1
|
Haroun B, El-Qelish M, Akobi C, Hafez H, Nasr F, Kim M, Nakhla G. Biohydrogen production from lignocellulosic hydrolysate: Unveiling the synergistic impact of substrate concentration and furfural inhibition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60279-60297. [PMID: 39379652 DOI: 10.1007/s11356-024-35186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Lignocellulosic biomass offers substantial potential as an ideal feedstock for dark fermentative hydrogen production due to its sustainability and cost-effectiveness. The current study examined the influence of furfural on fermentative hydrogen production using lignocellulosic hydrolysate in the presence of furfural. Synthetic lignocellulosic hydrolysate, consisting primarily of 76% xylose, 10% glucose, 9% arabinose, and a mixture of other sugars such as galactose and mannose (85% pentose sugars and 15% hexose sugars), was employed as the substrate. Various substrate concentrations ranging from 2 to 32 g/L were tested, along with furfural concentrations of 0, 1, and 2 g/L. The investigation aimed to assess the effects of initial substrate concentration, initial furfural concentration, furfural-to-biomass ratio (F/B), and furfural-to-substrate ratio (F/S) on biohydrogen production yields. The maximum specific substrate utilization rates at different substrate concentrations were effectively characterized using Haldane's substrate inhibition model. Among the tested concentrations, the 16 g/L emerged as the optimal substrate concentration. The initial furfural concentration was identified as the most significant parameter impacting biohydrogen production, with complete inhibition observed at a furfural concentration of 2 g/L. Higher F/S ratios at substrate concentrations ranging from 2 to 16 g/L resulted in reduced maximum specific hydrogen production rates (MSHPR) and hydrogen yields. Substrate inhibition was observed at 24 g/L and 32 g/L. Lactate was the predominant metabolite in all batches containing 2-g/L furfural, as well as in batches with 1-g/L furfural and substrate concentrations of 24 and 32 g/L. Furfural at a concentration of 1 g/L was not inhibitory in any of the batches. Overall, the mixed cultures in this study could efficiently produce hydrogen from lignocellulosic hydrolysates and degrade furfural, providing new insights into fermentative hydrogen-producing bacteria with furfural tolerance.
Collapse
Affiliation(s)
- Basem Haroun
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| | - Mohamed El-Qelish
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Chinaza Akobi
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Hisham Hafez
- Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
- GreenField Ethanol Inc, Chatham, ON, N7M 5J4, Canada
| | - Fayza Nasr
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt
| | - Mingu Kim
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - George Nakhla
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada
- Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
2
|
Bio-Hydrogen Production in Packed Bed Continuous Plug Flow Reactor—CFD-Multiphase Modelling. Processes (Basel) 2022. [DOI: 10.3390/pr10101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research study investigates the modelling and simulation of biomass anaerobic dark fermentation in bio-hydrogen production in a continuous plug flow reactor. A CFD multiphase full transient model in long-term horizons was adopted to model dark fermentation biohydrogen production in continuous mode. Both the continuous discharge of biomass, which prevents the accumulation of solid parts, and the recirculation of the liquid phase ensure constant access to the nutrient solution. The effect of the hydraulic retention time (HRT), pH and the feed rate on the bio-hydrogen yield and production rates were examined in the simulation stage. Metabolite proportions (VFA: acetic, propionic, butyric) constitute important parameters influencing the bio-hydrogen production efficiency. The model of substrate inhibition on bio-hydrogen production from glucose by attached cells of the microorganism T. neapolitana applied to the modelling of the kinetics of bio-hydrogen production was used. The modelling and simulation of a continuous plug flow (bio)reactor in biohydrogen production is an important part of the process design, modelling and optimization of the biological H2 production pathway.
Collapse
|
3
|
Ben Gaida L, Gannoun H, Casalot L, Davidson S, Liebgott PP. Biohydrogen production by Thermotoga maritima from a simplified medium exclusively composed of onion and natural seawater. CR CHIM 2022. [DOI: 10.5802/crchim.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Frascari D, Pinelli D, Ciavarelli R, Nocentini M, Zama F. Chloroform aerobic cometabolic biodegradation in a continuous‐flow reactor: Model calibration by means of the gauss‐newton method. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dario Frascari
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131 BolognaItaly
| | - Davide Pinelli
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131 BolognaItaly
| | - Roberta Ciavarelli
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131 BolognaItaly
| | - Massimo Nocentini
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131 BolognaItaly
| | - Fabiana Zama
- Department of MathematicsUniversity of BolognaPiazza di Porta S. Donato 540100 BolognaItaly
| |
Collapse
|
5
|
Liu H, Qin H, Wang H. Characteristics of hydrogen-producing enrichment cultures from marine sediment using macroalgae Laminaria japonica as a feedstock. J Biosci Bioeng 2018; 126:710-714. [PMID: 29910187 DOI: 10.1016/j.jbiosc.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Abstract
This study aimed to investigate the characteristics of hydrogen production by mixed cultures using Laminaria japonica hydrolysates. The hydrolysates of L. japonica were prepared by pretreatment methods, including heat (100°C or 121°C) and acid (HCl or H2SO4) pretreatments. The mixed cultures could produce hydrogen using L. japonica as a substrate, with the highest cumulative hydrogen production of 825 ± 14 mL/L from HCl-pretreated L. japonica. High-throughput sequencing of the 16S rRNA gene revealed that the microbial community in the hydrolysate of HCl-pretreated L. japonica was the most diverse among all the samples, with a Shannon diversity index of 5.253. The mixed culture from HCl-pretreated L. japonica and those from heat-pretreated (100°C and 121°C) L. japonica occupied different regions in a principal component analysis (PCA) plot. The dominant population in the hydrolysate of HCl-pretreated L. japonica was represented by hydrogen-producing bacteria, Clostridium spp. and Bacillus spp. The results suggested that L. japonica was an optimal feedstock for hydrogen production. The acid (HCl) pretreatment method could effectively enhance the hydrogen production from L. japonica.
Collapse
Affiliation(s)
- Hongyan Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Haihua Qin
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hongyu Wang
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
6
|
Wang J, Yin Y. Pretreatment of Organic Wastes for Hydrogen Production. BIOHYDROGEN PRODUCTION FROM ORGANIC WASTES 2017. [DOI: 10.1007/978-981-10-4675-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Ramos LR, Silva EL. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures. Appl Biochem Biotechnol 2016; 182:846-869. [DOI: 10.1007/s12010-016-2366-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/12/2016] [Indexed: 01/20/2023]
|
8
|
Kumar G, Mudhoo A, Sivagurunathan P, Nagarajan D, Ghimire A, Lay CH, Lin CY, Lee DJ, Chang JS. Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2016; 219:725-737. [PMID: 27561626 DOI: 10.1016/j.biortech.2016.08.065] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 05/07/2023]
Abstract
The contribution and insights of the immobilization technology in the recent years with regards to the generation of (bio)hydrogen via dark fermentation have been reviewed. The types of immobilization practices, such as entrapment, encapsulation and adsorption, are discussed. Materials and carriers used for cell immobilization are also comprehensively surveyed. New development of nano-based immobilization and nano-materials has been highlighted pertaining to the specific subject of this review. The microorganisms and the type of carbon sources applied in the dark hydrogen fermentation are also discussed and summarized. In addition, the essential components of process operation and reactor configuration using immobilized microbial cultures in the design of varieties of bioreactors (such as fixed bed reactor, CSTR and UASB) are spotlighted. Finally, suggestions and future directions of this field are provided to assist the development of efficient, economical and sustainable hydrogen production technologies.
Collapse
Affiliation(s)
- Gopalakrishnan Kumar
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environmental and Labor Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Reduit 80837, Mauritius
| | - Periyasamy Sivagurunathan
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng-Kung University, Tainan, Taiwan
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, P.O. Box 6250, Kathmandu, Nepal
| | - Chyi-How Lay
- Green Energy Development Centre (GEDC), Feng Chia University, Taichung, Taiwan
| | - Chiu-Yue Lin
- Green Energy Development Centre (GEDC), Feng Chia University, Taichung, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng-Kung University, Tainan, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Pradhan N, Dipasquale L, d'Ippolito G, Fontana A, Panico A, Pirozzi F, Lens PNL, Esposito G. Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana. WATER RESEARCH 2016; 99:225-234. [PMID: 27166592 DOI: 10.1016/j.watres.2016.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to develop a kinetic model for a recently proposed unique and novel metabolic process called capnophilic (CO2-requiring) lactic fermentation (CLF) pathway in Thermotoga neapolitana. The model was based on Monod kinetics and the mathematical expressions were developed to enable the simulation of biomass growth, substrate consumption and product formation. The calibrated kinetic parameters such as maximum specific uptake rate (k), semi-saturation constant (kS), biomass yield coefficient (Y) and endogenous decay rate (kd) were 1.30 h(-1), 1.42 g/L, 0.1195 and 0.0205 h(-1), respectively. A high correlation (>0.98) was obtained between the experimental data and model predictions for both model validation and cross validation processes. An increase of the lactate production in the range of 40-80% was obtained through CLF pathway compared to the classic dark fermentation model. The proposed kinetic model is the first mechanistically based model for the CLF pathway. This model provides useful information to improve the knowledge about how acetate and CO2 are recycled back by Thermotoga neapolitana to produce lactate without compromising the overall hydrogen yield.
Collapse
Affiliation(s)
- Nirakar Pradhan
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043, Cassino, FR, Italy; Institute of Biomolecular Chemistry, Italian National Council of Research, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy; Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio, 21, 80125, Naples, Italy.
| | - Laura Dipasquale
- Institute of Biomolecular Chemistry, Italian National Council of Research, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy.
| | - Giuliana d'Ippolito
- Institute of Biomolecular Chemistry, Italian National Council of Research, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy.
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, Italian National Council of Research, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy.
| | - Antonio Panico
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio, 21, 80125, Naples, Italy.
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio, 21, 80125, Naples, Italy.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611-AX, Delft, The Netherlands.
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043, Cassino, FR, Italy.
| |
Collapse
|
10
|
Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Pradhan N, Dipasquale L, d'Ippolito G, Panico A, Lens PNL, Esposito G, Fontana A. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana. Int J Mol Sci 2015; 16:12578-600. [PMID: 26053393 PMCID: PMC4490462 DOI: 10.3390/ijms160612578] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.
Collapse
Affiliation(s)
- Nirakar Pradhan
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Laura Dipasquale
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Giuliana d'Ippolito
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Antonio Panico
- Telematic University Pegaso, piazza Trieste e Trento, 48, 80132 Naples, Italy.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611-AX Delft, The Netherlands.
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
12
|
Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage. BIORESOURCE TECHNOLOGY 2014; 159:55-63. [PMID: 24632626 DOI: 10.1016/j.biortech.2014.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.).
Collapse
Affiliation(s)
- Samantha Christine Santos
- Department of Hydraulic and Sanitation, University of São Paulo, Av. Trabalhador Sãocarlense, 400, Centro, CEP 13566-590, São Carlos, SP, Brazil
| | - Paula Rúbia Ferreira Rosa
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulic and Sanitation, University of São Paulo, Av. Trabalhador Sãocarlense, 400, Centro, CEP 13566-590, São Carlos, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulic and Sanitation, University of São Paulo, Av. Trabalhador Sãocarlense, 400, Centro, CEP 13566-590, São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|