2
|
Liu H, Wang X, Yang S, Wang R, Wang T. Saturation mutagenesis and self-inducible expression of trehalose synthase in Bacillus subtilis. Biotechnol Prog 2019; 35:e2826. [PMID: 31021505 DOI: 10.1002/btpr.2826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/12/2019] [Accepted: 04/19/2019] [Indexed: 01/27/2023]
Abstract
Trehalose is a nonreducing disaccharide synthesized by trehalose synthase (TreS), which catalyzes the reversible interconversion of maltose and trehalose. We aimed to enhance the catalytic conversion of maltose to trehalose by saturation mutagenesis, and constructed a self-inducible TreS expression system by generating a robust Bacillus subtilis recombinant. We found that the conversion yield and enzymatic activity of TreS was enhanced by saturation mutations, especially by the combination of V407M and K490L mutations. At the same time, these saturation mutations were contributing to reducing by-products in the reaction. Compared to WT TreS, the conversion yield of maltose to trehalose was increased by 11.9%, and the kcat /Km toward trehalose was 1.33 times higher in the reaction catalyzed by treSV407M-K490L . treSV407M-K490L expression was further observed in the recombinant B. subtilis W800N(ΔσF ) under the influence of PsrfA , Pcry3Aa , and PsrfA-cry3Aa promoters without an inducer. It was shown that PsrfA-cry3Aa was evidently a stronger promoter for treSV407M-K490L expression, with the intracellular enzymatic activity of recombinant treSV407M-K490L being over 5,800 U/g at 35 hr in TB medium. These results suggested the combination of two mutations, V407M and K490L, was conducive for the production of trehalose. In addition, the self-inducible TreSV407M/K490L mutant in the B. subtilis host provides a low-cost choice for the industrial production of endotoxin-free trehalose with high yields.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, People's Republic of China
| | - Xihui Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Shaojie Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, People's Republic of China
| |
Collapse
|
3
|
Silvério SC, Macedo EA, Teixeira JA, Rodrigues LR. Biocatalytic Approaches Using Lactulose: End Product Compared with Substrate. Compr Rev Food Sci Food Saf 2016; 15:878-896. [DOI: 10.1111/1541-4337.12215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Sara C. Silvério
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Eugénia A. Macedo
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Faculdade de Engenharia; Univ. do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - José A. Teixeira
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Lígia R. Rodrigues
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
4
|
Efficient and regioselective synthesis of globotriose by a novel α-galactosidase from Bacteroides fragilis. Appl Microbiol Biotechnol 2016; 100:6693-6702. [DOI: 10.1007/s00253-016-7464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
|
5
|
Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev 2015; 115:6811-53. [PMID: 26121409 DOI: 10.1021/cr500719h] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angeles Farrán
- †Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 4, 28040 Madrid, Spain
| | - Chao Cai
- ‡Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Manuel Sandoval
- §Escuela de Química, Universidad Nacional of Costa Rica, Post Office Box 86, 3000 Heredia, Costa Rica
| | - Yongmei Xu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- ∥Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - María J Hernáiz
- ▽Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Pz/Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
6
|
Ryu SI, Lee SB. Synthesis of nucleotide sugars and α-galacto-oligosaccharides by recombinant Escherichia coli cells with trehalose substrate. Enzyme Microb Technol 2013; 53:359-63. [PMID: 24034436 DOI: 10.1016/j.enzmictec.2013.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 07/15/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Useful nucleoside diphosphate (NDP)-sugars and α-galacto-oligosaccharides were synthesized by recombinant Escherichia coli whole cells and compared to those produced by enzyme-coupling. Production yields of NDP-glucoses (Glcs) by whole cells harboring trehalose synthase (TS) were 60% for ADP-Glc, 82% for GDP-Glc, and 27% for UDP-Glc, based on NDP used. Yield of UDP-galactose (Gal) by the whole-cell harboring a UDP-Gal 4-epimerase (pGALE) was 26% of the quantity of UDP-Glc. α-Galacto-oligosaccharides, α-Gal epitope (Galα-3Galβ-4Glu) and globotriose (Galα-4Galβ-4Glu), were produced by the combination of three recombinant whole cells harboring TS, pGALE, and α-galactosyltransferase, with production yields of 48% and 54%, based on UDP, respectively. Production yields of NDP-sugars and α-galacto-oligosaccharides by recombinant whole-cell reactions were approximately 1.5 times greater than those of enzyme-coupled reactions. These results suggest that a recombinant whole-cell system using cells harboring TS with trehalose as a substrate may be used as an alternative and practical method for the production of NDP-sugars and α-galacto-oligosaccharides.
Collapse
Affiliation(s)
- Soo-In Ryu
- Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University, Seoul 120-749, Republic of Korea
| | | |
Collapse
|