1
|
Aisara J, Wongsanittayarak J, Leangnim N, Utama K, Sangthong P, Sriyotai W, Mahatheeranont S, Phongthai S, Unban K, Lumyong S, Khanongnuch C, Wongputtisin P, Kanpiengjai A. Purification and characterization of crude fructooligosaccharides extracted from red onion (Allium cepa var. viviparum) by yeast treatment. Microb Cell Fact 2024; 23:17. [PMID: 38200553 PMCID: PMC10782719 DOI: 10.1186/s12934-023-02289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Yeast treatment has been used for purification of fructooligosaccharides (FOSs). However, the main drawback of this approach is that yeast can only partially remove sucrose from crude FOSs. The main objective of this research was to screen yeast strains for the capability of selectively consuming unwanted sugars, namely fructose, glucose, and sucrose, in crude FOSs extracted from red onion (Allium cepa var. viviparum) with minimal effect on FOS content. RESULTS Among 43 yeast species isolated from Miang, ethnic fermented tea leaves, and Assam tea flowers, Candida orthopsilosis FLA44.2 and Priceomyces melissophilus FLA44.8 exhibited the greatest potential to specifically consume these unwanted sugars. In a shake flask, direct cultivation of C. orthopsilosis FLA44.2 was achieved in the original crude FOSs containing an initial FOSs concentration of 88.3 ± 1.2 g/L and 52.9 ± 1.2 g/L of the total contents of fructose, glucose, and sucrose. This was successful with 93.7% purity and 97.8% recovery after 24 h of cultivation. On the other hand, P. melissophilus FLA48 was limited by initial carbohydrate concentration of crude FOSs in terms of growth and sugar utilization. However, it could directly purify two-fold diluted crude FOSs to 95.2% purity with 92.2% recovery after 72 h of cultivation. Purification of crude FOSs in 1-L fermenter gave similar results to the samples purified in a shake flask. Extracellular β-fructosidase was assumed to play a key role in the effective removal of sucrose. Both Candida orthopsilosis FLA44.2 and P. melissophilus FLA44.8 showed γ-hemolytic activity, while their culture broth had no cytotoxic effect on viability of small intestinal epithelial cells, preliminarily indicating their safety for food processing. The culture broth obtained from yeast treatment was passed through an activated charcoal column for decolorization and deodorization. After being freeze dried, the final purified FOSs appeared as a white granular powder similar to refined sugar and was odorless since the main sulfur-containing volatile compounds, including dimethyl disulfide and dipropyl trisulfide, were almost completely removed. CONCLUSION The present purification process is considered simple and straight forward, and provides new and beneficial insight into utilization of alternative yeast species for purification of FOSs.
Collapse
Affiliation(s)
- Jakkrit Aisara
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirat Wongsanittayarak
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nalapat Leangnim
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kraikrit Utama
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Padchanee Sangthong
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Woraprapa Sriyotai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suphat Phongthai
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kridsada Unban
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saisamorn Lumyong
- Division of Microbiology, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Chartchai Khanongnuch
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pairote Wongputtisin
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50200, Thailand
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Chu J, Tian Y, Li Q, Liu G, Yu Q, Jiang T, He B. Engineering the β-Fructofuranosidase Fru6 with Promoted Transfructosylating Capacity for Fructooligosaccharide Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9694-9702. [PMID: 35900332 DOI: 10.1021/acs.jafc.2c03981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Levan-type fructooligosaccharides (FOS) exhibit enhanced health-promoting prebiotic effects on gut microbiota. The wild type (WT) of β-fructofuranosidase Fru6 could mainly yield 6-ketose. Semirational design and mutagenesis of Fru6 were exploited to promote the transfructosylating capacity for FOS. The promising variants not only improved the formation of 6-kestose but also newly produced tetrasaccharides of 6,6-nystose and 1,6-nystose (a new type of FOS), and combinatorial mutation boosted the production of 6-kestose and tetrasaccharides (39.9 g/L 6,6-nystose and 4.6 g/L 1,6-nystose). Molecular docking and molecular dynamics (MD) simulation confirmed that the mutated positions reshaped the pocket of Fru6 to accommodate bulky 6-kestose in a reactive conformation with better accessibility for tetrasaccharides formation. Using favored conditions, the variant S165A/H357A could yield 6-kestose up to 335 g/L, and tetrasaccharides (6,6-nystose and 1,6-nystose) reached a high level of 121.1 g/L (134.5 times of the mutant S423A). The β-(2,6)-linked FOS may show the potential application for the prebiotic ingredients.
Collapse
Affiliation(s)
- Jianlin Chu
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Yani Tian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Qian Li
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Gaofei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Qi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Jiangbei New Area, Nanjing211800, China
| |
Collapse
|
3
|
Versluys M, Porras-Domínguez JR, De Coninck T, Van Damme EJM, Van den Ende W. A novel chicory fructanase can degrade common microbial fructan product profiles and displays positive cooperativity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1602-1622. [PMID: 34750605 DOI: 10.1093/jxb/erab488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Fructan metabolism in bacteria and plants relies on fructosyltransferases and fructanases. Plant fructanases (fructan exohydrolase, FEH) only hydrolyse terminal fructose residues. Levan (β-2,6 linkages) is the most abundant fructan type in bacteria. Dicot fructan accumulators, such as chicory (Cichorium intybus), accumulate inulin (β-2,1 linkages), harbouring several 1-FEH isoforms for their degradation. Here, a novel chicory fructanase with high affinity for levan was characterized, providing evidence that such enzymes widely occur in higher plants. It is adapted to common microbial fructan profiles, but has low affinity towards chicory inulin, in line with a function in trimming of microbial fructans in the extracellular environment. Docking experiments indicate the importance of an N-glycosylation site close to the active site for substrate specificity. Optimal pH and temperature for levan hydrolysis are 5.0 and 43.7 °C, respectively. Docking experiments suggested multiple substrate binding sites and levan-mediated enzyme dimerization, explaining the observed positive cooperativity. Alignments show a single amino acid shift in the position of a conserved DXX(R/K) couple, typical for sucrose binding in cell wall invertases. A possible involvement of plant fructanases in levan trimming is discussed, in line with the emerging 'fructan detour' concepts, suggesting that levan oligosaccharides act as signalling entities during plant-microbial interactions.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | | | - Tibo De Coninck
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
4
|
de la Rosa O, Flores‐Gallegos AC, Ascacio‐Valdés JA, Sepúlveda L, Montáñez JC, Aguilar CN. Fructooligosaccharides as Prebiotics, their Metabolism, and Health Benefits. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:307-337. [DOI: 10.1002/9781119702160.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Vega-Ramon F, Zhu X, Savage TR, Petsagkourakis P, Jing K, Zhang D. Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty. Biotechnol Bioeng 2021; 118:4854-4866. [PMID: 34612511 DOI: 10.1002/bit.27950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022]
Abstract
Astaxanthin is a high-value compound commercially synthesized through Xanthophyllomyces dendrorhous fermentation. Using mixed sugars decomposed from biowastes for yeast fermentation provides a promising option to improve process sustainability. However, little effort has been made to investigate the effects of multiple sugars on X. dendrorhous biomass growth and astaxanthin production. Furthermore, the construction of a high-fidelity model is challenging due to the system's variability, also known as batch-to-batch variation. Two innovations are proposed in this study to address these challenges. First, a kinetic model was developed to compare process kinetics between the single sugar (glucose) based and the mixed sugar (glucose and sucrose) based fermentation methods. Then, the kinetic model parameters were modeled themselves as Gaussian processes, a probabilistic machine learning technique, to improve the accuracy and robustness of model predictions. We conclude that although the presence of sucrose does not affect the biomass growth kinetics, it introduces a competitive inhibitory mechanism that enhances astaxanthin accumulation by inducing adverse environmental conditions such as osmotic gradients. Moreover, the hybrid model was able to greatly reduce model simulation error and was particularly robust to uncertainty propagation. This study suggests the advantage of mixed sugar-based fermentation and provides a novel approach for bioprocess dynamic modeling.
Collapse
Affiliation(s)
- Fernando Vega-Ramon
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Xianfeng Zhu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Thomas R Savage
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | | | - Keju Jing
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Dongda Zhang
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Glutaraldehyde-crosslinked cells from Aspergillus oryzae IPT-301 for high transfructosylation activity: optimization of the immobilization variables, characterization and operational stability. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Two-Step Production of Neofructo-Oligosaccharides Using Immobilized Heterologous Aspergillus terreus 1F-Fructosyltransferase Expressed in Kluyveromyces lactis and Native Xanthophyllomyces dendrorhous G6-Fructosyltransferase. Catalysts 2019. [DOI: 10.3390/catal9080673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fructo-oligosaccharides (FOS) are prebiotic low-calorie sweeteners that are synthesized by the transfer of fructose units from sucrose by enzymes known as fructosyltransferases. If these enzymes generate β-(2,6) glycosidic bonds, the resulting oligosaccharides belong to the neoseries (neoFOS). Here, we characterized the properties of three different fructosyltransferases using a design of experiments approach based on response surface methodology with a D-optimal design. The reaction time, pH, temperature, and substrate concentration were used as parameters to predict three responses: The total enzyme activity, the concentration of neoFOS and the neoFOS yield relative to the initial concentration of sucrose. We also conducted immobilization studies to establish a cascade reaction for neoFOS production with two different fructosyltransferases, achieving a total FOS yield of 47.02 ± 3.02%. The resulting FOS mixture included 53.07 ± 1.66 mM neonystose (neo-GF3) and 20.8 ± 1.91 mM neo-GF4.
Collapse
|
8
|
Rodrigo-Frutos D, Piedrabuena D, Sanz-Aparicio J, Fernández-Lobato M. Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose. Appl Microbiol Biotechnol 2018; 103:279-289. [DOI: 10.1007/s00253-018-9446-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022]
|
9
|
Wu JS, Chang JY, Chen CW, Lin MT, Sheu DC, Lee SM. Neokestose suppresses the growth of human melanoma A2058 cells via inhibition of the nuclear factor-κB signaling pathway. Mol Med Rep 2017; 16:295-300. [DOI: 10.3892/mmr.2017.6594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/21/2017] [Indexed: 11/05/2022] Open
|
10
|
Bie XY, Zhu MJ. Sucrose biotransformation by immobilized Phaffia rhodozyma and continuous neokestose production in a packed-bed reactor. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1247813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiao-Ying Bie
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, PR China and
| | - Ming-Jun Zhu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, PR China and
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, PR China
| |
Collapse
|
11
|
Visnapuu T, Mardo K, Alamäe T. Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo- and polysaccharides. N Biotechnol 2015; 32:597-605. [DOI: 10.1016/j.nbt.2015.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 10/24/2022]
|
12
|
Gimeno-Perez M, Santos-Moriano P, Fernandez-Arrojo L, Poveda A, Jimenez-Barbero J, Ballesteros A, Fernandez-Lobato M, Plou F. Regioselective synthesis of neo-erlose by the β-fructofuranosidase from Xanthophyllomyces dendrorhous. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Sheu DC, Chang JY, Wang CY, Wu CT, Huang CJ. Continuous production of high-purity fructooligosaccharides and ethanol by immobilized Aspergillus japonicus and Pichia heimii. Bioprocess Biosyst Eng 2013; 36:1745-51. [DOI: 10.1007/s00449-013-0949-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
|
14
|
LEE SHUNMEI, CHANG JANYI, WU JIANNSHING, SHEU DEYCHYI. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep 2012; 12:1114-8. [DOI: 10.3892/mmr.2015.3507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/17/2015] [Indexed: 11/06/2022] Open
|