1
|
Qian J, Shi B, Li Q, Gou L, Zhao C, Huang A. Synthesis of sucrose 6-acetate by immobilized aspergillus Niger lipase imprinted with oleic acid and sorbitol. Food Chem 2025; 468:142231. [PMID: 39700792 DOI: 10.1016/j.foodchem.2024.142231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/06/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Biological and interfacial imprinting both were effective methods to improve the catalytic performance of lipase in organic solvent. Bioimprinting combined with interfacial activation of lipase was investigated for obtaining imprinted lipase with excellent catalytic performance. Enzymatic synthesis of sucrose-6-acetate in organic solvents to test the performance of imprinted lipase immobilized by adsorbing on macroporous resin. Lipase imprinted by substrate analog (oleic acid) then immobilization catalyzed the synthesis of sucrose-6-acetate with a 1.7 times increase in sucrose esterification rate compared to unimprinted immobilized lipase and a selectivity toward sucrose-6-acetate of 91.7 %. The sucrose esterification rate of reaction catalyzed by immobilized lipase was increased to 2.0 times with addition of sorbitol after imprinting by oleic acid. Imprinting by oleic acid and interfacial effect generated by oleic acid with sorbitol both induced zymoprotein secondary structure change that were conducive to enhance catalytic activity and stability of lipase in organic solvent.
Collapse
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Bobo Shi
- College of Pharmaceutical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Li
- College of Pharmaceutical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lihong Gou
- College of Pharmaceutical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changyan Zhao
- College of Pharmaceutical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Aomei Huang
- College of Pharmaceutical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Moschona A, Spanou A, Pavlidis IV, Karabelas AJ, Patsios SI. Optimization of Enzymatic Transesterification of Acid Oil for Biodiesel Production Using a Low-Cost Lipase: The Effect of Transesterification Conditions and the Synergy of Lipases with Different Regioselectivity. Appl Biochem Biotechnol 2024; 196:8168-8189. [PMID: 38696097 PMCID: PMC11645316 DOI: 10.1007/s12010-024-04941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
This study describes the enzymatic production of second-generation biodiesel using low-quality acid oil as a substrate. Biolipasa-R, a commercially available and low-cost lipase, was employed for enzymatic transesterification. Response surface methodology was applied to optimize the enzymatic transesterification process. The optimal conditions for biodiesel production, which comprised 42% lipase concentration (per weight of oil), 32% water content (per weight of oil), a methanol to oil molar ratio of 3:1, pH 7.0 and reaction temperature 30°C, resulted in the highest fatty acid methyl ester (FAME) content (71.3%). Subsequently, the synergistic effect of two lipases with different regioselectivities under the optimum transesterification conditions was studied, aiming at the enhancement of process efficiency. The transesterification efficiency of immobilized Biolipasa-R was determined and compared to that of Biolipasa-R in its free form. The results revealed a good performance on FAME content (66.5%), while the recycling of immobilized lipase resulted in a decrease in transesterification efficiency after three consecutive uses.
Collapse
Affiliation(s)
- Alexandra Moschona
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | | | | | - Anastasios J Karabelas
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Sotiris I Patsios
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece.
| |
Collapse
|
3
|
Freitas AN, Remonatto D, Miotti Junior RH, do Nascimento JFC, da Silva Moura AC, de Carvalho Santos Ebinuma V, de Paula AV. Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach. Bioprocess Biosyst Eng 2024; 47:1735-1749. [PMID: 39102121 DOI: 10.1007/s00449-024-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.
Collapse
Affiliation(s)
- Amanda Noli Freitas
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Daniela Remonatto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Rodney Helder Miotti Junior
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - João Francisco Cabral do Nascimento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Adriana Candido da Silva Moura
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Valéria de Carvalho Santos Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil
| | - Ariela Veloso de Paula
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
4
|
Zou X, Su H, Zhang F, Zhang H, Yeerbolati Y, Xu X, Chao Z, Zheng L, Jiang B. Bioimprinted lipase-catalyzed synthesis of medium- and long-chain structured lipids rich in docosahexaenoic acid for infant formula. Food Chem 2023; 424:136450. [PMID: 37247604 DOI: 10.1016/j.foodchem.2023.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Heng Su
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Fengcheng Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hongjiang Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yeliaman Yeerbolati
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xiuli Xu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
5
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. J Biotechnol 2020; 323:189-202. [PMID: 32861701 DOI: 10.1016/j.jbiotec.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
In this study, the factors affecting lipase adsorption onto SiO2 nanoparticles including SiO2 nanoparticles amounts (8, 19 and 30 mg/mL), lipase concentrations (30, 90 and 150 μg/mL), adsorption temperatures (5, 20 and 35 °C) and adsorption times (1, 12.5 and 24 h) were optimized using central composite design. The optimal conditions were determined as a SiO2 nanoparticles amount of 8.5-14 mg/ml, a lipase concentration of 106-116 μg/mL, an adsorption temperature of 20 °C and an adsorption time of 12.5 h, which resulted in a specific activity and immobilization efficiency of 20,000 (U/g protein) and 60 %, respectively. The lipase adsorbed under optimal conditions (SiO2-lipase) was entrapped in a PVA/Alg hydrogel, successfully. FESEM and FTIR confirmed the two-step method of lipase immobilization. The entrapped SiO2-lipase retained 76.5 % of its initial activity after 30 days of storage at 4 °C while adsorbed and free lipase retained only 43.4 % and 13.7 %, respectively. SiO2-lipase activity decreased to 34.43 % after 10 cycles of use, while the entrapped SiO2-lipase retained about 64.59 % of its initial activity. Compared to free lipase, the Km values increased and decreased for SiO2-lipase and entrapped SiO2-lipase, respectively. Vmax value increased for both SiO2-lipase and entrapped SiO2-lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
6
|
Aghaei H, Ghavi M, Hashemkhani G, Keshavarz M. Utilization of two modified layered doubled hydroxides as supports for immobilization of Candida rugosa lipase. Int J Biol Macromol 2020; 162:74-83. [DOI: 10.1016/j.ijbiomac.2020.06.145] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 01/11/2023]
|
7
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: strategies to reuse the most stable lipase. World J Microbiol Biotechnol 2020; 36:45. [PMID: 32130535 DOI: 10.1007/s11274-020-02817-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
Entrapment of halloysite nanotubes (HNTs) loaded with enzyme, into a polymer matrix (PVA/Alg), is a way to produce an environment surrounding the adsorbed enzyme molecules which improves the enzyme properties such as storage and operational stability. Hence, in this study, we optimised the factors affecting lipase adsorption onto halloysite nanotubes including halloysite amounts (5, 42.5 and 80 mg), lipase concentrations (30, 90 and 150 µg/ml), temperatures (5, 20 and 35 °C) and adsorption times (30, 165 and 300 min). The optimal conditions were determined as an halloysite amount of 50 to 80 mg, a lipase concentration of 30 to 57 μg/ml, an adsorption temperature of 20 °C and an adsorption time of 165 min, which resulted in a specific activity and adsorption efficiency of 15,000 (U/g protein) and 70%, respectively. Then, lipase adsorbed under optimal conditions was entrapped in a PVA/Alg hydrogel. The formation mechanism of immobilized lipase was investigated by FESEM and FTIR. Subsequent entrapment of adsorbed lipase improved the lipase storage and operational stability. Km, Vmax, Kcat and Kcat/Km values showed an increase in the entrapped HNT-lipase performance in comparison with the free and adsorbed lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.,Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
8
|
Feng K, Huang Z, Peng B, Dai W, Li Y, Zhu X, Chen Y, Tong X, Lan Y, Cao Y. Immobilization of Aspergillus niger lipase onto a novel macroporous acrylic resin: Stable and recyclable biocatalysis for deacidification of high-acid soy sauce residue oil. BIORESOURCE TECHNOLOGY 2020; 298:122553. [PMID: 31846852 DOI: 10.1016/j.biortech.2019.122553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Deacidification of high-acid soy sauce residue (SSR) oil is crucial to utilization of SSR oil. Aspergillus niger lipase (ANL) has been widely applied for such purpose while its immobilization still has large room for improvement. ANL was immobilized onto six different macroporous acrylic resins, accounting the effect of the different textural properties of resins on stability and their potential for application in enzymatic deacidification. The resin MARE with lower porosity, higher bulk density, and medium hydrophobicity, was chosen as the best carrier for the best thermostability and reusability. ANL-MARE is a promising catalyst than Novozym 40086, which not only exhibited higher deacidification activity and good thermostability, but also was continuously reused for 15 cycles and efficiently catalyzed from high-acid SSR oil into diacylglycerol-enriched oil. Therefore, immobilized ANL was a novel, low-cost and recyclable biocatalyst that could be used as a good alternative to higher-cost commercial lipases in industrial applications.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zaocheng Huang
- Guangdong Huiertai Biotechnology Co., Ltd., Guangzhou 510730, China
| | - Bo Peng
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
| | - Weijie Dai
- Guangdong Huiertai Biotechnology Co., Ltd., Guangzhou 510730, China
| | - Yunqi Li
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xing Tong
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
9
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
10
|
|
11
|
Immobilization of Y. lipolytica lipase and the continuous synthesis of geranyl propionate. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Lopes VRO, Farias MA, Belo IMP, Coelho MAZ. NITROGEN SOURCES ON TPOMW VALORIZATION THROUGH SOLID STATE FERMENTATION PERFORMED BY Yarrowia lipolytica. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160332s20150146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Li W, Shen H, Ma M, Liu L, Cui C, Chen B, Fan D, Tan T. Synthesis of ethyl oleate by esterification in a solvent-free system using lipase immobilized on PDMS-modified nonwoven viscose fabrics. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Yang W, Cao H, Xu L, Zhang H, Yan Y. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. BMC Biotechnol 2015; 15:94. [PMID: 26463643 PMCID: PMC4604771 DOI: 10.1186/s12896-015-0214-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/07/2015] [Indexed: 11/29/2022] Open
Abstract
Background Lipases are regularly used in biotechnology to catalyse the hydrolysis of triglycerides and the synthesis of esters. Microbial lipases in particular have been widely used in a variety of industrial applications. However, the current commercial microbial lipases cannot meet industrial demand due to rapid inactivation under harsh conditions. Therefore, in order to identify more stable enzymes, we isolated novel eurythermic and thermostable lipase(s) from Pseudomonas moraviensis M9. Methods Cloning of lipM was based on Touchdown PCR and genome walking, and then recombinant LipM was purified by guanidine hydrochloride and the nickel-nitrilotriacetic acid resins affinity chromatography. Finally, the hydrolysis of algal oil by LipM was analyzed by gas chromatograph-mass spectrometer, thin layer chromatography and gas chromatograph. Results The lipM gene was first cloned from Pseudomonas moraviensis M9 via Touchdown PCR and genome walking. Sequence analysis reveals that LipM is a member of subfamily I.3 of lipases, and the predicted amino acid sequences of LipM has 82 % identity to lipase LipT from Pseudomonas mandelii JR-1, and 54 % identity to lipase PML from Pseudomonas sp. MIS38 and lipase Lip I.3 from Pseudomonas sp. CR-611. LipM was expressed in Escherichia coli, purified from inclusion bodies, and further biochemically characterized. Purified LipM differed significantly from previously reported subfamily I.3 lipases, and was eurythermic between 10 °C–95 °C. LipM activity was enhanced by Ca2+, Sr2+, Mn2+, and Ba2+, but sharply inhibited by Cu2+, Zn2+, Co2+, Ni2+, and EDTA. Compared with other lipases, LipM exhibited medium tolerance to methanol, ethanol, and isopropanol. When applied for hydrolysis of algal oil, LipM could enrich 65.88 % polyunsaturated fatty acids, which include 1.25 % eicosapentaenoic acid, 17.61 % docosapentaenoic acid, and 47.02 % docosahexaenoic acid with derivative glycerides containing 32.46 % diacylglycerols. Conclusions A novel eurythermic I.3 subfamily lipase with high tolerance and stability was identified from Pseudomonas moraviensis and biochemically characterized. It will not only improve our understanding of subfamily I.3 lipases, but also provides an ideal biocatalyst for the enrichment of polyunsaturated fatty acids. Pseudomonas moraviensis have been investigated as a potential resource of lipases.
Collapse
Affiliation(s)
- Wenjuan Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Hai Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Houjin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| |
Collapse
|
15
|
Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction. BIOMED RESEARCH INTERNATIONAL 2015; 2015:139179. [PMID: 26240816 PMCID: PMC4512516 DOI: 10.1155/2015/139179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 11/18/2022]
Abstract
To improve the reusability and organic solvent tolerance of microbial lipase and expand the application of lipase (hydrolysis, esterification, and transesterification), we immobilized marine microbial lipase using different methods and determined the properties of immobilized lipases. Considering the activity and cost of immobilized lipase, the concentration of lipase was fixed at 2 mg/mL. The optimal temperature of immobilized lipases was 40°C and 5°C higher than free lipase. The activities of immobilized lipases were much higher than free lipase at alkaline pH (more than 50% at pH 12). The free lipase lost most activity (35.3%) and immobilized lipases retained more than 46.4% of their initial activity after 3 h heat treatment at 70°C. At alkaline pH, immobilized lipases were more stable than free lipase (more than 60% residue activity at pH 11 for 3 h). Immobilized lipases retained 80% of their activity after 5 cycles and increased enzyme activity (more than 108.7%) after 3 h treatment in tert-butanol. Immobilization of lipase which improved reusability of lipase and provided a chance to expand the application of marine microbial lipase in organic system expanded the application range of lipase to catalyze hydrolysis and esterification in harsh condition.
Collapse
|
16
|
Preparation of core–shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids Surf B Biointerfaces 2015; 128:544-551. [DOI: 10.1016/j.colsurfb.2015.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 02/06/2023]
|
17
|
Talbert JN, Wang LS, Duncan B, Jeong Y, Andler SM, Rotello VM, Goddard JM. Immobilization and Stabilization of Lipase (CaLB) through Hierarchical Interfacial Assembly. Biomacromolecules 2014; 15:3915-22. [DOI: 10.1021/bm500970b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Joey N. Talbert
- Department
of Food Science, University of Massachusetts − Amherst, 102
Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Li-Sheng Wang
- Department
of Chemistry, University of Massachusetts − Amherst, 379A
LGRT, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Bradley Duncan
- Department
of Chemistry, University of Massachusetts − Amherst, 379A
LGRT, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Youngdo Jeong
- Department
of Chemistry, University of Massachusetts − Amherst, 379A
LGRT, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Stephanie M. Andler
- Department
of Food Science, University of Massachusetts − Amherst, 102
Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts − Amherst, 379A
LGRT, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Julie M. Goddard
- Department
of Food Science, University of Massachusetts − Amherst, 102
Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Tan A, Colliat-Dangus P, Whitby CP, Prestidge CA. Controlling the enzymatic digestion of lipids using hybrid nanostructured materials. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15363-71. [PMID: 25116477 DOI: 10.1021/am5038577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Solid nanoparticle-lipid hybrids have been engineered by using spray drying to assemble monodisperse hydrophilic silica nanoparticles and submicron lipid (triglyceride) emulsions together into composite microparticles, which have specific activity toward enzymes. The influence of silica particle size (100-1000 nm) and emulsifier type (anionic and cationic) on the three-dimensional structure of the composite particles was investigated. The nanostructure of the hybrid particles, which is controlled by the size of the voids between the closely packed silica particles, plays a critical role in lipase action and hence lipid digestion kinetics. Confining lipid droplets within the nanostructured silica aggregates led to 2- to 15-fold enhanced rate of lipolysis in comparison with dispersed coarse oil droplets. The composite particles were tailored to enhance, retain or sustain the lipolysis kinetics of submicron lipid emulsions. The presence of repulsive nanoparticle-droplet interactions favored aqueous redispersion and fast lipolysis of the hybrid composite materials, while attractive interactions hindered redispersion and delayed lipolysis of the confined lipid droplets. Such hybrid nanomaterials can be exploited to control the gastrointestinal enzymatic action and promisingly form the basis for the next generation of foods and medicines.
Collapse
Affiliation(s)
- Angel Tan
- Ian Wark Research Institute, University of South Australia , Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | | | | | | |
Collapse
|
19
|
Abaházi E, Boros Z, Poppe L. Additives enhancing the catalytic properties of lipase from Burkholderia cepacia immobilized on mixed-function-grafted mesoporous silica gel. Molecules 2014; 19:9818-37. [PMID: 25006788 PMCID: PMC6271235 DOI: 10.3390/molecules19079818] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 11/16/2022] Open
Abstract
Effects of various additives on the lipase from Burkholderia cepacia (BcL) immobilized on mixed-function-grafted mesoporous silica gel support by hydrophobic adsorption and covalent attachment were investigated. Catalytic properties of the immobilized biocatalysts were characterized in kinetic resolution of racemic 1-phenylethanol (rac-1a) and 1-(thiophen-2-yl)ethan-1-ol (rac-1b). Screening of more than 40 additives showed significantly enhanced productivity of immobilized BcL with several additives such as PEGs, oleic acid and polyvinyl alcohol. Effects of substrate concentration and temperature between 0–100 °C on kinetic resolution of rac-1a were studied with the best adsorbed BcLs containing PEG 20 k or PVA 18–88 additives in continuous-flow packed-bed reactor. The optimum temperature of lipase activity for BcL co-immobilized with PEG 20k found at around 30 °C determined in the continuous-flow system increased remarkably to around 80 °C for BcL co-immobilized with PVA 18–88.
Collapse
Affiliation(s)
- Emese Abaházi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
| | - Zoltán Boros
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.
| |
Collapse
|
20
|
Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports. Enzyme Microb Technol 2014; 60:47-55. [PMID: 24835099 DOI: 10.1016/j.enzmictec.2014.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/06/2014] [Accepted: 03/29/2014] [Indexed: 01/06/2023]
Abstract
Embedding of enzymes was performed with epoxy or polyester resin by mixing in a dried enzyme preparation before polymerization was started. This fast and low-cost immobilization method produced enzymatically active layers on different solid supports. As model enzymes the well-characterized Thermomyces lanuginosus lipase and a new threonine aldolase from Ashbya gossypii were used. It was shown that T. lanuginosus lipase recombinantly expressed in Aspergillus oryzae is a monomeric enzyme with a molecular mass of 34kDa, while A. gossypii threonine aldolase expressed in Escherichia coli is a pyridoxal-5'-phosphate binding homotetramer with a mass of 180kDa. The enzymes were used freeze dried, in four different preparations: freely diffusing, adsorbed on octyl sepharose, as well as cross-linked enzyme aggregates or as suspensions in organic solvent. They were mixed with standard two-component resins and prepared as layers on solid supports made of different materials e.g. metal, glass, polyester. Polymerization led to encapsulated enzyme preparations showing activities comparable to literature values.
Collapse
|
21
|
Brígida AI, Amaral PF, Coelho MA, Gonçalves LR. Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Darvishi Harzevili F. Yarrowia lipolytica in Biotechnological Applications. SPRINGERBRIEFS IN MICROBIOLOGY 2014. [DOI: 10.1007/978-3-319-06437-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Wan P, Sheng Z, Han Q, Zhao Y, Cheng G, Li Y. Enrichment and purification of total flavonoids from Flos Populi extracts with macroporous resins and evaluation of antioxidant activities in vitro. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 945-946:68-74. [PMID: 24321763 DOI: 10.1016/j.jchromb.2013.11.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/10/2013] [Accepted: 11/17/2013] [Indexed: 11/19/2022]
Abstract
Enrichment and purification of total flavonoids from Flos Populi extracts were studied using five macroporous resins. The static tests indicated that NKA-9 resin was appropriate and its adsorption data were well fitted to the Langmuir and Freundlich isotherms. To optimize the separation process, dynamic adsorption and desorption tests were carried out. The optimal adsorption parameters were initial concentrations in sample solution of 7.64mg/mL, pH of 5.0, sample loading amount of 2.3BV, flow rate of 2BV/h, temperature of 25°C. The optimal desorption parameters were deionized water and 20% ethanol each 5BV, then 60% ethanol of 10 BV, flow rate of 2BV/h. After one run treatment with NKA-9 resin, the content of total flavonoids in the product increased from 11.38% to 53.41%, and the recovery yield was 82.24%. The results showed that NKA-9 resin revealed a good ability to enrichment total flavonoids from Flos Populi, and the method can be referenced for the enrichment of total flavonoids from other materials. The antioxidant activities of the purified flavonoids were further evaluated in vitro. It showed that the DPPH radical scavenging increased from 59.46% to 82.63% at different concentrations (0.06-0.14mg/mL). At different concentrations (0.6-1.4mg/mL), the hydroxyl radical scavenging increased from 35.39% to 74.12%. Moreover, the reducing ability and total oxidant capacity appeared to be dose-dependent of flavonoids. It indicated that the purified flavonoids can be used as a source of potential antioxidant.
Collapse
Affiliation(s)
- Pengfei Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zunlai Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Qiang Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yulin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangdong Cheng
- College of Life Science, Jiamusi University, Jiamusi, 148 Xuefu Road, Jiamusi 154007, PR China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
24
|
Li X, Huang S, Xu L, Yan Y. Improving activity and enantioselectivity of lipase via immobilization on macroporous resin for resolution of racemic 1- phenylethanol in non-aqueous medium. BMC Biotechnol 2013; 13:92. [PMID: 24168516 PMCID: PMC4228463 DOI: 10.1186/1472-6750-13-92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background Burkholderia cepacia lipase (BCL) has been proved to be capable of resolution reactions. However, its free form usually exhibits low stability, bad resistance and no reusability, which restrict its further industrial applications. Therefore, it is of great importance to improve the catalytic performance of free lipase in non-aqueous medium. Results In this work, macroporous resin NKA (MPR-NKA) was utilized as support for lipase immobilization. Racemic transesterification of 1-phenylethanol with vinyl acetate was chosen as model reaction. Compared with its free form, the enzyme activity and enantioselectivity (ees) of the immobilized lipase have been significantly enhanced. The immobilized BCL exhibited a satisfactory thermostability over a wide range of temperature (from 10 to 65°C) and an excellent catalytic efficiency. After being used for more than 30 successive batches, the immobilized lipase still kept most of its activity. In comparison with other immobilized lipases, the immobilized BCL also exhibits better catalytic efficiency, which indicates a significant potential in industrial applications. Conclusion The results of this study have proved that MPR-NKA was an excellent support for immobilization of lipase via the methods of N2 adsorption–desorption, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform-infrared spectroscopy (FT-IR). The improvement of enzyme activity and ees for the immobilized lipase was closely correlated with the alteration of its secondary structure. This information may contribute to a better understanding of the mechanism of immobilization and enzymatic biotransformation in non-aqueous medium.
Collapse
Affiliation(s)
| | | | | | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
25
|
Liu Y, Guo C, Sun XT, Liu CZ. Improved performance of Yarrowia lipolytica lipase-catalyzed kinetic resolution of (R,S)-2-octanol by an integrated strategy of interfacial activation, bioimprinting and immobilization. BIORESOURCE TECHNOLOGY 2013; 142:415-419. [PMID: 23748089 DOI: 10.1016/j.biortech.2013.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Yarrowia lipolytica lipase (YLL) demonstrated an (R)-enantiopreference for efficient resolution of (R,S)-2-octanol. The activity, enantioselectivity, the ratio of substrate to enzyme, acetaldehyde tolerance, and operational stability of YLL were improved by an integrated strategy of interfacial activation, bioimprinting, and immobilization. In comparison with the control, both the enzymatic activity and enantioselectivity increased by a factor of 8.85 and 2.75 by the integrated strategy, respectively. Fifty-one percentage of conversion with 220 of enantioselectivity was obtained using the immobilized YLL prepared by the integrated strategy at a ratio of 104 of substrate to enzyme loaded. The immobilized YLL retained 97% of its initial activity without a decrease in enantioselectivity after 10 successive reuse cycles. Together these results will result in a promising strategy with the YYL for efficient resolution of (R,S)-2-octanol in practice.
Collapse
Affiliation(s)
- Ying Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | | | | | | |
Collapse
|