Abe M, Tsukegi T, Kuroda K, Tsuge Y, Ogino C, Taki K, Taima T, Saito J, Kimizu M, Uzawa K, Takahashi K. Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: Application to esterified bagasse/polypropylene composites. Carbohydr Polym 2018; 182:8-14. [DOI: 10.1016/j.carbpol.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/21/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
|
7
|
Endo T, Aung EM, Fujii S, Hosomi S, Kimizu M, Ninomiya K, Takahashi K. Investigation of accessibility and reactivity of cellulose pretreated by ionic liquid at high loading. Carbohydr Polym 2017; 176:365-373. [DOI: 10.1016/j.carbpol.2017.08.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/07/2017] [Accepted: 08/21/2017] [Indexed: 11/25/2022]
|
8
|
|
9
|
Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.021] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Yan K, Liu F, Chen Q, Ke M, Huang X, Hu W, Zhou B, Zhang X, Yu H. Pyrolysis characteristics and kinetics of lignin derived from enzymatic hydrolysis residue of bamboo pretreated with white-rot fungus. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:76. [PMID: 27034714 PMCID: PMC4815148 DOI: 10.1186/s13068-016-0489-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/18/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND The lignocellulose biorefinery based on the sugar platform usually focuses on polysaccharide bioconversion, while lignin is only burned for energy recovery. Pyrolysis can provide a novel route for the efficient utilization of residual lignin obtained from the enzymatic hydrolysis of lignocellulose. The pyrolysis characteristics of residual lignin are usually significantly affected by the pretreatment process because of structural alteration of lignin during pretreatment. In recent years, biological pretreatment using white-rot fungi has attracted extensive attention, but there are only few reports on thermal conversion of lignin derived from enzymatic hydrolysis residue (EHRL) of the bio-pretreated lignocellulose. Therefore, the study investigated the pyrolysis characteristics and kinetics of EHRL obtained from bamboo pretreated with Echinodontium taxodii in order to evaluate the potential of thermal conversion processes of EHRL. RESULTS Fourier transform infrared spectroscopy spectra showed that EHRL of bamboo treated with E. taxodii had the typical lignin structure, but aromatic skeletal carbon and side chain of lignin were partially altered by the fungus. Thermogravimetric analysis indicated that EHRL pyrolysis at different heating rates could be divided into two depolymerization stages and covered a wide temperature range from 500 to 900 K. The thermal decomposition reaction can be well described by two third-order reactions. The kinetics study indicated that the EHRL of bamboo treated with white-rot fungus had lower apparent activation energies, lower peak temperatures of pyrolysis reaction, and higher char residue than the EHRL of raw bamboo. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was applied to characterize the fast pyrolysis products of EHRL at 600 ℃. The ratios of guaiacyl-type to syringyl-type derivatives yield (G/S) and guaiacyl-type to p-hydroxy-phenylpropane-type derivatives yield (G/H) for the treated sample were increased by 33.18 and 25.30 % in comparison with the raw bamboo, respectively. CONCLUSIONS The structural alterations of lignin during pretreatment can decrease the thermal stability of EHRL from the bio-treated bamboo and concentrate the guaiacyl-type derivatives in the fast pyrolysis products. Thus, the pyrolysis can be a promising route for effective utilization of the enzymatic hydrolysis residue from bio-pretreated lignocellulose.
Collapse
Affiliation(s)
- Keliang Yan
- />Technology Center of China Tobacco, Yunnan Industrial Co., Ltd, Kunming, 650000 People’s Republic of China
- />College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Fang Liu
- />College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Qing Chen
- />College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Ming Ke
- />College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xin Huang
- />College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Weiyao Hu
- />Technology Center of China Tobacco, Yunnan Industrial Co., Ltd, Kunming, 650000 People’s Republic of China
| | - Bo Zhou
- />Technology Center of China Tobacco, Yunnan Industrial Co., Ltd, Kunming, 650000 People’s Republic of China
| | - Xiaoyu Zhang
- />College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Hongbo Yu
- />College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
11
|
Ren H, Zong MH, Wu H, Li N. Efficient Pretreatment of Wheat Straw Using Novel Renewable Cholinium Ionic Liquids To Improve Enzymatic Saccharification. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b03729] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huan Ren
- State Key Laboratory of Pulp
and Paper Engineering, School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- State Key Laboratory of Pulp
and Paper Engineering, School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Hong Wu
- State Key Laboratory of Pulp
and Paper Engineering, School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Ning Li
- State Key Laboratory of Pulp
and Paper Engineering, School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Ninomiya K, Ogino C, Ishizaki M, Yasuda M, Shimizu N, Takahashi K. Effect of post-pretreatment washing on saccharification and co-fermentation from bagasse pretreated with biocompatible cholinium ionic liquid. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. CHEMSUSCHEM 2015; 8:3366-90. [PMID: 26365899 DOI: 10.1002/cssc.201500282] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/03/2015] [Indexed: 05/08/2023]
Abstract
Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).
Collapse
Affiliation(s)
- Marcos Henrique Luciano Silveira
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil
| | - Ana Rita C Morais
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | - Andre M da Costa Lopes
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | - Rafał Bogel-Łukasik
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal.
| | - Jürgen Andreaus
- Department of Chemistry, Regional University of Blumenau, Blumenau, SC, 89012 900, Brazil.
| | - Luiz Pereira Ramos
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil.
- INCT Energy and Environment (INCT E&A), Department of Chemistry, Federal University of Paraná.
| |
Collapse
|
14
|
Li K, Wang X, Wang J, Zhang J. Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo. BIORESOURCE TECHNOLOGY 2015; 192:424-31. [PMID: 26070065 DOI: 10.1016/j.biortech.2015.05.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/10/2015] [Accepted: 05/28/2015] [Indexed: 05/27/2023]
Abstract
Effects of additives (BSA, PEG 6000, and Tween 80) on enzymatic hydrolysis of bamboo shoot and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branches) by cellulases and/or xylanase were evaluated. The addition of additives was comparable to the increase of cellulase loadings in the conversion of cellulose and xylan in bamboo fractions. Supplementation of xylanase (1 mg/g DM) with cellulases (10 FPU/g DM) in the hydrolysis of bamboo fractions was more efficient than addition of additives in the production of glucose and xylose. Moreover, addition of additives could further increase the glucose release from different bamboo fractions by cellulases and xylanase. Bamboo green exhibited the lowest hydrolyzability. Almost all of the polysaccharides in pretreated bamboo shoot fractions were hydrolyzed by cellulases with the addition of additives or xylanase. Additives and xylanase showed great potential for reducing cellulase requirement in the hydrolysis of bamboo.
Collapse
Affiliation(s)
- Kena Li
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Xiao Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Jingfeng Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| |
Collapse
|
15
|
Mohan M, Banerjee T, Goud VV. Hydrolysis of bamboo biomass by subcritical water treatment. BIORESOURCE TECHNOLOGY 2015; 191:244-252. [PMID: 26000834 DOI: 10.1016/j.biortech.2015.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
The aim of present study was to obtain total reducing sugars (TRS) from bamboo under subcritical water (SCW) treatment in a batch reactor at the temperature ranging from 170 °C to 220 °C and 40 min hydrolysis time. Experiments were performed to investigate the effects of temperature and time on TRS yield. The maximum TRS yield (42.21%) was obtained at lower temperature (180 °C), however longer reaction time (25 min). X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analysis were used to characterise treated and untreated bamboo samples. The XRD profile revealed that crystallinity of bamboo increased to 71.90% with increase in temperature up to 210 °C and decreased thereafter to 70.92%. The first-order reaction kinetic model was used to fit the experimental data to obtain rate constants. From the Arrhenius plot, activation energy and pre-exponential factor at 25 min time were found to be 17.97 kJ mol(-1) and 0.154 min(-1), respectively.
Collapse
Affiliation(s)
- Mood Mohan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Vaibhav V Goud
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
16
|
An YX, Zong MH, Wu H, Li N. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse. BIORESOURCE TECHNOLOGY 2015; 192:165-171. [PMID: 26026293 DOI: 10.1016/j.biortech.2015.05.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Pretreatment of lignocelluloses is a key step in the biorefinery for production of biofuels and valuable platform chemicals. In this work, various lignocelluloses were pretreated using cholinium ionic liquids (ILs) that are wholly composed of biomaterials, and fractionated into carbohydrate-rich materials (CRMs) and lignin-rich materials (LRMs). Cholinium ILs were found to be effective pretreatment solvents for grass lignocelluloses as well as eucalyptus, resulting in significant improvements in the glucose yields (58-75%) in subsequent enzymatic hydrolysis, while they were inefficient to make pine susceptible to biodegradation. Approximately 46% of lignin in native rice straw was fractionated as LRM after pretreatment using cholinium argininate ([Ch][Arg]). [Ch][Arg] showed excellent recyclability, and the total recovery was as high as 75% after reused for 8 cycles. Besides, rice straw pretreated by the recycled IL remained highly digestible, and good glucose yields (63-75%) were achieved after its enzymatic hydrolysis.
Collapse
Affiliation(s)
- Yan-Xia An
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.
| | - Hong Wu
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Ning Li
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
17
|
Yang CY, Fang TJ. Kinetics for enzymatic hydrolysis of rice hulls by the ultrasonic pretreatment with a bio-based basic ionic liquid. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Ninomiya K, Omote S, Ogino C, Kuroda K, Noguchi M, Endo T, Kakuchi R, Shimizu N, Takahashi K. Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings. BIORESOURCE TECHNOLOGY 2015; 189:203-209. [PMID: 25898080 DOI: 10.1016/j.biortech.2015.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Choline acetate (ChOAc), a cholinium ionic liquid (IL), was compared with 1-ethyl-3-methylimidazolium acetate (EmimOAc) with regard to biomass pretreatment, inhibition on cellulase and yeast, residuals in pretreated biomass, and saccharification and fermentation of pretreated biomass. Irrespective of ChOAc and EmimOAc, cellulose and hemicellulose saccharification of the IL-pretreated bagasse were over 90% and 60%, respectively. Median effective concentrations (EC50) based on cellulase activity were 32 wt% and 16 wt% for ChOAc and EmimOAc, respectively. The EC50 based on yeast growth were 3.1 wt% and 0.3 wt% for ChOAc and EmimOAc respectively. The residuals in IL-pretreated bagasse were 10% and 23% for ChOAc and EmimOAc, respectively, when washed 2 times after pretreatment. Ethanol yield on a bagasse basis were 60% and 24% for ChOAc and EmimOAc, respectively, in the saccharification and fermentation of IL-pretreated bagasse when washed 2 times. ChOAc-pretreated bagasse could be saccharified and fermented with fewer wash times than EmimOAc-pretreated bagasse.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Sayuri Omote
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Kosuke Kuroda
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mana Noguchi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takatsugu Endo
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryohei Kakuchi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Nobuaki Shimizu
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
19
|
Kinetics of enzymatic hydrolysis of rice straw by the pretreatment with a bio-based basic ionic liquid under ultrasound. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Ninomiya K, Kohori A, Tatsumi M, Osawa K, Endo T, Kakuchi R, Ogino C, Shimizu N, Takahashi K. Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. BIORESOURCE TECHNOLOGY 2015; 176:169-174. [PMID: 25460999 DOI: 10.1016/j.biortech.2014.11.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Choline acetate (ChOAc), a cholinium ionic liquid (IL), showed almost the same bagasse pretreatment capability as 1-ethyl-3-methylimidazolium acetate (EmimOAc), a conventional imidazolium IL used for biomass pretreatment. Moreover, ChOAc showed less of an inhibitory effect on cellulase than EmimOAc. Thus, ChOAc was used for IL/ultrasound-assisted pretreatment and in situ enzymatic saccharification, where IL was not washed out from the pretreated bagasse but diluted with the addition of a buffer solution. When in situ saccharification was performed for 48h in the presence of 10% ChOAc, the cellulose and hemicellulose saccharification percentages were 80% and 72%, respectively. When ChOAc was increased to 20%, the saccharification percentages were 72% and 53%, respectively. However, the values were just 28% and 2%, respectively, in case of 20% EmimOAc. A glucose/xylose solution free from IL and ChOAc aqueous solution without these sugars could be recovered separately by electrodialysis of the hydrolysate of in situ saccharification.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Asami Kohori
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mai Tatsumi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Koji Osawa
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takatsugu Endo
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryohei Kakuchi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Nobuaki Shimizu
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
21
|
Mohan M, Timung R, Deshavath NN, Banerjee T, Goud VV, Dasu VV. Optimization and hydrolysis of cellulose under subcritical water treatment for the production of total reducing sugars. RSC Adv 2015. [DOI: 10.1039/c5ra20319h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Subcritical water (SCW) treatment has gained enormous attention as an environmentally friendly technique for organic matter and an attractive reaction medium for a variety of applications. In the current work the process parameters were optimized by RSM model.
Collapse
Affiliation(s)
- Mood Mohan
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Robinson Timung
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | | | - Tamal Banerjee
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Vaibhav V. Goud
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati
- India
- Centre for the Environment
| | - Venkata V. Dasu
- Centre for the Environment
- Indian Institute of Technology Guwahati
- Guwahati
- India
- Department of Biosciences and Bioengineering
| |
Collapse
|
22
|
Hou XD, Xu J, Li N, Zong MH. Effect of anion structures on cholinium ionic liquids pretreatment of rice straw and the subsequent enzymatic hydrolysis. Biotechnol Bioeng 2014; 112:65-73. [DOI: 10.1002/bit.25335] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Xue-Dan Hou
- State Key Laboratory of Pulp and Paper Engineering; College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510640 China
- College of Biosciences and Bioengineering; South China University of Technology; Guangzhou China
| | - Jie Xu
- College of Biosciences and Bioengineering; South China University of Technology; Guangzhou China
| | - Ning Li
- State Key Laboratory of Pulp and Paper Engineering; College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510640 China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering; College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
23
|
Microwave pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic saccharification. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Bamboo: a new source of carbohydrate for biorefinery. Carbohydr Polym 2014; 111:645-54. [PMID: 25037399 DOI: 10.1016/j.carbpol.2014.05.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/08/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023]
Abstract
Bamboo is perennial woody grass, which distributed widely in the world and belonged to the Gramineae family and Bambuseae subfamily. It may be consider as a candidate lignocellulosic substrate for bio-ethanol production for its environmental benefits and higher annual biomass yield. The conversion of bamboo into bio-ethanol, bio-methane, natural food, flavonoids, and functional xylo-oligosaccharides production were reviewed in this paper. Future prospects for research include pretreatment, enzymatic hydrolysis and fermentation will also be performed to improve the whole process of ethanol production more economical. And revealing the molecular regulation mechanism of the fast growth of bamboo will provide chance for improving bamboo or other energy plants biomass yield through genetic engineering.
Collapse
|
25
|
Gu T, Held MA, Faik A. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. ENVIRONMENTAL TECHNOLOGY 2013; 34:1735-49. [PMID: 24350431 DOI: 10.1080/09593330.2013.809777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.
Collapse
Affiliation(s)
- Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA.
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Ahmed Faik
- Environmental and Plant Biology Department, Ohio University Athens, OH 45701, USA
| |
Collapse
|
26
|
Hou XD, Li N, Zong MH. Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures. BIORESOURCE TECHNOLOGY 2013; 136:469-474. [PMID: 23567718 DOI: 10.1016/j.biortech.2013.02.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 05/28/2023]
Abstract
Pretreatment of rice straw by using renewable cholinium lysine ionic liquid ([Ch][Lys] IL)-water mixtures and subsequent enzymatic hydrolysis of the residues were conducted in this work. There is a clear correlation between the delignification capacity of the pretreatment solvent and its basicity. After pretreatment, surface area and pore volume of rice straw increased significantly, which substantially improved polysaccharides accessibility to enzymes and thus enhanced polysaccharides digestion. By carefully controlling the pretreatment severity (IL content, temperature and duration), loss of readily extractable xylan could be minimized. The sugar yields of 81% for glucose and 48% for xylose were achieved in the enzymatic hydrolysis of rice straw after pretreatment with 20% [Ch][Lys]-water mixture at 90 °C for 1 h. This pretreatment process is highly promising for industrial application because of high sugar yields, low energy input, short pretreatment time, and being environmentally benign and highly tolerant to moisture.
Collapse
Affiliation(s)
- Xue-Dan Hou
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | | | | |
Collapse
|