1
|
Zafar S, Ashraf A, Hayat S, Siddique MH, Waseem M, Hassan M, Qaisar H, Muzammil S. Isolation and characterization of novel cadmium-resistant Escherichia fergusonii ZSF-15 from industrial effluent for flocculant production and antioxidant enzyme activity. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:412. [PMID: 38565815 DOI: 10.1007/s10661-024-12545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Hira Qaisar
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
2
|
Zhao H, Sun S, Cui Y, Ullah MW, Alabbosh KF, Elboughdiri N, Zhou J. Sustainable production of bacterial flocculants by nylon-6,6 microplastics hydrolysate utilizing Brucella intermedia ZL-06. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133435. [PMID: 38224639 DOI: 10.1016/j.jhazmat.2024.133435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Nylon-6,6 microplastics (NMPs) in aquatic systems have emerged as potential contaminants to the global environment and have garnered immense consideration over the years. Unfortunately, there is currently no efficient method available to eliminate NMPs from sewage. This study aims to address this issue by isolating Brucella intermedia ZL-06, a bacterium capable of producing a bacterial polysaccharide-based flocculant (PBF). The PBF generated from this bacterium shows promising efficacy in effectively flocculating NMPs. Subsequently, the precipitated flocs (NMPs + PBF) were utilized as sustainable feedstock for synthesizing PBF. The study yielded 6.91 g/L PBF under optimum conditions. Genome sequencing analysis was conducted to study the mechanisms of PBF synthesis and nylon-6,6 degradation. The PBF exhibited impressive flocculating capacity of 90.1 mg/g of PBF when applied to 0.01 mm NMPs, aided by the presence of Ca2+. FTIR and XPS analysis showed the presence of hydroxyl, carboxyl, and amine groups in PBF. The flocculation performance of PBF conformed to Langmuir isotherm and pseudo-first-order adsorption kinetics model. These findings present a promising approach for reducing the production costs of PBF by utilizing NMPs as sustainable nutrient sources.
Collapse
Affiliation(s)
- Haijuan Zhao
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China; School of Mathematics and Statistics, Hubei University of Education, Wuhan 430205, China
| | - Su Sun
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongming Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China.
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Jiangang Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
3
|
Bahniuk MS, Alidina F, Tan X, Unsworth LD. The last 25 years of research on bioflocculants for kaolin flocculation with recent trends and technical challenges for the future. Front Bioeng Biotechnol 2022; 10:1048755. [PMID: 36507274 PMCID: PMC9731118 DOI: 10.3389/fbioe.2022.1048755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
The generation of kaolin-containing wastewater is an inevitable consequence in a number of industries including mining, wastewater treatment, and bitumen processing. In some cases, the production of kaolin tailings waste during the production of bitumen or phosphate is as high as 3 times greater than the actual produced product. The existing inventory of nearly five billion barrels of oil sands tailings alone represents a massive storage and reclamation challenge, as well as a significant economic and environmental liability. Current reclamation options like inorganic coagulants and organic synthetic polymers may settle kaolin effectively, but may themselves pose an additional environmental hazard. Bioflocculants are an emerging alternative, given the inherent safety and biodegradability of their bio-based compositions. This review summarizes the different research attempts towards a better bioflocculant of kaolin, with a focus on the bioflocculant source, composition, and effective flocculating conditions. Bacillus bacteria were the most prevalent single species for bioflocculant production, with wastewater also hosting a large number of bioflocculant-producing microorganisms while serving as an inexpensive nutrient. Effective kaolin flocculation could be obtained over a broad range of pH values (1-12) and temperatures (5-95°C). Uronic acid and glutamic acid were predominant sugars and amino acids, respectively, in a number of effective bioflocculants, potentially due to their structural and charge similarities to effective synthetic polymers like polyacrylamide. Overall, these results demonstrate that bioflocculants can be produced from a wide range of microorganisms, can be composed of polysaccharides, protein or glycoproteins and can serve as effective treatment options for kaolin. In some cases, the next obstacle to their wide-spread application is scaling to industrially relevant volumes and their deployment strategies.
Collapse
|
4
|
Zeng S, Lu Y, Pan X, Ling X. A Novel Bioflocculant Produced by Cobetia marina MCCC1113: Optimization of Fermentation Conditions by Response Surface Methodology and Evaluation of Flocculation Performance when Harvesting Microalgae. Pol J Microbiol 2022; 71:341-351. [PMID: 36185026 PMCID: PMC9608167 DOI: 10.33073/pjm-2022-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/03/2022] [Indexed: 11/06/2022] Open
Abstract
A preliminary study was carried out to optimize the culture medium conditions for producing a novel microbial flocculant from the marine bacterial species Cobetia marina. The optimal glucose, yeast extract, and glutamate contents were 30, 10, and 2 g/l, respectively, while the optimal initial pH of the culture medium was determined to be 8. Following response surface optimization, the maximum bioflocculant production level of 1.36 g/l was achieved, which was 43.40% higher than the original culture medium. Within 5 min, a 20.0% (v/v) dosage of the yielded bioflocculant applied to algal cultures resulted in the highest flocculating efficiency of 93.9% with Spirulina platensis. The bioflocculant from C. marina MCCC1113 may have promising application potential for highly productive microalgae collection, according to the findings of this study. ![]()
Collapse
Affiliation(s)
- Siyu Zeng
- Department of Pharmacy and Laboratory, Huizhou Health Sciences Polytechnic , Huizhou , China
| | - Yinghua Lu
- College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Xueshan Pan
- College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| | - Xueping Ling
- College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , China
| |
Collapse
|
5
|
Tsilo PH, Basson AK, Ntombela ZG, Maliehe TS, Pullabhotla VR. Production and Characterization of a Bioflocculant from Pichia kudriavzevii MH545928.1 and Its Application in Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063148. [PMID: 35328836 PMCID: PMC8953087 DOI: 10.3390/ijerph19063148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
A variety of flocculants have been used to aggregate colloidal substances. However, recently, owing to the adverse effects and high costs of conventional flocculants, natural flocculants such as microbial flocculants are gaining attention. The aim of the study was to produce and characterize a bioflocculant from Pichia kudriavzevii MH545928.1 and apply it in wastewater treatment. A mixture of butanol and chloroform (5:2 v/v) was used to extract the bioflocculant. Phenol–sulphuric acid, Bradford and Carbazole assays were utilized for the identification of carbohydrates, proteins and uronic acid, respectively. Scanning electron microscopy (SEM) and elemental detector were employed to determine the surface morphology and elemental compositions. The removal efficiencies were 73%, 49% and 47% for BOD, COD and P, respectively. The bioflocculant (2.836 g/L) obtained showed the presence of carbohydrates (69%), protein (11%) and uronic acid (16%). The bioflocculant displayed a cumulus-like structure and the elemental composition of C (16.92%), N (1.03%), O (43:76%), Na (0.18%), Mg (0.40%), Al (0.80%), P (14.44%), S (1.48%), Cl (0.31%), K (0.34%) and Ca (20.35). It showed the removal efficiencies of 43% (COD), 64% (BOD), 73% (P) and 50% (N) in coal mine wastewater. This bioflocculant is potentially viable to be used in wastewater treatment.
Collapse
Affiliation(s)
- Phakamani H. Tsilo
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa; (Z.G.N.); (A.K.B.); (T.S.M.)
- Correspondence: (P.H.T.); (V.R.P.); Tel.: +27-671-090-888 (P.H.T.); +27-35-902-6155 (V.R.P.)
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa; (Z.G.N.); (A.K.B.); (T.S.M.)
| | - Zuzingcebo G. Ntombela
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa; (Z.G.N.); (A.K.B.); (T.S.M.)
| | - Tsolanku S. Maliehe
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa; (Z.G.N.); (A.K.B.); (T.S.M.)
| | - V.S.R. Rajasekhar Pullabhotla
- Department of Chemistry, Faculty of Sciences, Agriculture and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
- Correspondence: (P.H.T.); (V.R.P.); Tel.: +27-671-090-888 (P.H.T.); +27-35-902-6155 (V.R.P.)
| |
Collapse
|
6
|
Saha S, Shukla SK, Singh HR, Pradhan KK, Jha SK. Production and purification of bioflocculants from newly isolated bacterial species: a comparative decolourization study of cationic and anionic textile dyes. ENVIRONMENTAL TECHNOLOGY 2021; 42:3663-3674. [PMID: 32114960 DOI: 10.1080/09593330.2020.1737737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Bioflocculant-producing bacteria were isolated from various water reservoirs and sediments of the water treatment plant. Four promising strains were identified by standard biochemical methods and 16s rRNA gene sequencing. Bioflocculants were produced in a batch bioreactor of 3 L under optimized conditions. Fourier transformed infrared spectroscopy and scanning electron microscopy (SEM) were used to confirm the chemical and morphological nature of bioflocculants. Anionic and cationic textile dyes congo red (CR) and rhodamine-B (RB) decolourization efficiency by ethanol precipitated bioflocculants were accessed under different values of pH, temperature, dose of flocculant and presence of monovalent, divalent and trivalent cations. Bioflocculants of all the four isolates were found to be highly efficient in decolourization of dye from an aqueous medium with the removal rate up to 99.56%. The removal rate of CR and RB from aqueous medium was largely influenced by the physiochemical condition of the solution viz. pH, temperature, concentration of ions and dose of flocculants. The microbial bioflocculants are biodegradable and highly stable as well as possess abroad range of pH, temperature and ions tolerance range. So, they may be economical and can be greener substitutes for the present harsh chemical-based wastewater effluent treatment methods.
Collapse
Affiliation(s)
- Swastika Saha
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sushil Kumar Shukla
- Department of Transport Science and Technology, Central University of Jharkhand, Brambe, Ranchi, Jharkhand, India
| | - Hare Ram Singh
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Kishanta Kumar Pradhan
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Santosh Kumar Jha
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
7
|
Wang Y, Li J, Huang S, Huang X, Hu W, Pu J, Xu M. Evaluation of NOx removal from flue gas and Fe(II)EDTA regeneration using a novel BTF-ABR integrated system. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125741. [PMID: 34088200 DOI: 10.1016/j.jhazmat.2021.125741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A promising process is under development for the removal of NOx and regeneration of Fe(II)EDTA in a novel biotrickling filter-anaerobic baffled reactor (BTF-ABR) integrated system at 50 ± 0.5 ℃. In this work, we investigated the NOx removal capacity of a BTF under different O2 concentrations (7.0 vol%, 5.25 vol% and 3.5 vol%), and tested the effect of an ABR on NOx removal and regeneration of Fe(II)EDTA. The results showed that the NOx removal capacity was significantly increased with the O2 concentration reduced from 7.0% to 3.5%. The microoxygen environment produced by the BTF-ABR integrated system was more conducive to the removal of NOx and regeneration of Fe(II)EDTA compared with that in the BTF. Real-time polymerase chain reaction (PCR) analysis showed that the coordinated expression of denitrification genes was the major reason for no N2O emission, along with no nitrate and nitrite accumulation. The 16S rRNA gene amplicon sequencing analysis showed that the cooperation of denitrifying bacteria (Klebsiella, Petrimonas, Rhodococcus and Ochrobactium) and iron-reducing bacteria (Klebsiella, Geobacter and Petrimonas) in the system was the key to the stable and efficient removal of NOx and the regeneration of Fe(II)EDTA simultaneously.
Collapse
Affiliation(s)
- Yanling Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China.
| | - Xingzhu Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Wenzhe Hu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Jia Pu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510006, PR China.
| |
Collapse
|
8
|
Liu C, Sun D, Liu J, Zhu J, Liu W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. BIORESOUR BIOPROCESS 2021; 8:51. [PMID: 38650196 PMCID: PMC10992557 DOI: 10.1186/s40643-021-00405-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial flocculants are macromolecular substances produced by microorganisms. Due to its non-toxic, harmless, and biodegradable advantages, microbial flocculants have been widely used in various industrial fields, such as wastewater treatment, microalgae harvest, activated sludge dewatering, heavy metal ion adsorption, and nanoparticle synthesis, especially in the post-treatment process of fermentation with high safety requirement. However, compared with the traditional inorganic flocculants and organic polymeric flocculants, the high production cost is the main bottleneck that restricts the large-scale production and application of microbial flocculants. To reduce the production cost of microbial flocculant, a series of efforts have been carried out and some exciting research progresses have been achieved. This paper summarized the research advances in the last decade, including the screening of high-yield strains and the construction of genetically engineered strains, search of cheap alternative medium, the extraction and preservation methods, microbial flocculants production as an incidental product of other biological processes, combined use of traditional flocculant and microbial flocculant, and the production of microbial flocculant promoted by inducer. Moreover, this paper prospects the future research directions to further reduce the production cost of microbial flocculants, thereby promoting the industrial production and large-scale application of microbial flocculants.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
9
|
Liu W, Dong Z, Sun D, Dong Q, Wang S, Zhu J, Liu C. Production of bioflocculant using feather waste as nitrogen source and its use in recycling of straw ash-washing wastewater with low-density and high pH property. CHEMOSPHERE 2020; 252:126495. [PMID: 32199160 DOI: 10.1016/j.chemosphere.2020.126495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Straw ash-washing wastewater is generated in the process of straw combustion power generation and potash fertilizer production. The suspended solid particles in straw ash-washing wastewater are hard to be settled down due to its low-density and high pH properties which inhibit the application of traditional chemical flocculants. Bioflocculant has good advantages in flocculating activity, biodegradability and adaptability of wastewater pH fluctuation. However, high production cost limited the large-scale applications of bioflocculant in wastewater treatment. In this study, the feasibility of using feather waste as cheap alternative nitrogen source of alkaliphilic Bacillus agaradhaerens C9 to produce bioflocculant was investigated. The results showed that strain C9 could simultaneously produce keratinase and bioflocculant, and thereby producing bioflocculant (named as BFF) using feather waste as cheap nitrogen source. The optimal fermentation conditions for enzymatic hydrolysis of feather waste and BFF production was 40 g/L feather wastes, 16 g/L glucose, 37 °C and pH 9.5, and the highest yield of 2.5 g/L was obtained. Moreover, BFF was used to flocculate straw ash-washing wastewater which exhibits low-density and high pH properties, and the highest flocculating rate of 93.1% was achieved when 6.0 mg/L BFF was added. This study reported for the first time that feather waste was used as inexpensive alternative nitrogen source for producing bioflocculant which could treat straw ash-washing wastewater, thereby promoting the resourceful utilization of feather waste and the reuse of straw ash-washing wastewater.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Di Sun
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Qinxin Dong
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xian, 710069, Shaanxi Province, China
| | - Jingrong Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China
| | - Cong Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China.
| |
Collapse
|
10
|
Chouchane H, Najjari A, Neifar M, Cherif H, Askri R, Naili F, Ouzari HI, Cherif A. Unravelling the characteristics of a heteropolysaccharide-protein from an Haloarchaeal strain with flocculation effectiveness in heavy metals and dyes removal. ENVIRONMENTAL TECHNOLOGY 2020; 41:2180-2195. [PMID: 30517064 DOI: 10.1080/09593330.2018.1556742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
The production, characterization and potential application in heavy metals and dyes removal of a novel heteropolysaccharide-protein named, gpHb, produced by an Haloarchaeal strain Halogeometricum borinquense strain A52 were investigated. The highest gpHb yield of 13.96 ± 0.32 g/L was produced under optimized conditions by response surface methodology. We focused on the characteristics and flocculation performance of gpHb. An important attribute of protein with 16 protein types identified that occupied a total content of 50.2% in the gpHb. Additionally, carbohydrate that occupied 30.4% of the total bioflocculant content consisted of three monosaccharides. Fourier transform-infrared spectroscopy indicated the presence of carboxyl, hydroxyl, amine, amide, and sulphate groups. To further study flocculation activities, factors such as bioflocculant dosage, temperature, pH, salinity and cations addition were tested. In comparison to the chemical flocculant polyaluminium chloride, gpHb maintain high activity at large range of salinity and its flocculation activity was higher on both sides of pH 7. Addition of trivalent cation mainly Fe3+ enhances the flocculating rate indicating that the bioflocculant is negatively charged. Its practical applicability was established for heavy metals and dyes removal from saline aqueous solutions. The highest removal efficiency was observed with Cr3+ (91.4%) and Ni2+ (89.60%) and with basic blue 3 (83.8%) and basic red (78.6%). The excellent flocculation activity of gpHb under saline condition suggests its potential industrial utility for treatment of textile and tannery wastewaters.
Collapse
Affiliation(s)
- Habib Chouchane
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Afef Najjari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed Neifar
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Hanen Cherif
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Refka Askri
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Fatma Naili
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| | - Hadda Imene Ouzari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, Tunis, Tunisia
| | - Ameur Cherif
- ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Univ. Manouba, Ariana, Tunisia
| |
Collapse
|
11
|
Yan Z, Peng L, Deng M, Lin J. Production of a bioflocculant by using activated sludge and its application in Pb(II) removal from aqueous solution. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this study, the characteristics of a bioflocculant produced by using activated sludge as raw materials were investigated. The performance of this bioflocculant in the removal of Pb(II) from aqueous solution and the corresponding mechanisms were determined as well. After cultivating a bioflocculant-producing strain in an alkaline thermal pre-treatment sludge for 60 h, approximately 4.45 g of bioflocculant containing a protein backbone was harvested from 1 L of fermentation broth. This bioflocculant can remove 98.5% of Pb(II) from aqueous solutions under optimal conditions, which include a bioflocculant dosage of 6 mg/L and a CaCl2 concentration of 70 mg/L at a pH of 6.5.
Collapse
Affiliation(s)
- Zibo Yan
- Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering, Chendu610059, China
- Sichuan College of Architectural Technology, Department of Materials Engineering, Deyang61800, China
- Deyang Research Center of Building Materials and Environmental Resource Engineering Technology, Deyang61800, China
| | - Li Peng
- Sichuan College of Architectural Technology, Department of Materials Engineering, Deyang61800, China
- Deyang Research Center of Building Materials and Environmental Resource Engineering Technology, Deyang61800, China
| | - Miao Deng
- Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering, Chendu610059, China
| | - Jinhui Lin
- Chengdu University of Technology, College of Materials and Chemistry & Chemical Engineering, Chendu610059, China
| |
Collapse
|
12
|
Guo J, Wen X. Performances and mechanisms of sludge dewatering by a biopolymer from piggery wastewater and application of the dewatered sludge in remediation of Cr(VI)-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:109678. [PMID: 32072946 DOI: 10.1016/j.jenvman.2019.109678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, a biopolymer was harvested from piggery wastewater to treat biological sludge. Effectiveness of the combination of polyaluminum chloride (PAC) and this biopolymer in sludge dewatering was investigated and the dewatering mechanism was discussed. Results showed that as high as 3.11 g of biopolymer can be harvested from 1 L of piggery wastewater by cultivating Bacillus megaterium. After treated by PAC with a dosage of 1.5 g/L at pH point of 7.5, specific resistance to filtration (SRF), moisture content (MC), settled volume after 30 min (SV30) and capillary suction time (CST) of the sludge were decreased to 3.4 × 1012 m/kg, 84.5%, 79.8% and 65 s, respectively, and dry solid (DS) was increased to 21.4%, indicated that sludge dewatering was obviously enhanced by PAC. After further treated by 2 g/L of the biopolymer, SRF, MC, SV30 and CST were further decreased to 2.1 × 1012 m/kg, 59.8%, 55.6% and 39 s, respectively, and DS was increased to 28.6%, indicated that sludge dewatering was further enhanced by the biopolymer. For the enhancing mechanism, on the one hand, the extracellular polymeric substances (EPS) was significantly disintegrated to release binding bound water, which was facilitating sludge dewatering; on the other hand, the synergistic effect of PAC coagulation and biopolymer flocculation, including charge neutralization and bridge-aggregation, were favorable to sludge dewatering. Additionally, we found that the dewatered sludge was helpful for remediation of chromium (Cr)(VI)-contaminated soil by raising soil pH and decreasing bioavailability of Cr(VI) in the soil, after remediated by 75 g/kg of the dewatered sludge for 60 days, the soil pH was increased from its initial value of 4.32-8.52, and the residue Cr(VI) in the soil extract was appeared as 2.2 mg/L.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Xiaoying Wen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
13
|
Zou X, Sun J, Li J, Jia Y, Xiao T, Meng F, Wang M, Ning Z. High Flocculation of Coal Washing Wastewater Using a Novel Bioflocculant from Isaria cicadae GZU6722. Pol J Microbiol 2020; 69:1-10. [PMID: 32108451 PMCID: PMC7256762 DOI: 10.33073/pjm-2020-008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/02/2022] Open
Abstract
Chanhua (Isaria cicadae) was known as a rare entomogenous fungus with various pharmacological activities since a long time ago in China, which has attracted considerable attention. However, less knowledge was maintained about its products as potential bioflocculants. In this work, a bioflocculant IC-1 produced by Isaria cicadae GZU6722, consisted mainly of protein (4%) and polysaccharides including neutral sugars (52.75%) and galacturonic acid (38.14%), was characterized. It presented high efficiency in flocculating coal washing wastewater, and the flocculating efficiency could reach 91.81% by addition of 24 mg l–1 IC-1 compared to the addition of 60 mg l–1 APAM (anionic polyacrylamide) under the same treatment conditions. The highest flocculating efficiency reached 95.8% in the presence of 2% CaCl2. Compared to APAM, the flocculating efficiency of coal washing wastewater by IC-1 varied little with the increasing dosage. Although the flocs in the APAM-assisted sediment were larger than that in the IC-1-assisted sediment after 1 min of sedimentation, few flocs were still found in the supernatant of both treated samples after 10 min of sedimentation. More interestingly, it was observed under the microscope that the flocs in the IC-1-assisted sediments were more compact than that in the APAM-assisted sediments, suggesting that polymer bridging might take place after IC-1 was added into the coal washing wastewater. The evaluation of costs indicated that the use of IC-1 to treat the coal-washing wastewater may be an economical and feasible way to avoid the extra cost for post-treatment of conventional flocculants.
Collapse
Affiliation(s)
- Xiao Zou
- Institute of Fungal Resources , Guizhou University , Guiyang , China
| | - Jialong Sun
- School of Resources and Environmental Engineering , Guizhou Institute of Technology , Guiyang , China
| | - Juan Li
- Institute of Fungal Resources , Guizhou University , Guiyang , China
| | - Yanlong Jia
- School of Resources and Environmental Engineering , Guizhou Institute of Technology , Guiyang , China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta , Ministry of Education; School of Environmental Science and Engineering , Guangzhou University , Guangzhou , China
| | - Fanli Meng
- Guizhou Academy of Environmental Science and Design , Guiyang , China
| | - Maosheng Wang
- School of Food and Pharmaceutical Engineering , Guizhou Institute of Technology , Guiyang , China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry , Institute of Geochemistry , Chinese Academy of Sciences , Guiyang , China
| |
Collapse
|
14
|
Li H, Wu S, Du C, Zhong Y, Yang C. Preparation, Performances, and Mechanisms of Microbial Flocculants for Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1360. [PMID: 32093205 PMCID: PMC7068532 DOI: 10.3390/ijerph17041360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
In recent years, close attention has been paid to microbial flocculants because of their advantages, including safety to humans, environmental friendliness, and acceptable removal performances. In this review, the preparation methods of microbial flocculants were first reviewed. Then, the performances of bioflocculants in the removal of suspended solids, heavy metals, and other organic pollutants from various types of wastewater were described and commented, and the removal mechanisms, including adsorption bridging, charge neutralization, chemical reactions, and charge neutrality, were also discussed. The future research needs on microbial flocculants were also proposed. This review would lead to a better understanding of current status, challenges, and corresponding strategies on microbial flocculants and bioflocculation in wastewater treatment.
Collapse
Affiliation(s)
- Huiru Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Cheng Du
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Yuanyuan Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
- Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha 410001, China
| |
Collapse
|
15
|
Exploration of an Extracellular Polymeric Substance from Earthworm Gut Bacterium (Bacillus licheniformis) for Bioflocculation and Heavy Metal Removal Potential. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010349] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study shows the potential of an extracellular polymeric substance (EPS) produced by Bacillus licheniformis strain KX657843 isolated from earthworm (Metaphire posthuma) gut in the sorption of Cu(II) and Zn(II) and in flocculation. After harvesting bacterial cells from sucrose supplemented denitrifying culture medium, the EPS was extracted following ethanolic extraction method. The Fourier Transform Infrared Spectroscopy (FTIR) and 1H and 13C Nuclear Magnetic Resonance (NMR) of EPS revealed its functional groups, electronegative constituents, unsaturated carbon, and carbonyl groups. The negatively charged functional groups of carbohydrates and protein moiety of the EPS endowed it with heavy metal binding capacity through electrostatic interactions. The highest flocculation activity (83%) of EPS was observed at 4 mg L−1 and pH 11. The metal sorption by EPS increased with increasing pH. At pH 8, the EPS was able to remove 86 and 81% Cu(II) and Zn(II), respectively, from a 25 mg L−1 metal solution. 94.8% of both the metals at 25 mg L−1 metal solutions were removed by EPS at EPS concentration of 100 mg L−1. From Langmuir isotherm model, the maximum sorption capacities of EPS were calculated to be 58.82 mg g−1 for Cu(II) and 52.45 mg g−1 for Zn(II). The bacterial EPS showed encouraging flocculating and metal sorption properties. The potential to remove Cu(II) and Zn(II) implies that the EPS obtained from the earthworm gut bacteria can be used as an effective agent for environmental remediation of heavy metals and in bioflocculation.
Collapse
|
16
|
Mohammed JN, Wan Dagang WRZ. Implications for industrial application of bioflocculant demand alternatives to conventional media: waste as a substitute. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1807-1822. [PMID: 32144213 DOI: 10.2166/wst.2020.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.
Collapse
Affiliation(s)
- Jibrin Ndejiko Mohammed
- Department of Microbiology, Ibrahim Badamasi Babangida University, PMB11, Lapai, Niger State, Nigeria; Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor, Malaysia E-mail:
| | | |
Collapse
|
17
|
Liu W, Dong Z, Sun D, Chen Y, Wang S, Zhu J, Liu C. Bioconversion of kitchen wastes into bioflocculant and its pilot-scale application in treating iron mineral processing wastewater. BIORESOURCE TECHNOLOGY 2019; 288:121505. [PMID: 31128543 DOI: 10.1016/j.biortech.2019.121505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, the feasibility of converting kitchen waste into bioflocculant using Bacillus agaradhaerens C9 was analyzed. The result showed that strain C9 could secrete various degrading enzymes, including amylase, protease, lipase, cellulase, xylanase and pectinase, promoting the hydrolysis of kitchen waste. Strong alkaline fermentation condition was able to induce the bioflocculant production, and inhibit the growth of contaminated bacteria, which avoids the sterilization process of kitchen waste. The optimum fermentation condition for enzymatic hydrolysis and bioflocculant production was 40 g/L kitchen waste, 37 °C, pH 9.5, and the highest bioflocculant yield of 6.92 g/L was achieved. Furthermore, bioflocculant was applied to treat pilot-scale (30 L) of mineral processing wastewater for the first time, and the removal rate of 92.35% was observed when 9 mg/L bioflocculant was added into wastewater. Therefore, this study could promote the resource utilization of kitchen waste and recycling of mineral processing wastewater.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Di Sun
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Ying Chen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xian 710069, Shanxi Province, China
| | - Jingrong Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Cong Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| |
Collapse
|
18
|
Mu J, Cui X, Shao M, Wang Y, Yang Q, Yang G, Zheng L. Microbial origin of bioflocculation components within a promising natural bioflocculant resource of Ruditapes philippinarum conglutination mud from an aquaculture farm in Zhoushan, China. PLoS One 2019; 14:e0217679. [PMID: 31216303 PMCID: PMC6583956 DOI: 10.1371/journal.pone.0217679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Ruditapes philippinarum conglutination mud (RPM) is a byproduct from the aquiculture of an important commercially bivalve mollusk R. philippinarum and has been recently reported as a promising natural bioflocculant resource. However the origin of bioflocculation components within RPM is still a pending doubt and impedes its effective exploitation. This study investigated the probability that RPM bioflocculation components originate from its associated microbes. RPM samples from an aquaculture farm in Zhoushan of China were applied to characterize its microbial community structure, screen associated bioflocculant-producing strains, and explore the homology between extracellular polysaccharides (EPS) from bioflocculant-producing isolates and RPM flocculation components. Results showed that RPM exhibited high bacterial biodiversity, with Proteobacteria, Bacteroidetes and Actinobacteria as the most abundant phyla; hgcI_clade, CL500_29_marine_group, Fusibacter, MWH_UniP1_aquatic_group and Arcobacter as the dominant genera. Fourteen highly efficient bioflocculant-producing strains were screened and phylogenetically identified as Pseudoalteromonas sp. (5), Psychrobacter sp. (3), Halomonas sp. (2), Albirhodobacter sp. (1), Celeribacter sp. (1), Kocuria sp. (1) and Bacillus sp. (1), all of which except Bacillus sp. were reported for the first time for their excellent flocculation capability. Furthermore, EPS from the bioflocculant-producing strains exhibited highly similar monosaccharide composition to the reported flocculation-effective RPM polysaccharides. On the other hand, the existence of fungi in RPM was rare and showed no flocculation functionality. Findings from Zhoushan RPM strongly supported that RPM flocculation components were of bacterial origin and make RPM reproduction possible by fermentation approach.
Collapse
Affiliation(s)
- Jun Mu
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xia Cui
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Mingjiao Shao
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yuxia Wang
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Qiao Yang
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Guangfeng Yang
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Liying Zheng
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
19
|
Guo J, Du J, Chen P, Huang X, Chen Q. Enhanced efficiency of swine wastewater treatment by the composite of modified zeolite and a bioflocculant enriched from biological sludge. ENVIRONMENTAL TECHNOLOGY 2018; 39:3096-3103. [PMID: 28859597 DOI: 10.1080/09593330.2017.1375017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
A high-ammonia-resistant strain was firstly isolated from activated sludge and applied to harvest a bioflocculant from a swine wastewater. Enhancement of swine wastewater treatment was investigated by a composite of the harvested bioflocculant and a zeolite modified by integrating calcinations with MgO at 400°C. Results have demonstrated that 71.8% of Chemical Oxygen Demand (COD), 54.5% of ammonia, and 81.2% of turbidity can be removed from the swine wastewater by the bioflocculant alone. Results have also demonstrated that 73.4% of ammonia could be removed from the swine wastewater by the modified zeolite alone, while almost no COD was removed. Thus, the bioflocculant and modified zeolite were used simultaneously to enhance swine wastewater treatment, and response surface methodology (RSM) was employed to optimize the treatment process. Under the optimal treatment conditions of bioflocculant of 12 mg/L, modified zeolite of 8 g/L, pH of 7.5, and agitation speed of 200 r/min, obtained by the RSM, 88.6% of COD, 85.8% of ammonia, and 95.5% of turbidity could be removed from swine wastewater, which were significantly improved compared with that by the bioflocculant or modified zeolite alone. The use of the composite exerted advantages of the bioflocculant and modified zeolite, and provided a feasible way to improve pollutants' removal from wastewaters.
Collapse
Affiliation(s)
- Junyuan Guo
- a College of Resources and Environment, Chengdu University of Information Technology , Chengdu , People's Republic of China
| | - Jiali Du
- a College of Resources and Environment, Chengdu University of Information Technology , Chengdu , People's Republic of China
| | - Peilan Chen
- a College of Resources and Environment, Chengdu University of Information Technology , Chengdu , People's Republic of China
| | - Xinyi Huang
- a College of Resources and Environment, Chengdu University of Information Technology , Chengdu , People's Republic of China
| | - Qingyang Chen
- a College of Resources and Environment, Chengdu University of Information Technology , Chengdu , People's Republic of China
| |
Collapse
|
20
|
|
21
|
Value-Added Products Derived from Waste Activated Sludge: A Biorefinery Perspective. WATER 2018. [DOI: 10.3390/w10050545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Srivastava A, Seo SH, Ko SR, Ahn CY, Oh HM. Bioflocculation in natural and engineered systems: current perspectives. Crit Rev Biotechnol 2018; 38:1176-1194. [DOI: 10.1080/07388551.2018.1451984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ankita Srivastava
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seong-Hyun Seo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Agunbiade M, Pohl C, Ashafa O. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz J Microbiol 2018; 49:731-741. [PMID: 29674102 PMCID: PMC6175721 DOI: 10.1016/j.bjm.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022] Open
Abstract
A bacterium isolated from Sterkfontein dam was confirmed to produce bioflocculant with excellent flocculation activity. The 16S rDNA nucleotide sequence analyses revealed the bacteria to have 99% similarity to Streptomyces platensis strain HBUM174787 and the sequence was deposited in the Genbank as Streptomyces platensis with accession number FJ 486385.1. Culture conditions for optimal production of the bioflocculant included glucose as a sole carbon source, resulting in flocculating activity of 90%. Other optimal conditions included: peptone as nitrogen source; presence of Mg2+ as cations and inoculum size of 1.0% (v/v) at neutral pH of 7. Optimum dose of the purified bioflocculant for the clarification of 4g/L kaolin clay suspension at neutral pH was 0.2mg/mL. Energy Dispersive X-ray analysis confirmed elemental composition of the purified bioflocculant in mass proportion (%w/w): carbon (21.41), oxygen (35.59), sulphur (26.16), nitrogen (0.62) and potassium (7.48). Fourier Transform Infrared Spectroscopy (FTIR) indicated the presence of hydroxyl, carboxyl, methoxyl and amino group in the bioflocculant. The bioflocculant produced by S. platensis removed chemical oxygen demand (COD) in river water and meat processing wastewater at efficiencies of 63.1 and 46.6% respectively and reduced their turbidity by 84.3 and 75.6% respectively. The high flocculating rate and removal efficiencies displayed by S. platensis suggests its industrial application in wastewater treatment.
Collapse
Affiliation(s)
- Mayowa Agunbiade
- University of the Free State, Qwaqwa Campus, Department of Plant Sciences, Phytomedicine and Phytopharmacology Research Group, Phuthaditjhaba, South Africa; University of the Free State, Department of Microbial, Biochemical & Food Biotechnology, Bloemfontein, South Africa
| | - Carolina Pohl
- University of the Free State, Department of Microbial, Biochemical & Food Biotechnology, Bloemfontein, South Africa
| | - Omotayo Ashafa
- University of the Free State, Qwaqwa Campus, Department of Plant Sciences, Phytomedicine and Phytopharmacology Research Group, Phuthaditjhaba, South Africa.
| |
Collapse
|
24
|
Guo J, Liu J, Yang Y, Zhou Y, Jiang S, Chen C. Fermentation and kinetics characteristics of a bioflocculant from potato starch wastewater and its application. Sci Rep 2018; 8:3631. [PMID: 29483543 PMCID: PMC5827517 DOI: 10.1038/s41598-018-21796-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/08/2018] [Indexed: 11/09/2022] Open
Abstract
Potato starch wastewater was used as fermentation medium for Rhodococcus erythropolis to produce bioflocculant. Kinetics of cell growth and bioflocculant production were firstly constructed. After fermentation for 60 h, 0.97 g of bioflocculant with polysaccharides nature was extracted from 1 L of fermentation liquor. Kinetics characteristics showed that cell growth and bioflocculant production could be simulated well with Logistic and Luedeking-Piret equations, respectively. When R. erythropolis was in logarithm growth phase, COD, ammonium, and TP of the potato starch wastewater medium were rapidly down to 1736, 188, and 146 mg/L, respectively, from 7836, 975, and 712 mg/L, while the medium's exactly pH value was almost not changed. Furthermore, bioflocculant flocculation can be used as an effective pretreatment way for potato starch wastewater, and it was feasible in actual treatment projects in Ronghua Starch Co., Ltd., Sichuan Province.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Jianying Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yijin Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yuling Zhou
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Shilin Jiang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
25
|
Characterization of a novel bioflocculant from a marine bacterium and its application in dye wastewater treatment. BMC Biotechnol 2017; 17:84. [PMID: 29149843 PMCID: PMC5693566 DOI: 10.1186/s12896-017-0404-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023] Open
Abstract
Background The identification of microorganisms with excellent flocculant-producing capability and optimization of the fermentation process are necessary for the wide-scale application of bioflocculants. Thus, we evaluated the flocculant-producing ability of a novel strain identified by the screening of marine bacteria, and we report for the first time the properties of the bioflocculant produced by Alteromonas sp. in the treatment of dye wastewater. Results A bioflocculant-producing bacterium was isolated from seawater and identified as Alteromonas sp. CGMCC 10612. The optimal carbon and nitrogen sources for the strain were 30 g/L glucose and 1.5 g/L wheat flour. In a 2-L fermenter, the flocculating activity and bioflocculant yield reached maximum values of 2575.4 U/mL and 11.18 g/L, respectively. The bioflocculant was separated and showed good heat and pH stability. The purified bioflocculant was a proteoglycan consisting of 69.61% carbohydrate and 21.56% protein (wt/wt). Infrared spectrometry further indicated the presence of hydroxyl, carboxyl and amino groups preferred for flocculation. The bioflocculant was a nanoparticle polymer with an average mass of 394,000 Da. The purified bioflocculant was able to remove Congo Red, Direct Black and Methylene Blue at efficiencies of 98.5%, 97.9% and 72.3% respectively. Conclusions The results of this study indicated that the marine strain Alteromonas sp. is a good candidate for the production of a novel bioflocculant and suggested its potential industrial utility for biotechnological processes. Electronic supplementary material The online version of this article (10.1186/s12896-017-0404-z) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Guo J, Chen C. Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability. CHEMOSPHERE 2017; 185:277-283. [PMID: 28700956 DOI: 10.1016/j.chemosphere.2017.06.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/08/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the production of a bioflocculant by using rice stover and its potential in sludge dewatering. Production of the bioflocculant was positively associated with cell growth and highest value of 2.37 g L-1 was obtained with main backbone of polysaccharides. The bioflocculant showed good performances in sludge dewatering, after conditioned by this bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 19.3% and 4.8 × 1012 m kg-1, respectively, which were much better than the ones obtained with chemical flocculants. Sludge dewatering was further improved when the bioflocculant and polyaluminum chloride (PAC) were used simultaneously, and the optimized conditioning process by the composite was bioflocculant of 10.5 g kg-1, PAC of 19.4 g kg-1, and pH of 8.1. Under this optimal condition, DS and SRF of the sludge appeared as 24.1% and 3.0 × 1012 m kg-1, respectively.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
27
|
Ntozonke N, Okaiyeto K, Okoli AS, Olaniran AO, Nwodo UU, Okoh AI. A Marine Bacterium, Bacillus sp. Isolated from the Sediment Samples of Algoa Bay in South Africa Produces a Polysaccharide-Bioflocculant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101149. [PMID: 28961180 PMCID: PMC5664650 DOI: 10.3390/ijerph14101149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022]
Abstract
Bioflocculants mediate the removal of suspended particles from solution and the efficiency of flocculation is dependent on the characteristics of the flocculant. Apart from the merits of biodegradability and harmlessness, bioflocculants could be viable as industrially relevant flocculants as they are a renewable resource. Additionally, the shortcomings associated with the conventionally used flocculants such as aluminium salts and acrylamide polymers, which include dementia and cancer, highlight more the need to use bioflocculants as an alternative. Consequently, in this study a marine sediment bacterial isolate was screened for bioflocculant production. Basic local alignment search tools (BLAST) analysis of 16S ribosomal deoxyribonucleic acid (rDNA) sequence of the bacterial isolate showed 98% similarity to Bacillus thuringiensis MR-R1. The bacteria produced bioflocculant optimally with inoculum size (4% v/v) (85%), glucose (85.65%) and mixed nitrogen source (urea, ammonium chloride and yeast extract) (75.9%) and the divalent cation (Ca2+) (62.3%). Under optimal conditions, a maximum flocculating activity of over 85% was attained after 60 h of cultivation. The purified polysaccharide-bioflocculant flocculated optimally at alkaline pH 12 (81%), in the presence of Mn2+ (73%) and Ca2+ (72.8%). The high flocculation activity shown indicates that the bioflocculant may contend favourably as an alternative to the conventionally used flocculants in water treatment.
Collapse
Affiliation(s)
- Ncedo Ntozonke
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Arinze S Okoli
- GenØK-Centre for Biosafety, Forskningsparken i Breivika, Postboks 6418, 9294 Tromsø, Norway.
| | - Ademola O Olaniran
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
28
|
Guo J, Huang Y, Chen C, Xiao Y, Chen J, Jian B. Enhanced anaerobically digested swine wastewater treatment by the composite of polyaluminum chloride (PAC) and Bacillus megatherium G106 derived EPS. Sci Rep 2017; 7:8605. [PMID: 28819273 PMCID: PMC5561036 DOI: 10.1038/s41598-017-09044-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
A strain was isolated from biological sludge to produce EPS by using anaerobically digested swine wastewater (ADSW). Potential of the EPS in ADSW treatment were discussed. Results showed that the optimal fermentation medium for EPS production was determined as 4 g K2HPO4, 2 g KH2PO4, and 2 g sucrose dissolved in 1 L ADSW. After fermentation for 60 h, 2.98 g EPS with main backbone of polysaccharides can be extracted from 1 L of fermentation broth. The EPS showed good performances in ADSW treatment, after conditioned by this EPS, removal efficiencies of COD, ammonia, and TP reached 70.2%, 76.5% and 82.8%, respectively, which were higher than that obtained when chemicals were selected as conditioning agents. Removal efficiencies were further improved when the EPS and polyaluminum chloride (PAC) were used simultaneously, and finally reached 91.6%, 90.8%, and 92.5%, respectively, under the optimized conditioning process by the composite of EPS of 16 mg/L, PAC of 12 g/L, pH of 7.5, and agitation speed of 200 r/min.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Yu Xiao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Jing Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| | - Biyu Jian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
29
|
Guo J, Chen C. Removal of arsenite by a microbial bioflocculant produced from swine wastewater. CHEMOSPHERE 2017; 181:759-766. [PMID: 28478236 DOI: 10.1016/j.chemosphere.2017.04.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/17/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
This paper focused on the production and characteristics of a bioflocculant by using swine wastewater and its application in removing arsenite from aqueous solution. A series of experimental parameters including bioflocculant dose, calcium ions concentration, and solution pH value on arsenite uptake were evaluated. Results have demonstrated that a bioflocculant of 3.11 g L-1 was achieved as the maximum yield after 60 h fermentation, with a main backbone of polysaccharides. Maximum arsenite removal efficiency of 99.2% can be reached by adding bioflocculant in two stages: 3 × 10-3% (w/w) in the 1.0 min's rapid mixing (180 rpm) and 2 × 10-3% (w/w) after 2.0 min's slow mixing (80 rpm) with pH value fixed at 7. Negative Gibbs free energy change (ΔGo) indicated the spontaneous nature of arsenite removal. Arsenite was removed by the bioflocculant through bridging mechanisms.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China.
| | - Cheng Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China
| |
Collapse
|
30
|
Agunbiade MO, Van Heerden E, Pohl CH, Ashafa AT. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol 2017; 17:51. [PMID: 28606076 PMCID: PMC5469021 DOI: 10.1186/s12896-017-0375-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 11/14/2022] Open
Abstract
Background The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. Results Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. Conclusions The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.
Collapse
Affiliation(s)
- Mayowa Oladele Agunbiade
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjabha, 9866, South Africa. .,Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa.
| | - Esta Van Heerden
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, P.O. Box 339, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
| | - Anofi Tom Ashafa
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjabha, 9866, South Africa
| |
Collapse
|
31
|
Li J, Yun YQ, Xing L, Song L. Novel bioflocculant produced by salt-tolerant, alkaliphilic strain Oceanobacillus polygoni HG6 and its application in tannery wastewater treatment. Biosci Biotechnol Biochem 2017; 81:1018-1025. [DOI: 10.1080/09168451.2016.1274635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The optimized production of MBF-HG6, which is a novel salt-tolerant alkaliphilic bioflocculant produced by Oceanobacillus polygoni with its application in tannery wastewater treatment was investigated in this study. It was found the optimal carbon source, nitrogen source, cation, and initial pH of the medium for bioflocculant production were starch, urea, Fe2+, and pH 9.0, respectively. The best stability in the temperature range was from 0 to 80°C and the purified MBF-HG6 contained polysaccharides of 81.53% and proteins of 9.98%. The carboxyl, hydroxyl, and amino groups were determined in bioflocculants, while the optimized bioflocculating activity was observed as 90.25% for the dosages of 6.96mL MBF-HG6, 4.77mL CaCl2 (1%, m/v), and 19.24g/L NaCl using response surface methodology. In addition, SS and turbidity removal rates of the tannery wastewater (4g/L MBF-HG6) could, respectively, reach 46.49% and 91.08%, indicating that the great potential was emerged in enhancement of tannery wastewater treatment by MBF-HG6.
Collapse
Affiliation(s)
- Jing Li
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Yue-qing Yun
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Li Xing
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot, China
| |
Collapse
|
32
|
Liu C, Hao Y, Jiang J, Liu W. Valorization of untreated rice bran towards bioflocculant using a lignocellulose-degrading strain and its use in microalgal biomass harvest. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:90. [PMID: 28413445 PMCID: PMC5390349 DOI: 10.1186/s13068-017-0780-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/06/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Microalgae are currently considered as a promising feedstock for the production of biofuels and high-value products. However, the efficient harvest of microalgal biomasses from their culture broth is a major challenge. The harvesting of algal biomass by flocculation combined with gravity sedimentation is more convenient and cost-effective than traditional methods such as centrifugation and filtration. Compared to inorganic and chemically synthetic flocculants, bioflocculants are a suitable choice for microalgal harvest due to their biodegradable and nontoxic properties. Nonetheless, the high production costs associated with expensive substrates hinder the commercial applications of bioflocculants. Previous studies have shown that the hydrolysates of lignocellulosic biomasses from dilute acid hydrolysis can be utilized as an inexpensive carbon source for the production of bioflocculants. However, the toxic by-products generated in the dilute acid hydrolysis step limit the efficiency of subsequent fermentation. The strains that produce bioflocculants by using untreated lignocellulosic materials can circumvent the pretreatment process, as well as promote the application of bioflocculants in microalgal harvest. RESULTS Under alkaline fermentation conditions, the alkaliphilic strain Bacillus agaradhaerens C9 secreted 1.69 IU/mL of alkali-tolerant xylanase and 0.06 IU/mL of cellulase, indicating that this particular strain can efficiently convert untreated rice bran into bioflocculant (RBBF-C9), thereby circumventing rice bran pretreatment for downstream fermentation. The optimal fermentation conditions that result in the highest bioflocculant yield (12.94 g/L) were as follows: 20 g/L of untreated rice bran, 3 g/L of yeast extract, and 20 g/L of Na2CO3 at 37 °C for 24 h. RBBF-C9 contained 74.12% polysaccharides and 4.51% proteins, and was estimated to be 137 kDa. Furthermore, the bioflocculant RBBF-C9 exhibited good flocculating efficiency (91.05%) of oil alga Chlorella minutissima UTEX2341 when 60 mg/L of RBBF-C9 was added into the algal culture broth. CONCLUSIONS This study demonstrated that untreated rice bran is a suitable inexpensive substrate for the production of bioflocculants, and thus provides a novel approach in utilizing rice bran. The extracted bioflocculants may be potentially used in biomass harvesting of the oil algae C. minutissima UTEX2341 from the culture broth.
Collapse
Affiliation(s)
- Cong Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu China
| | - Yan Hao
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu China
| | - Jihong Jiang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu China
| | - Weijie Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan District, Xuzhou, 221116 Jiangsu China
| |
Collapse
|
33
|
Liu W, Hao Y, Jiang J, Zhu A, Zhu J, Dong Z. Production of a bioflocculant from Pseudomonas veronii L918 using the hydrolyzate of peanut hull and its application in the treatment of ash-flushing wastewater generated from coal fired power plant. BIORESOURCE TECHNOLOGY 2016; 218:318-25. [PMID: 27372012 DOI: 10.1016/j.biortech.2016.06.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 05/12/2023]
Abstract
In this study, bioflocculant produced by Pseudomonas veronii L918 was applied to treat ash-flushing wastewater. The strain L918 could convert the hydrolyzate of peanut hull into bioflocculant, which can effectively reduce the production cost of bioflocculant. The yield of 3.39g/L bioflocculant MBF-L918 was achieved when 300mL/L peanut hull hydrolyzate was used as carbon source. The bioflocculant MBF-L918 contains 77.14% polysaccharides and 4.84% proteins, and the molecular weight (MW) of MBF-L918 is 24.77kDa. Furthermore, MBF-L918 showed good flocculating efficiency of 92.51% to ash-flushing wastewater when 2.83mg/L MBF-L918 was added, and thus achieved the recycling of ash-flushing wastewater. This study reported for the first time that the bioflocculant was produced using peanut hull hydrolyzate and effectively applied in the treatment of coal ash-flushing wastewater.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| | - Yan Hao
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Jihong Jiang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Aihua Zhu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Jingrong Zhu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| |
Collapse
|
34
|
Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 2016; 5:177-211. [PMID: 26914994 PMCID: PMC4831466 DOI: 10.1002/mbo3.334] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up‐to‐date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation‐independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Stanley A Okoli
- GenØK - Centre for Biosafety, Science Park, University of Tromsø, Tromsø, 9291, Norway
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
35
|
Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. ENVIRONMENTAL TECHNOLOGY 2016; 37:1829-1842. [PMID: 26797258 DOI: 10.1080/09593330.2015.1133717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Uchechukwu U Nwodo
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Leonard V Mabinya
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| | - Arinze S Okoli
- c GenØK Centre for Biosafety , Forskningsparken i Breivika , Tromsø , Norway
| | - Anthony I Okoh
- a South Africa Medical Research Council (SAMRC), Microbial Water Quality Monitoring Centre , University of Fort Hare , Alice , South Africa
- b Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology , University of Fort Hare , Alice , South Africa
| |
Collapse
|
36
|
Zhong CY, Chen HG, Cao G, Wang J, Zhou JG. Bioflocculant production by Haloplanus vescus and its application in acid brilliant scarlet yellow/red removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:707-715. [PMID: 26901711 DOI: 10.2166/wst.2015.549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel bioflocculant MBF057 produced by a salt-tolerant Haloplanus vescus HW0579 was investigated in this study. The effects of culture conditions such as initial pH, inoculum size, and chemical oxygen demand (COD) of K-acid wastewater on MBF0579 production were studied. The result showed that 8.09 g/L purified MBF0579 was extracted with the following optimized conditions: 780 mg/L COD of K-acid wastewater as carbon source, inoculum size 12.5%, and initial pH 7.0. The biopolymer contained 78.6% polysaccharides and 21.1% proteins. The highest flocculating rate of 81.86 and 95.07% for the COD and chroma of acid brilliant scarlet gelb rot (yellow/red, GR) dye wastewater were achieved at a dosage of 150 mg/L, pH 2.0 and contact time 100 min. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing acid brilliant scarlet GR during dye wastewater treatment.
Collapse
Affiliation(s)
- Chun-Ying Zhong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail: ; Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, Chemistry and Biology Science College, Hubei University of Education, Wuhan 430205, China; These two authors contributed equally to this work
| | - Hong-Gao Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail: ; These two authors contributed equally to this work
| | - Gang Cao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail:
| | - Jun Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail:
| | - Jian-Gang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China E-mail:
| |
Collapse
|
37
|
Lei X, Chen Y, Shao Z, Chen Z, Li Y, Zhu H, Zhang J, Zheng W, Zheng T. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. BIORESOURCE TECHNOLOGY 2015; 198:922-5. [PMID: 26391967 DOI: 10.1016/j.biortech.2015.08.095] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 05/22/2023]
Abstract
In this study, bioflocculant from Cobetia marina L03 could be used for effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation. A flotation efficiency of 92.7% was observed when 20 mg L(-1) bioflocculant was tested for flocculating the microalgal cells with 5mM CaCl2. The bioflocculant was stable at wide ranges of pH and temperature, which is advantageous for its application under various conditions. Chemical analysis of the bioflocculant indicated that it is composed of 31.6% total sugar and 0.2% protein (w/w). This bioflocculant has potential for the high-efficiency harvesting of microalgae and may be useful in reducing one of the barriers to microalgal biofuel production.
Collapse
Affiliation(s)
- Xueqian Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yao Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Zhangran Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hong Zhu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingyan Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Tsinghua University, 100084 Beijing, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
38
|
Giri SS, Harshiny M, Sen SS, Sukumaran V, Park SC. Production and characterization of a thermostable bioflocculant from Bacillus subtilis F9, isolated from wastewater sludge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 121:45-50. [PMID: 26091955 DOI: 10.1016/j.ecoenv.2015.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
A bacterium isolated from wastewater sludge, identified as Bacillus subtilis F9, was confirmed to produce bioflocculant with excellent flocculation activity. The effects of culture conditions such as initial pH, temperature, carbon source, nitrogen source, and inoculum size on bioflocculant production were studied here. The results indicated that 2.32g/L of purified bioflocculant could be extracted with the following optimized conditions: 20gL(-1) sucrose as the carbon source, 3.5gL(-1) peptone as the nitrogen source, an initial pH of 7.0, and a temperature of 40°C. The purified bioflocculant consisted of 10.1% protein and 88.3% sugar, including 38.4% neutral sugar, 2.86% uronic acid, and 2.1% amino sugar. The neutral sugar consisted of sucrose, glucose, lactose, galactose, and mannose at a molar ratio of 2.7:4.7:3.2:9.1:0.8. Elemental analysis of the purified bioflocculant revealed that the weight fractions of carbon, hydrogen, oxygen, nitrogen, and sulfur were 30.8%, 5.3%, 54.7%, 6.4%, and 2.9%, respectively. Furthermore, the purified bioflocculant was pH tolerant within the range of 2-8 and thermotolerant from 10°C to 100°C, with optimal activity at pH 7.0 and at a temperature of 40°C. The purified bioflocculant showed industrial potential for the treatment of drinking water. Considering these properties, especially its low molecular weight (5.3×10(4)Da), this bioflocculant with excellent solubility and favorable flocculation activity is particularly suited for flocculating small particles.
Collapse
Affiliation(s)
- Sib Sankar Giri
- Deptartment of Biotechnology, Periyar Maniammai University, Thanjavur 613403, Tamil Nadu, India; Lab of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, South Korea.
| | - M Harshiny
- Deptartment of Biotechnology, Periyar Maniammai University, Thanjavur 613403, Tamil Nadu, India; Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli 620015, India.
| | - Shib Sankar Sen
- School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - V Sukumaran
- Deptartment of Biotechnology, Periyar Maniammai University, Thanjavur 613403, Tamil Nadu, India.
| | - Se Chang Park
- Lab of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151742, South Korea.
| |
Collapse
|
39
|
Characterization and flocculation mechanism of a bioflocculant from potato starch wastewater. Appl Microbiol Biotechnol 2015; 99:5855-61. [PMID: 25904130 DOI: 10.1007/s00253-015-6589-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
This study investigated the characterization and flocculation mechanism of a bioflocculant prepared using potato starch wastewater. The optimal culture conditions of this strain were determined as 4 g K2HPO4, 2 g KH2PO4, 0.2 g MgSO4, 0.1 g NaCl, and 2.0 g urea dissolved in 1.0 L potato starch wastewater with no need of adding carbon sources or adjusting pH value. Production of this bioflocculant was positively associated with cell growth, and a highest value of 0.81 g/L was obtained. During the kaolin suspension flocculation, charge neutralization and interparticle bridging were proposed as the main reasons for enhanced performance. Further, with potato starch wastewater, chemical oxygen demand (COD) and turbidity removal rates reached 52.4 and 81.7 %, respectively, at pH 7.5 when the bioflocculant dose was adjusted to 30 mg/L.
Collapse
|
40
|
Guo J, Zhang Y, Zhao J, Zhang Y, Xiao X, Wang B, Shu B. Characterization of a bioflocculant from potato starch wastewater and its application in sludge dewatering. Appl Microbiol Biotechnol 2015; 99:5429-37. [PMID: 25851719 DOI: 10.1007/s00253-015-6567-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/01/2022]
Abstract
A bioflocculant was produced by using potato starch wastewater; its potential in sludge dewatering and potato starch wastewater treatment was investigated. Production of this bioflocculant was positively associated with cell growth, and a highest value of 0.81 g/L was obtained. When incubated with this bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 20.8% and 3.9 × 10(12) m/kg, respectively, which were much better than the ones obtained with conventional chemical flocculants. Sludge dewatering was further improved when both the bioflocculant and conventional polyacrylamide (PAM) were used simultaneously. With potato starch wastewater, chemical oxygen demand (COD) and turbidity removal rates could reach 52.4 and 81.7%, respectively, at pH value of 7.5 when the bioflocculant dose was adjusted to 30 mg/L; from a practical standpoint, the removal of COD and turbidity reached 48.3 and 72.5%, respectively, without pH value adjustment.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan, 610225, China,
| | | | | | | | | | | | | |
Collapse
|
41
|
Bacillus toyonensis strain AEMREG6, a bacterium isolated from South African marine environment sediment samples produces a glycoprotein bioflocculant. Molecules 2015; 20:5239-59. [PMID: 25806549 PMCID: PMC6272666 DOI: 10.3390/molecules20035239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022] Open
Abstract
A bioflocculant-producing bacteria, isolated from sediment samples of a marine environment in the Eastern Cape Province of South Africa demonstrated a flocculating activity above 60% for kaolin clay suspension. Analysis of the 16S ribosomal deoxyribonucleic acid (rDNA) nucleotide sequence of the isolate in the GenBank database showed 99% similarity to Bacillus toyonensis strain BCT-7112 and it was deposited in the GenBank as Bacillus toyonensis strain AEMREG6 with accession number KP406731. The bacteria produced a bioflocculant (REG-6) optimally in the presence of glucose and NH4NO3 as the sole carbon and nitrogen source, respectively, initial medium pH of 5 and Ca2+ as the cation of choice. Chemical analysis showed that purified REG-6 was a glycoprotein mainly composed of polysaccharide (77.8%) and protein (11.5%). It was thermally stable and had strong flocculating activity against kaolin suspension over a wide range of pH values (3-11) with a relatively low dosage requirement of 0.1 mg/mL in the presence of Mn2+. Fourier transform infrared spectroscopy (FTIR) revealed the presence of hydroxyl, carboxyl and amide groups preferred for flocculation. Scanning electron microscopy (SEM) revealed that bridging was the main flocculation mechanism of REG-6. The outstanding flocculating performance of REG-6 holds great potential to replace the hazardous chemical flocculants currently used in water treatment.
Collapse
|
42
|
Guo J, Yu J, Xin X, Zou C, Cheng Q, Yang H, Nengzi L. Characterization and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover. BIORESOURCE TECHNOLOGY 2015; 177:393-7. [PMID: 25479691 DOI: 10.1016/j.biortech.2014.11.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 05/22/2023]
Abstract
This study investigated the characterization and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover. Production of the bioflocculant was positively associated with cell growth and a highest value of 2.4 g L(-1) was obtained. During the kaolin suspension flocculation, charge neutralization and inter-particle bridging were proposed as the reasons for enhanced performance. Apart from this, the bioflocculant showed good performances in sludge dewatering and swine wastewater pretreatment. After conditioning by the bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of the sludge reached 18.4% and 4.8×10(12) m kg(-1), respectively, which were much better than that by conventional chemical flocculants. In the swine wastewater pretreatment, the removal efficiencies of COD, ammonium, and turbidity reached 48.3%, 43.6% and 75.8% at pH 8.0 when the bioflocculant dose was adjusted to 20 mg L(-1).
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China.
| | - Jing Yu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Xin Xin
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Changwu Zou
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Qingfeng Cheng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Huaijin Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Lichao Nengzi
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| |
Collapse
|
43
|
Liu W, Zhao C, Jiang J, Lu Q, Hao Y, Wang L, Liu C. Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:170. [PMID: 26500696 PMCID: PMC4617488 DOI: 10.1186/s13068-015-0354-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/05/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Microalgae are widely studied for biofuel production. Nevertheless, harvesting step of biomass is still a critical challenge. Bioflocculants have been applied in numerous applications including the low-cost harvest of microalgae. A major bottleneck for commercial application of bioflocculant is its high production cost. Lignocellulosic substrates are abundantly available. Hence, the hydrolyzates of rice stover and corn stover have been used as carbon source to produce the bioflocculant in previous studies. However, the hydrolyzates of biomass required the neutralization of pH before the downstream fermentation processes, and the toxic by-products produced during hydrolysis process inhibited the microbial activities in the subsequent fermentation processes and contaminated the bioflocculant product. Therefore, strains that can secrete plant cell-wall-degrading enzymes and simultaneously produce bioflocculants through directly degrading the lignocellulosic biomasses are of academic and practical interests. RESULTS A lignocellulose-degrading strain Cellulosimicrobium cellulans L804 was isolated in this study, which can produce the bioflocculant MBF-L804 using untreated biomasses, such as corn stover, corn cob, potato residues, and peanut shell. The effects of culture conditions including initial pH, carbon source, and nitrogen source on MBF-L804 production were analyzed. The results showed that over 80 % flocculating activity was achieved when the corn stover, corn cob, potato residues, and peanut shell were used as carbon sources and 4.75 g/L of MBF-L804 was achieved under the optimized condition: 20 g/L dry corn stover as carbon source, 3 g/L yeast extract as nitrogen source, pH 8.2. The bioflocculant MBF-L804 contained 68.6 % polysaccharides and 28.0 % proteins. The Gel permeation chromatography analysis indicated that the approximate molecular weight (MW) of MBF-L804 was 229 kDa. The feasibility of harvesting microalgae Chlamydomonas reinhardtii and Chlorella minutissima using MBF-L804 was evaluated. The highest flocculating efficiencies for C. reinhardtii and C. minutissima were 99.04 and 93.83 %, respectively. CONCLUSIONS This study shows for the first time that C. cellulans L804 can directly convert corn stover, corn cob, potato residues and peanut shell into the bioflocculants, which can be used to effectively harvest microalgae.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No.101, Shanghai Road, Tongshan new District, Xuzhou, 221116 Jiangsu China
| | - Chenchu Zhao
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No.101, Shanghai Road, Tongshan new District, Xuzhou, 221116 Jiangsu China
| | - Jihong Jiang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No.101, Shanghai Road, Tongshan new District, Xuzhou, 221116 Jiangsu China
| | - Qian Lu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No.101, Shanghai Road, Tongshan new District, Xuzhou, 221116 Jiangsu China
| | - Yan Hao
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No.101, Shanghai Road, Tongshan new District, Xuzhou, 221116 Jiangsu China
| | - Liang Wang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No.101, Shanghai Road, Tongshan new District, Xuzhou, 221116 Jiangsu China
| | - Cong Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, No.101, Shanghai Road, Tongshan new District, Xuzhou, 221116 Jiangsu China
| |
Collapse
|
44
|
A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Salehizadeh H, Yan N. Recent advances in extracellular biopolymer flocculants. Biotechnol Adv 2014; 32:1506-22. [DOI: 10.1016/j.biotechadv.2014.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
46
|
Aljuboori AHR, Uemura Y, Osman NB, Yusup S. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source. BIORESOURCE TECHNOLOGY 2014; 171:66-70. [PMID: 25189510 DOI: 10.1016/j.biortech.2014.08.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 05/22/2023]
Abstract
This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion.
Collapse
Affiliation(s)
- Ahmad H Rajab Aljuboori
- Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysia.
| | - Yoshimitsu Uemura
- Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysia
| | - Noridah Binti Osman
- Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysia
| | - Suzana Yusup
- Biomass Processing Lab, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysia
| |
Collapse
|
47
|
Zhong C, Xu A, Chen L, Yang X, Yang B, Hong W, Mao K, Wang B, Zhou J. Production of a bioflocculant from chromotropic acid waste water and its application in steroid estrogen removal. Colloids Surf B Biointerfaces 2014; 122:729-737. [DOI: 10.1016/j.colsurfb.2014.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/03/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
48
|
Zhong C, Xu A, Wang B, Yang X, Hong W, Yang B, Chen C, Liu H, Zhou J. Production of a value added compound from the H-acid waste water-Bioflocculants by Klebsiella pneumoniae. Colloids Surf B Biointerfaces 2014; 122:583-590. [PMID: 25127749 DOI: 10.1016/j.colsurfb.2014.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
A novel strain (designated as ZCY-7) which could convert H-acid into bioflocculants was isolated from H-acid wastewater sludge. Conditions for bioflocculants production were optimized by response surface methodology (RSM) and determined to be inoculum size 9.65%, initial pH 7.0, and CODCr of the H-acid wastewater 520mg/L. The highest flocculating efficiency achieved for kaolin suspension was 95.1%, after 60h cultivation. The yielded bioflocculant was mainly composed of polysaccharide (82.4%) and protein (14.2%), and maintained its flocculating activity in 0.4% (w/w) kaolin suspensions over pH 2-8 and 20-80°C. Fourier transform infrared (FTIR) spectra showed that amino, amide and hydroxyl groups were present in the bioflocculant molecules. A viable alternative treatment technology of H-acid wastewater using this novel strain is suggested, which could largely reduce bioflocculants costs. In addition, flocculating mechanism investigation reveals that the bioflocculant could cause kaolin suspension instability by means of charge neutralization firstly and then promoted the aggregation of suspension particles by adsorption and bridge. It is evident from the results that H-acid wastewater could be used as a source to manufacture bioflocculants.
Collapse
Affiliation(s)
- Chunying Zhong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; School of Chemistry and Life Science, Hubei University of Education, Wuhan 430205, China
| | - Aihua Xu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Buyun Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Xianghui Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Wentao Hong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Baokun Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Changhong Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Hongtao Liu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jiangang Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|