1
|
Xiao MZ, Sun Q, Hong S, Chen WJ, Pang B, Du ZY, Yang WB, Sun Z, Yuan TQ. Sweet sorghum for phytoremediation and bioethanol production. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00074-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractAs an energy crop, sweet sorghum (Sorghum bicolor (L.) Moench) receives increasing attention for phytoremediation and biofuels production due to its good stress tolerance and high biomass with low input requirements. Sweet sorghum possesses wide adaptability, which also has high tolerances to poor soil conditions and drought. Its rapid growth with the large storage of fermentable saccharides in the stalks offers considerable scope for bioethanol production. Additionally, sweet sorghum has heavy metal tolerance and the ability to remove cadmium (Cd) in particular. Therefore, sweet sorghum has great potential to build a sustainable phytoremediation system for Cd-polluted soil remediation and simultaneous ethanol production. To implement this strategy, further efforts are in demand for sweet sorghum in terms of screening superior varieties, improving phytoremediation capacity, and efficient bioethanol production. In this review, current research advances of sweet sorghum including agronomic requirements, phytoremediation of Cd pollution, bioethanol production, and breeding are discussed. Furthermore, crucial problems for future utilization of sweet sorghum stalks after phytoremediation are combed.
Graphical Abstract
Collapse
|
2
|
Chauhan NM, Hajare ST, Mamo B, Madebo AA. Bioethanol Production from Stalk Residues of Chiquere and Gebabe Varieties of Sweet Sorghum. Int J Microbiol 2021; 2021:6696254. [PMID: 33679985 PMCID: PMC7910055 DOI: 10.1155/2021/6696254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022] Open
Abstract
Bioethanol produced from renewable resource has potential to solve environmental pollution and to satisfy the need of demand and supply. It favours the use of nonfood lignocellulosic materials. Ethanol produced from plant materials can sustain the economy by reducing cost of imported petroleum, emitting neutral CO2. Moreover, it enhances the economy by providing value added market opportunities for transportation and agricultural sector. Therefore, the objective of the study was to investigate bioethanol production from stalk residues of Chiquere and Gebabe varieties of sweet sorghum collected from West Arsi Zone, Ethiopia. Response surface methods with a three factor (inoculum size, pH, and dilution rate) with triplicate run by using the Box-Behnken method was referred. The experiment employed dilute acid hydrolysis, because it is an easy and productive process by treating the stalks with 4% of sulfuric acid for effective hydrolysis of substrate. Finally, the fermentation was carried out at 30°C for 72 hours on a shaker at 180 rpm by using Saccharomyces cerevisiae. The significance of the result was evaluated by using ANOVA, where P values <0.05 were considered statistically significant. In the process, maximum yield of ethanol was obtained at an inoculum size of 5% (22.40%), pH level of 4.0 (21%), and dilution rate at 10 ml (21.46%). Very low yeast inoculum size and dilution factor have positive effect on the yield of ethanol, whereas very high dilution rate produced negative impact on ethanol production. FTIR spectroscopy peaks associated with O-H, C-O, and C-H stretching vibrations confirmed the presence of ethanol obtained from sweet sorghum stalks. The results of our study indicated that, being available in bulky amounts and nonedible material, sweet sorghum stalks can serve as potential feedstock for bioethanol production in developing countries such as Ethiopia.
Collapse
Affiliation(s)
- Nitin Mahendra Chauhan
- Department of Biology, College of Natural and Computational Sciences, Dilla University, Dilla 419, SNNPR, Ethiopia
| | - Sunil Tulshiram Hajare
- Department of Biology, College of Natural and Computational Sciences, Dilla University, Dilla 419, SNNPR, Ethiopia
| | - Buzuayehu Mamo
- Department of Biology, College of Natural and Computational Sciences, Dilla University, Dilla 419, SNNPR, Ethiopia
| | - Abreham Assefa Madebo
- Department of Biology, College of Natural and Computational Sciences, Dilla University, Dilla 419, SNNPR, Ethiopia
| |
Collapse
|
3
|
Camargo D, Sydney EB, Leonel LV, Pintro TC, Sene L. DILUTE ACID HYDROLYSIS OF SWEET SORGHUM BAGASSE AND FERMENTABILITY OF THE HEMICELLULOSIC HYDROLYSATE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190361s20170643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - Luciane Sene
- Universidade Estadual do Oeste do Paraná, Brasil
| |
Collapse
|
4
|
Qureshi N, Saha BC, Klasson KT, Liu S. Butanol production from sweet sorghum bagasse with high solids content: Part I-comparison of liquid hot water pretreatment with dilute sulfuric acid. Biotechnol Prog 2018; 34:960-966. [PMID: 29693794 DOI: 10.1002/btpr.2639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Indexed: 11/11/2022]
Abstract
In these studies, we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2 SO4 (2 g L-1 ) at 190°C for zero min (as soon as temperature reached 190°C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and hydroxymethyl furfural (HMF). The solids loading were 250-300 g L-1 . This was followed by enzymatic hydrolysis. After hydrolysis, 89.0 g L-1 sugars, 7.60 g L-1 acetic acid, 0.33 g L-1 furfural, and 0.07 g L-1 HMF were released. This pretreatment and hydrolysis resulted in the release of 57.9% sugars. This was followed by second hydrolysis of the fibrous biomass which resulted in the release of 43.64 g L-1 additional sugars, 2.40 g L-1 acetic acid, zero g L-1 furfural, and zero g L-1 HMF. In both the hydrolyzates, 86.3% sugars present in SSB were released. Fermentation of the hydrolyzate I resulted in poor acetone-butanol-ethanol (ABE) fermentation. However, fermentation of the hydrolyzate II was successful and produced 13.43 g L-1 ABE of which butanol was the main product. Use of 2 g L-1 H2 SO4 as a pretreatment medium followed by enzymatic hydrolysis resulted in the release of 100.6-93.8% (w/w) sugars from 250 to 300 g L-1 SSB, respectively. LHW or dilute H2 SO4 were used to economize production of cellulosic sugars from SSB. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:960-966, 2018.
Collapse
Affiliation(s)
- Nasib Qureshi
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 N University Street, Peoria, IL, 61604, USA
| | - Badal C Saha
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 N University Street, Peoria, IL, 61604, USA
| | - K Thomas Klasson
- USDA, ARS, Southern Regional Research Center (SRRC), Commodity Utilization Research Unit, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Siqing Liu
- USDA, ARS, NCAUR, Renewable Product Technology Research Unit, 1815 N University Street, Peoria, IL, 61604, USA
| |
Collapse
|
5
|
Ryden P, Efthymiou MN, Tindyebwa TAM, Elliston A, Wilson DR, Waldron KW, Malakar PK. Bioethanol production from spent mushroom compost derived from chaff of millet and sorghum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:195. [PMID: 28785311 PMCID: PMC5545022 DOI: 10.1186/s13068-017-0880-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In Uganda, the chaff remaining from threshed panicles of millet and sorghum is a low value, lignocellulose-rich agricultural by-product. Currently, it is used as a substrate for the cultivation of edible Oyster mushrooms (Pleurotus ostreatus). The aim of this study was to assess the potential to exploit the residual post-harvest compost for saccharification and fermentation to produce ethanol. RESULTS Sorghum and millet chaff-derived spent oyster mushroom composts minus large mycelium particles were assessed at small-scale and low substrate concentrations (5% w/v) for optimal severity hydrothermal pre-treatment, enzyme loading and fermentation with robust yeasts to produce ethanol. These conditions were then used as a basis for larger scale assessments with high substrate concentrations (30% w/v). Millet-based compost had a low cellulose content and, at a high substrate concentration, did not liquefy effectively. The ethanol yield was 63.9 g/kg dry matter (DM) of original material with a low concentration (19.6 g/L). Compost derived from sorghum chaff had a higher cellulose content and could be liquefied at high substrate concentration (30% w/v). This enabled selected furfural-resistant yeasts to produce ethanol at up to 186.9 g/kg DM of original material and a concentration of 45.8 g/L. CONCLUSIONS Spent mushroom compost derived from sorghum chaff has the potential to be an industrially useful substrate for producing second-generation bioethanol. This might be improved further through fractionation and exploitation of hemicellulosic moieties, and possibly the exploitation of the mycelium-containing final residue for animal feed. However, spent compost derived from millet does not provide a suitably high concentration of ethanol to make it industrially attractive. Further research on the difficulty in quantitatively saccharifying cellulose from composted millet chaff and other similar substrates such as rice husk is required.
Collapse
Affiliation(s)
- Peter Ryden
- The Biorefinery Centre, Quadram Institute Bioscience, Colney, Norwich Research Park, Norwich, NR4 7UA UK
| | - Maria-Nefeli Efthymiou
- The Biorefinery Centre, Quadram Institute Bioscience, Colney, Norwich Research Park, Norwich, NR4 7UA UK
| | - Teddy A. M. Tindyebwa
- School of Biological Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Adam Elliston
- The Biorefinery Centre, Quadram Institute Bioscience, Colney, Norwich Research Park, Norwich, NR4 7UA UK
| | - David R. Wilson
- The Biorefinery Centre, Quadram Institute Bioscience, Colney, Norwich Research Park, Norwich, NR4 7UA UK
| | - Keith W. Waldron
- The Biorefinery Centre, Quadram Institute Bioscience, Colney, Norwich Research Park, Norwich, NR4 7UA UK
| | - Pradeep K. Malakar
- The Biorefinery Centre, Quadram Institute Bioscience, Colney, Norwich Research Park, Norwich, NR4 7UA UK
- College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306 People’s Republic of China
| |
Collapse
|
6
|
Nasidi M, Agu R, Deeni Y, Walker G. Utilization of whole sorghum crop residues for bioethanol production. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Nasidi
- School of Science, Engineering and Technology; Abertay University; Bell Street Dundee DD1 1HG UK
| | - Reginald Agu
- The Scotch Whisky Research Institute; The Robertson Trust Building Edinburgh EH14 4AP UK
| | - Yusuf Deeni
- School of Science, Engineering and Technology; Abertay University; Bell Street Dundee DD1 1HG UK
| | - Graeme Walker
- School of Science, Engineering and Technology; Abertay University; Bell Street Dundee DD1 1HG UK
| |
Collapse
|
7
|
Koradiya M, Duggirala S, Tipre D, Dave S. Pretreatment optimization of Sorghum pioneer biomass for bioethanol production and its scale-up. BIORESOURCE TECHNOLOGY 2016; 199:142-147. [PMID: 26384087 DOI: 10.1016/j.biortech.2015.08.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Based on one parameter at a time, saccharification of delignified sorghum biomass by 4% and 70% v/v sulfuric acid resulted in maximum 30.8 and 33.8 g% sugar production from biomass respectively. The Box Behnken Design was applied for further optimization of acid hydrolysis. As a result of the designed experiment 36.3g% sugar production was achieved when 3% v/v H2SO4 treatment given for 60 min at 180°C. The process was scaled-up to treat 2 kg of biomass. During the screening of yeast cultures, isolate C, MK-I and N were found to be potent ethanol producers from sorghum hydrolyzate. Culture MK-I was the best so used for scale up of ethanol production up to 25 L capacity, which gave a yield of 0.49 g ethanol/g sugar from hydrolyzate obtained from 2 kg of sorghum biomass.
Collapse
Affiliation(s)
- Manoj Koradiya
- Department of Microbiology, Biogas Research Centre, Gujarat Vidhyapith, Sadra 382424, Gujarat, India
| | - Srinivas Duggirala
- Department of Microbiology, Biogas Research Centre, Gujarat Vidhyapith, Sadra 382424, Gujarat, India
| | - Devayani Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat, India
| | - Shailesh Dave
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat, India.
| |
Collapse
|
8
|
Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. BIOMED RESEARCH INTERNATIONAL 2015; 2015:325905. [PMID: 25866776 PMCID: PMC4383157 DOI: 10.1155/2015/325905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/02/2022]
Abstract
Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw).
Collapse
|
9
|
Li M, Feng S, Wu L, Li Y, Fan C, Zhang R, Zou W, Tu Y, Jing HC, Li S, Peng L. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. BIORESOURCE TECHNOLOGY 2014; 167:14-23. [PMID: 24968107 DOI: 10.1016/j.biortech.2014.04.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/23/2014] [Accepted: 04/26/2014] [Indexed: 05/05/2023]
Abstract
Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-bagasse could not significantly affect lignocellulose saccharification under chemical pretreatments. Comparative analyses of five typical pairs of samples indicated that DP of crystalline cellulose and arabinose substitution degree of non-KOH-extractable hemicelluloses distinctively affected lignocellulose crystallinity for high biomass digestibility. By comparison, lignin could not alter lignocellulose crystallinity, but the KOH-extractable G-monomer predominately determined lignin negative impacts on biomass digestions, and the G-levels released from pretreatments significantly inhibited yeast fermentation. The results also suggested potential genetic approaches for enhancing soluble-sugar level and lignocellulose digestibility and reducing ethanol conversion inhibition in sweet sorghum.
Collapse
Affiliation(s)
- Meng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqiu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Leiming Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfen Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihua Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai-Chun Jing
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shizhong Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
ElMekawy A, Diels L, De Wever H, Pant D. Valorization of cereal based biorefinery byproducts: reality and expectations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9014-27. [PMID: 23931701 PMCID: PMC3774676 DOI: 10.1021/es402395g] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The growth of the biobased economy will lead to an increase in new biorefinery activities. All biorefineries face the regular challenges of efficiently and economically treating their effluent to be compatible with local discharge requirements and to minimize net water consumption. The amount of wastes resulting from biorefineries industry is exponentially growing. The valorization of such wastes has drawn considerable attention with respect to resources with an observable economic and environmental concern. This has been a promising field which shows great prospective toward byproduct usage and increasing value obtained from the biorefinery. However, full-scale realization of biorefinery wastes valorization is not straightforward because several microbiological, technological and economic challenges need to be resolved. In this review we considered valorization options for cereals based biorefineries wastes while identifying their challenges and exploring the opportunities for future process.
Collapse
Affiliation(s)
- Ahmed ElMekawy
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
- Genetic Engineering and Biotechnology
Research Institute, Minufiya University, Sadat City, Egypt
| | - Ludo Diels
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
| | - Heleen De Wever
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
| | - Deepak Pant
- Separation
and Conversion Technologies, VITO-Flemish Institute for
Technological Research,
Boeretang 200, 2400 Mol, Belgium
- Phone: +32 14336969; fax: +32 14326586; e-mail: ;
| |
Collapse
|