1
|
Minimum nitrogen cell quota for maximal growth rate in cycloturbidostat cultures of Picochlorum oklahomense. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Prabha S, Vijay AK, Paul RR, George B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152795. [PMID: 34979226 DOI: 10.1016/j.scitotenv.2021.152795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Aravind K Vijay
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Basil George
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India.
| |
Collapse
|
3
|
Udayan A, Sirohi R, Sreekumar N, Sang BI, Sim SJ. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126406. [PMID: 34826565 DOI: 10.1016/j.biortech.2021.126406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram 695 004, Kerala, India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea.
| |
Collapse
|
4
|
Di Caprio F. Cultivation processes to select microorganisms with high accumulation ability. Biotechnol Adv 2021; 49:107740. [PMID: 33838283 DOI: 10.1016/j.biotechadv.2021.107740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/26/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
The microbial ability to accumulate biomolecules is fundamental for different biotechnological applications aiming at the production of biofuels, food and bioplastics. However, high accumulation is a selective advantage only under certain stressful conditions, such as nutrient depletion, characterized by lower growth rate. Conventional bioprocesses maintain an optimal and stable environment for large part of the cultivation, that doesn't reward cells for their accumulation ability, raising the risk of selection of contaminant strains with higher growth rate, but lower accumulation of products. Here in this work the physiological responses of different microorganisms (microalgae, bacteria, yeasts) under N-starvation and energy starvation are reviewed, with the aim to furnish relevant insights exploitable to develop tailored bioprocesses to select specific strains for their higher accumulation ability. Microorganism responses to starvation are reviewed focusing on cell cycle, biomass production and variations in biochemical composition. Then, the work describes different innovative bioprocess configurations exploiting uncoupled nutrient feeding strategies (feast-famine), tailored to maintain a selective pressure to reward the strains with higher accumulation ability in mixed microbial populations. Finally, the main models developed in recent studies to describe and predict microbial growth and intracellular accumulation upon N-starvation and feast-famine conditions have been reviewed.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
5
|
León-Saiki GM, Carreres BM, Remmers IM, Wijffels RH, Martins dos Santos VA, van der Veen D, Schaap PJ, Suarez-Diez M, Martens DE. Evaluation of diurnal responses of Tetradesmus obliquus under nitrogen limitation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Lipid Induction in Scenedesmus abundans GH-D11 by Reusing the Volatile Fatty Acids in the Effluent of Dark Anaerobic Fermentation of Biohydrogen. Appl Biochem Biotechnol 2020; 191:258-272. [DOI: 10.1007/s12010-020-03294-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
|
7
|
Mazzelli A, Cicci A, Di Caprio F, Altimari P, Toro L, Iaquaniello G, Pagnanelli F. Multivariate modeling for microalgae growth in outdoor photobioreactors. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
The past, present and future of algal continuous cultures in basic research and commercial applications. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Oh SH, Chang YK, Lee JH. Identification of significant proxy variable for the physiological status affecting salt stress-induced lipid accumulation in Chlorella sorokiniana HS1. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:242. [PMID: 31632454 PMCID: PMC6790037 DOI: 10.1186/s13068-019-1582-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Current efforts on the optimization of the two-stage cultivation using stress-induced lipid accumulation have mostly focused only on the lipid induction stage. Although recent studies have shown that stress-induced lipid accumulation is affected by the physiological status of the cells harvested at the preceding cultivation stage, this issue has hardly been examined hitherto. Such a study needs to be carried out in a systematic way in order to induce lipid accumulation in a consistent and predictable manner with regard for variances seen at the cultivation stage. RESULTS After a photoautotrophic cultivation of Chlorella sorokiniana HS1 in a modified BG11, harvested cells were re-suspended in the fresh medium, and then NaCl was added as the sole stress inducer with light illumination to induce additional accumulation of lipid. Effects of culture temperature on the lipid accumulation were analyzed by the Kruskal-Wallis test. From the microscopic observation, we had observed a definite increase in lipid body induced by the stress since the cell entered a stationary phase. A multiple linear regression model was developed so as to identify significant parameters to be included for the estimation of lipid induction. As a result, several key parameters at the end of cultivation, such as cell weight, total lipid content, chlorophyll a in a cell, and Fv/Fm, were identified as the important proxy variables for the cell's physiological status, and the modeling accuracy was achieved by 87.6%. In particular, the variables related to Fv/Fm were shown to have the largest influence, accounting for 65.7% of the total variance, and the Fv/Fm had an optimal point of maximum induction at below its average. Clustering analysis using the K-means algorithm indicated that the algae which are 0.15 pg cell-1 or less in chlorophyll concentration, regardless of other conditions, had achieved high induction results. CONCLUSION Experimental results showed that it usually achieves high lipid induction after the cells naturally end their division and begin to synthesize lipid. The amount of lipid induction could be estimated by the selected proxy variables, and the estimation method can be adapted according to practical situations such as those with limited measurements.
Collapse
Affiliation(s)
- Seung Hwan Oh
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
- Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Jay Hyung Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| |
Collapse
|
10
|
Shamsuddin F, Evans G, Moreno-Atanasio R. Modeling and Validation of Starch, TAGs, and Functional Biomass Kinetics of Green Microalgae as a Function of Nitrogen Concentration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fahim Shamsuddin
- School of Engineering, The University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Geoffrey Evans
- School of Engineering, The University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Roberto Moreno-Atanasio
- School of Engineering, The University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
11
|
Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends Biotechnol 2019; 37:242-252. [DOI: 10.1016/j.tibtech.2018.09.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023]
|
12
|
New ultra-flat photobioreactor for intensive microalgal production: The effect of light irradiance. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Abu Hajar HA, Riefler RG, Stuart BJ. Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Cabanelas ITD, Kleinegris DMM, Wijffels RH, Barbosa MJ. Repeated nitrogen starvation doesn't affect lipid productivity of Chlorococcum littorale. BIORESOURCE TECHNOLOGY 2016; 219:576-582. [PMID: 27540634 DOI: 10.1016/j.biortech.2016.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 05/09/2023]
Abstract
In the present work we wanted to know what happens during time to biomass and lipid productivities of Chlorococcum littorale repeatedly subjected to N-starvation. Experiments were done using repeated cycles of batch-wise N run-out (after 2days N=0). Two different cycles were used: repeated short-starvation (6days of N=0) over a total period of 72days and repeated long-starvation (13days of N=0) over a total period of 75days. Batches (using fresh inocula) were done separately as control. Shorter and longer periods of starvation showed no differences in biomass productivities and PSII quantum yield evolution. The repeated short-starvation-batches showed the same lipid productivities as the control short-starvation batches. Most importantly, the biomass lipid content was the same between control and repeated-batches. Altogether, the results point to C. littorale as a resilient and stable strain, with potential to be used under semi continuous cultivation.
Collapse
Affiliation(s)
| | - Dorinde M M Kleinegris
- Wageningen UR, Food & Biobased Research, AlgaePARC, Bornsesteeg 10, Building 112, 6721NG Bennekom, Netherlands. http://www.AlgaePARC.com
| | - René H Wijffels
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 8128, 6700 EV Wageningen, Netherlands; Faculty Biosciences and Aquaculture, University of Nordland, N-8049 Bodø, Norway
| | - Maria J Barbosa
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 8128, 6700 EV Wageningen, Netherlands
| |
Collapse
|
15
|
Cabanelas ITD, Fernandes C, Kleinegris DM, Wijffels RH, Barbosa MJ. Cell diameter doesn't affect lipid productivity of Chlorococcum littorale. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Dahoumane SA, Wujcik EK, Jeffryes C. Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. Enzyme Microb Technol 2016; 95:13-27. [PMID: 27866608 DOI: 10.1016/j.enzmictec.2016.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/10/2016] [Accepted: 06/12/2016] [Indexed: 12/21/2022]
Abstract
Phototrophic cell or tissue cultures can produce nanostructured noble metals, oxides and chalcogenides at ambient temperatures and pressures in an aqueous environment and without the need for potentially toxic solvents or the generation of dangerous waste products. These "green" synthesized nanobiomaterials can be used to fabricate biosensors and bio-reporting tools, theranostic vehicles, medical imaging agents, as well as tissue engineering scaffolds and biomaterials. While successful at the lab and experimental scales, significant barriers still inhibit the development of higher capacity processes. While scalability issues in traditional algal bioprocess engineering are well known, such as the controlled delivery of photons and gas-exchange, the large-scale algal synthesis of nanomaterials introduces additional parameters to be understood, i.e., nanoparticle (NP) formation kinetics and mechanisms, biological transport of metal cations and the effect of environmental conditions on the final form of the NPs. Only after a clear understanding of the kinetics and mechanisms can the strain selection, photobioreactor type, medium pH and ionic strength, mean light intensity and other relevant parameters be specified for an optimal bioprocess. To this end, this mini-review will examine the current best practices and understanding of these phenomena to establish a path forward for this technology.
Collapse
Affiliation(s)
- Si Amar Dahoumane
- School of Life Science and Biotechnology, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Evan K Wujcik
- Materials Engineering and Nanosensor (MEAN) Laboratory, Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX, USA
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing (NAB) Laboratory, Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX, USA.
| |
Collapse
|
17
|
Sen Gupta S, Shastri Y, Bhartiya S. Model-based optimisation of biodiesel production from microalgae. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2016.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
|
19
|
Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends. Biotechnol Adv 2015; 33:1228-45. [DOI: 10.1016/j.biotechadv.2015.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/26/2015] [Accepted: 03/06/2015] [Indexed: 12/30/2022]
|
20
|
Ojo EO, Auta H, Baganz F, Lye GJ. Design and parallelisation of a miniature photobioreactor platform for microalgal culture evaluation and optimisation. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Breuer G, Lamers PP, Janssen M, Wijffels RH, Martens DE. Opportunities to improve the areal oil productivity of microalgae. BIORESOURCE TECHNOLOGY 2015; 186:294-302. [PMID: 25836038 DOI: 10.1016/j.biortech.2015.03.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 05/24/2023]
Abstract
Microalgae are often considered as a promising alternative source of vegetable oils. These oils can be used for food and biofuel applications. Productivities that are projected for large-scale microalgal oil production are, however, often poorly supported by scientific evidence and based on too optimistic assumptions. To facilitate the inclusion of the microalgal physiology in these projections, existing knowledge and novel scientific insights were condensed into a mechanistic model that describes photosynthesis and carbon partitioning during nitrogen starvation. The model is validated using experimental data from both wild-type and a starchless mutant of Scenedesmus obliquus. The model is subsequently used to quantify how reactor design, process design, and strain improvement can improve the oil productivity from 2.1 to up to 10.9 g m(-2) day(-1). These projected productivities are used to reflect on commonly assumed oil productivities and it is concluded that the microalgal oil productivity is often overestimated several folds.
Collapse
Affiliation(s)
- Guido Breuer
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Packo P Lamers
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marcel Janssen
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Faculty Biosciences and Aquaculture, University of Nordland, N-8049 Bodø, Norway
| | - Dirk E Martens
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
22
|
|
23
|
Fachet M, Flassig RJ, Rihko-Struckmann L, Sundmacher K. A dynamic growth model of Dunaliella salina: parameter identification and profile likelihood analysis. BIORESOURCE TECHNOLOGY 2014; 173:21-31. [PMID: 25280110 DOI: 10.1016/j.biortech.2014.08.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/31/2014] [Indexed: 05/10/2023]
Abstract
In this work, a photoautotrophic growth model incorporating light and nutrient effects on growth and pigmentation of Dunaliella salina was formulated. The model equations were taken from literature and modified according to the experimental setup with special emphasis on model reduction. The proposed model has been evaluated with experimental data of D. salina cultivated in a flat-plate photobioreactor under stressed and non-stressed conditions. Simulation results show that the model can represent the experimental data accurately. The identifiability of the model parameters was studied using the profile likelihood method. This analysis revealed that three model parameters are practically non-identifiable. However, some of these non-identifiabilities can be resolved by model reduction and additional measurements. As a conclusion, our results suggest that the proposed model equations result in a predictive growth model for D. salina.
Collapse
Affiliation(s)
- Melanie Fachet
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Robert J Flassig
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Liisa Rihko-Struckmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Otto von Guericke University Magdeburg, Process Systems Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
24
|
Mulders KJM, Lamers PP, Wijffels RH, Martens DE. Dynamics of biomass composition and growth during recovery of nitrogen-starved Chromochloris zofingiensis. Appl Microbiol Biotechnol 2014; 99:1873-84. [DOI: 10.1007/s00253-014-6181-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/02/2014] [Accepted: 10/18/2014] [Indexed: 12/28/2022]
|
25
|
de Winter L, Schepers LW, Cuaresma M, Barbosa MJ, Martens DE, Wijffels RH. Circadian rhythms in the cell cycle and biomass composition of Neochloris oleoabundans under nitrogen limitation. J Biotechnol 2014; 187:25-33. [DOI: 10.1016/j.jbiotec.2014.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/09/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
26
|
Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 2014; 32:521-8. [PMID: 25168414 DOI: 10.1016/j.tibtech.2014.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/26/2014] [Accepted: 07/11/2014] [Indexed: 01/08/2023]
Abstract
Microalgae are a promising future source for sustainable edible oils. To make microalgal oil a cost-effective alternative for common vegetable oils, increasing TAG productivity and TAG content are of high importance. Fulfilling these targets requires proper understanding of lipid metabolism in microalgae. Here, we provide an overview of our current knowledge on the biology of TAG accumulation as well as the latest developments and future directions for increasing oil production in microalgae, considering both metabolic engineering techniques and cultivation strategies.
Collapse
Affiliation(s)
- A J Klok
- AlgaePARC, Bioprocess Engineering, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands.
| | - P P Lamers
- AlgaePARC, Bioprocess Engineering, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - D E Martens
- AlgaePARC, Bioprocess Engineering, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - R B Draaisma
- Unilever Research and Development Vlaardingen, PO Box 114, 3133 AT Vlaardingen, The Netherlands
| | - R H Wijffels
- AlgaePARC, Bioprocess Engineering, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
27
|
Fresewinkel M, Rosello R, Wilhelm C, Kruse O, Hankamer B, Posten C. Integration in microalgal bioprocess development: Design of efficient, sustainable, and economic processes. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mark Fresewinkel
- Institute of Process Engineering in Life Sciences; Section III Bioprocess Engineering, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Rosa Rosello
- Institute of Process Engineering in Life Sciences; Section III Bioprocess Engineering, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Christian Wilhelm
- Department of Plant Physiology; Institute of Biology I, University of Leipzig; Leipzig Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy Group, Department of Biology; Center for Biotechnology, Bielefeld University; Bielefeld Germany
| | - Ben Hankamer
- Institute for Molecular Bioscience; The University of Queensland; St Lucia Queensland Australia
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences; Section III Bioprocess Engineering, Karlsruhe Institute of Technology; Karlsruhe Germany
| |
Collapse
|
28
|
Halsey KH, Milligan AJ, Behrenfeld MJ. Contrasting strategies of photosynthetic energy utilization drive lifestyle strategies in ecologically important picoeukaryotes. Metabolites 2014; 4:260-80. [PMID: 24957026 PMCID: PMC4101506 DOI: 10.3390/metabo4020260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022] Open
Abstract
The efficiency with which absorbed light is converted to net growth is a key property for estimating global carbon production. We previously showed that, despite considerable evolutionary distance, Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) share a common strategy of photosynthetic energy utilization and nearly identical light energy conversion efficiencies. These findings suggested that a single model might be appropriate for describing relationships between measures of phytoplankton production. This conclusion was further evaluated for Ostreococcus tauri RCC1558 and Micromonas pusilla RCC299 (Chlorophyta, Prasinophyceae), two picoeukaryotes with contrasting geographic distributions and swimming abilities. Nutrient-dependent photosynthetic efficiencies in O. tauri were similar to the previously studied larger algae. Specifically, absorption-normalized gross oxygen and carbon production and net carbon production were independent of nutrient limited growth rate. In contrast, all measures of photosynthetic efficiency were strongly dependent on nutrient availability in M. pusilla. This marked difference was accompanied by a diminished relationship between Chla:C and nutrient limited growth rate and a remarkably greater efficiency of gross-to-net energy conversion than the other organisms studied. These results suggest that the cost-benefit of decoupling pigment concentration from nutrient availability enables motile organisms to rapidly exploit more frequent encounters with micro-scale nutrient patches in open ocean environments.
Collapse
Affiliation(s)
- Kimberly H Halsey
- Department of Microbiology, Oregon State University; 220 Nash Hall, Corvallis, OR 97330, USA.
| | - Allen J Milligan
- Department of Botany and Plant Pathology, Oregon State University; 2082 Cordley hall, Corvallis, OR 97330, USA.
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University; 2082 Cordley hall, Corvallis, OR 97330, USA.
| |
Collapse
|
29
|
Santos AM, Wijffels RH, Lamers PP. pH-upshock yields more lipids in nitrogen-starved Neochloris oleoabundans. BIORESOURCE TECHNOLOGY 2013; 152:299-306. [PMID: 24296123 DOI: 10.1016/j.biortech.2013.10.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/22/2013] [Accepted: 10/26/2013] [Indexed: 05/24/2023]
Abstract
This study explores the influence of alkaline pH and light intensity on the performance of Neochloris oleoabundans in two-stage batch cultivation: a first stage for nitrogen-sufficient growth followed by a second stage for lipid accumulation under nitrogen starvation. The highest TAG yield on absorbed light was obtained at low light conditions when pre-cultivation occurred at pH 8 and lipid accumulation was induced at pH 10. However, a higher alkaline pH by itself appears not to enhance the starvation-induced increase in lipid contents, except when combined with high light and pre-cultivation occurs at those same conditions. Such strategy however also results in low biomass and TAG yields on absorbed light. Fatty acid composition analysis revealed that the relative fatty acid contents of the TAG pool are nevertheless independent from the light intensity and pH applied at either cultivation stage, suggesting a high specificity of N. oleoabundans cell machinery towards TAG production.
Collapse
Affiliation(s)
- A M Santos
- Wetsus - Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands; Bioprocess Engineering, AlgaePARC, Wageningen University and Research Centre, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | - R H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research Centre, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - P P Lamers
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research Centre, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|