1
|
Sudarsan S, Demling P, Ozdemir E, Ben Ammar A, Mennicken P, Buescher JM, Meurer G, Ebert BE, Blank LM. Acetol biosynthesis enables NADPH balance during nitrogen limitation in engineered Escherichia coli. Microb Cell Fact 2025; 24:65. [PMID: 40091049 PMCID: PMC11910842 DOI: 10.1186/s12934-025-02687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Nutrient limitation strategies are commonly applied in bioprocess development to engineered microorganisms to further maximize the production of the target molecule towards theoretical limits. Biomass formation is often limited under the limitation of key nutrients, and understanding how fluxes in central carbon metabolism are re-routed during the transition from nutrient excess to nutrient-limited condition is vital to target and tailor metabolic engineering strategies. Here, we report the physiology and intracellular flux distribution of an engineered acetol-producing Escherichia coli on glycerol under nitrogen-limited, non-growing production conditions. RESULTS Acetol production in the engineered E. coli strain is triggered upon nitrogen depletion. During nitrogen limitation, glycerol uptake decreased, and biomass formation rates ceased. We applied 13C-flux analysis with 2-13C glycerol during exponential growth and nitrogen starvation to elucidate flux re-routing in the central carbon metabolism. The results indicate a metabolically active non-growing state with significant flux re-routing towards acetol biosynthesis and reduced flux through the central carbon metabolism. The acetol biosynthesis pathway is favorable for maintaining the NADPH/NADP+ balance. CONCLUSION The results reported in this study illustrate how the production of a value-added chemical from a waste stream can be connected to the metabolism of the whole-cell biocatalyst, making product formation mandatory for the cell to maintain its NADPH/NADP+ balance. This has implications for process design and further metabolic engineering of the whole-cell biocatalyst.
Collapse
Affiliation(s)
- Suresh Sudarsan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Philipp Demling
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany
| | - Emre Ozdemir
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Aziz Ben Ammar
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany
| | - Philip Mennicken
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany
| | - Joerg M Buescher
- BRAIN Biotech AG, 64673, Zwingenberg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | | | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Chau THT, Nguyen AD, Lee EY. Boosting the acetol production in methanotrophic biocatalyst Methylomonas sp. DH-1 by the coupling activity of heteroexpressed novel protein PmoD with endogenous particulate methane monooxygenase. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:7. [PMID: 35418298 PMCID: PMC8764830 DOI: 10.1186/s13068-022-02105-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Methylacidiphilum sp. IT6 has been validated its C3 substrate assimilation pathway via acetol as a key intermediate using the PmoCAB3, a homolog of the particulate methane monooxygenase (pMMO). From the transcriptomic data, the contribution of PmoD of strain IT6 in acetone oxidation was questioned. Methylomonas sp. DH-1, a type I methanotroph containing pmo operon without the existence of its pmoD, has been deployed as a biocatalyst for the gas-to-liquid bioconversion of methane and propane to methanol and acetone. Thus, Methylomonas sp. DH-1 is a suitable host for investigation. The PmoD-expressed Methylomonas sp. DH-1 can also be deployed for acetol production, a well-known intermediate for various industrial applications. Microbial production of acetol is a sustainable approach attracted attention so far. RESULTS In this study, bioinformatics analyses elucidated that novel protein PmoD is a C-terminal transmembrane-helix membrane with the proposed function as a transport protein. Furthermore, the whole-cell biocatalyst was constructed in Methylomonas sp. DH-1 by co-expression the PmoD of Methylacidiphilum sp. IT6 with the endogenous pMMO to enable acetone oxidation. Under optimal conditions, the maximum accumulation, and specific productivity of acetol were 18.291 mM (1.35 g/L) and 0.317 mmol/g cell/h, respectively. The results showed the first coupling activity of pMMO with a heterologous protein PmoD, validated the involvement of PmoD in acetone oxidation, and demonstrated an unprecedented production of acetol from acetone in type I methanotrophic biocatalyst. From the data achieved in batch cultivation conditions, an assimilation pathway of acetone via acetol as the key intermediate was also proposed. CONCLUSION Using bioinformatics tools, the protein PmoD has been elucidated as the membrane protein with the proposed function as a transport protein. Furthermore, results from the assays of PmoD-heteroexpressed Methylomonas sp. DH-1 as a whole-cell biocatalyst validated the coupling activity of PmoD with pMMO to convert acetone to acetol, which also unlocks the potential of this recombinant biocatalyst for acetol production. The proposed acetone-assimilated pathway in the recombinant Methylomonas sp. DH-1, once validated, can extend the metabolic flexibility of Methylomonas sp. DH-1.
Collapse
Affiliation(s)
- Tin Hoang Trung Chau
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104, Yongin-si, Gyeonggi-do, South Korea
| | - Anh Duc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104, Yongin-si, Gyeonggi-do, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104, Yongin-si, Gyeonggi-do, South Korea.
| |
Collapse
|
3
|
Verma R, Ellis JM, Mitchell-Koch KR. Dynamic Preference for NADP/H Cofactor Binding/Release in E. coli YqhD Oxidoreductase. Molecules 2021; 26:E270. [PMID: 33430436 PMCID: PMC7826944 DOI: 10.3390/molecules26020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
YqhD, an E. coli alcohol/aldehyde oxidoreductase, is an enzyme able to produce valuable bio-renewable fuels and fine chemicals from a broad range of starting materials. Herein, we report the first computational solution-phase structure-dynamics analysis of YqhD, shedding light on the effect of oxidized and reduced NADP/H cofactor binding on the conformational dynamics of the biocatalyst using molecular dynamics (MD) simulations. The cofactor oxidation states mainly influence the interdomain cleft region conformations of the YqhD monomers, involved in intricate cofactor binding and release. The ensemble of NADPH-bound monomers has a narrower average interdomain space resulting in more hydrogen bonds and rigid cofactor binding. NADP-bound YqhD fluctuates between open and closed conformations, while it was observed that NADPH-bound YqhD had slower opening/closing dynamics of the cofactor-binding cleft. In the light of enzyme kinetics and structural data, simulation findings have led us to postulate that the frequently sampled open conformation of the cofactor binding cleft with NADP leads to the more facile release of NADP while increased closed conformation sampling during NADPH binding enhances cofactor binding affinity and the aldehyde reductase activity of the enzyme.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
| | - Jonathan M. Ellis
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA;
| | - Katie R. Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
| |
Collapse
|
4
|
Yue SJ, Huang P, Li S, Jan M, Hu HB, Wang W, Zhang XH. Enhanced Production of 2-Hydroxyphenazine from Glycerol by a Two-Stage Fermentation Strategy in Pseudomonas chlororaphis GP72AN. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:561-566. [PMID: 31840510 DOI: 10.1021/acs.jafc.9b05033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
2-Hydroxyphenazine (2-OH-PHZ) is an effective biocontrol antibiotic secreted by Pseudomonas chlororaphis GP72AN and is transformed from phenazine-1-carboxylic acid (PCA). PCA is the main component of the recently registered biopesticide "Shenqinmycin". Previous research showed that 2-OH-PHZ was better in controlling wheat take-all disease than PCA; however, 2-OH-PHZ production was low under natural conditions. Herein, we confirmed that PCA induced reactive oxygen species in its host P. chlororaphis GP72AN and that the addition of DTT improved PCA production by 1.8-fold, whereas the supplementation of K3[Fe(CN)6] and H2O2 increased the conversion rate of PCA to 2-OH-PHZ. Finally, a two-stage fermentation strategy combining the addition of DTT at 12 h and H2O2 at 24 h enhanced 2-OH-PHZ production. Taken together, the two-stage fermentation strategy was designed to enhance 2-OH-PHZ production for the first time, and it provided a valuable reference for the fermentation of other antibiotics.
Collapse
|
5
|
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019; 37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
|
6
|
Yao R, Li J, Feng L, Zhang X, Hu H. 13C metabolic flux analysis-guided metabolic engineering of Escherichia coli for improved acetol production from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:29. [PMID: 30805028 PMCID: PMC6373095 DOI: 10.1186/s13068-019-1372-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/06/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Bioprocessing offers a sustainable and green approach to manufacture various chemicals and materials. Development of bioprocesses requires transforming common producer strains to cell factories. 13C metabolic flux analysis (13C-MFA) can be applied to identify relevant targets to accomplish the desired phenotype, which has become one of the major tools to support systems metabolic engineering. In this research, we applied 13C-MFA to identify bottlenecks in the bioconversion of glycerol into acetol by Escherichia coli. Valorization of glycerol, the main by-product of biodiesel, has contributed to the viability of biofuel economy. RESULTS We performed 13C-MFA and measured intracellular pyridine nucleotide pools in a first-generation acetol producer strain (HJ06) and a non-producer strain (HJ06C), and identified that engineering the NADPH regeneration is a promising target. Based on this finding, we overexpressed nadK encoding NAD kinase or pntAB encoding membrane-bound transhydrogenase either individually or in combination with HJ06, obtaining HJ06N, HJ06P and HJ06PN. The step-wise approach resulted in increasing the acetol titer from 0.91 g/L (HJ06) to 2.81 g/L (HJ06PN). To systematically characterize and the effect of mutation(s) on the metabolism, we also examined the metabolomics and transcriptional levels of key genes in four strains. The pool sizes of NADPH, NADP+ and the NADPH/NADP+ ratio were progressively increased from HJ06 to HJ06PN, demonstrating that the sufficient NADPH supply is critical for acetol production. Flux distribution was optimized towards acetol formation from HJ06 to HJ06PN: (1) The carbon partitioning at the DHAP node directed gradually more carbon from the lower glycolytic pathway through the acetol biosynthetic pathway; (2) The transhydrogenation flux was constantly increased. In addition, 13C-MFA showed the rigidity of upper glycolytic pathway, PP pathway and the TCA cycle to support growth. The flux patterns were supported by most metabolomics data and gene expression profiles. CONCLUSIONS This research demonstrated how 13C-MFA can be applied to drive the cycles of design, build, test and learn implementation for strain development. This succeeding engineering strategy can also be applicable for rational design of other microbial cell factories.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Jiawei Li
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
7
|
Zhao N, Qian L, Luo G, Zheng S. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:9517-9529. [DOI: 10.1007/s00253-018-9358-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
8
|
Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714. Carbohydr Polym 2017; 157:521-526. [DOI: 10.1016/j.carbpol.2016.10.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 11/20/2022]
|
9
|
Casoni AI, Zunino J, Piccolo MC, Volpe MA. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis. BIORESOURCE TECHNOLOGY 2016; 216:302-307. [PMID: 27253478 DOI: 10.1016/j.biortech.2016.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high.
Collapse
Affiliation(s)
- Andrés I Casoni
- Planta Piloto de Ingeniería Química, PLAPIQUI (CONICET-UNS), Florida 7500, 8000 Bahía Blanca, Argentina.
| | - Josefina Zunino
- Instituto Argentino de Oceanografía, IADO (CONICET), Florida 7500, 8000 Bahía Blanca, Argentina
| | - María C Piccolo
- Instituto Argentino de Oceanografía, IADO (CONICET), Florida 7500, 8000 Bahía Blanca, Argentina
| | - María A Volpe
- Planta Piloto de Ingeniería Química, PLAPIQUI (CONICET-UNS), Florida 7500, 8000 Bahía Blanca, Argentina
| |
Collapse
|
10
|
Mudalkar S, Sreeharsha RV, Reddy AR. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:39-49. [PMID: 26995646 DOI: 10.1016/j.jplph.2016.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance.
Collapse
Affiliation(s)
- Shalini Mudalkar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
11
|
Siebert D, Wendisch VF. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:91. [PMID: 26110019 PMCID: PMC4478622 DOI: 10.1186/s13068-015-0269-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/05/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Production of the versatile bulk chemical 1,2-propanediol and the potential biofuel 1-propanol is still dependent on petroleum, but some approaches to establish bio-based production from renewable feed stocks and to avoid toxic intermediates have been described. The biotechnological workhorse Corynebacterium glutamicum has also been shown to be able to overproduce 1,2-propanediol by metabolic engineering. Additionally, C. glutamicum has previously been engineered for production of the biofuels ethanol and isobutanol but not for 1-propanol. RESULTS In this study, the improved production of 1,2-propanediol by C. glutamicum is presented. The product yield of a C. glutamicum strain expressing the heterologous genes gldA and mgsA from Escherichia coli that encode methylglyoxal synthase gene and glycerol dehydrogenase, respectively, was improved by additional expression of alcohol dehydrogenase gene yqhD from E. coli leading to a yield of 0.131 mol/mol glucose. Deletion of the endogenous genes hdpA and ldh encoding dihydroxyacetone phosphate phosphatase and lactate dehydrogenase, respectively, prevented formation of glycerol and lactate as by-products and improved the yield to 0.343 mol/mol glucose. To construct a 1-propanol producer, the operon ppdABC from Klebsiella oxytoca encoding diol dehydratase was expressed in the improved 1,2-propanediol producing strain ending up with 12 mM 1-propanol and up to 60 mM unconverted 1,2-propanediol. Thus, B12-dependent diol dehydratase activity may be limiting 1-propanol production. CONCLUSIONS Production of 1,2-propanediol by C. glutamicum was improved by metabolic engineering targeting endogenous enzymes. Furthermore, to the best of our knowledge, production of 1-propanol by recombinant C. glutamicum was demonstrated for the first time.
Collapse
Affiliation(s)
- Daniel Siebert
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
12
|
Metabolic engineering of Escherichia coli to enhance acetol production from glycerol. Appl Microbiol Biotechnol 2015; 99:7945-52. [PMID: 26078109 DOI: 10.1007/s00253-015-6732-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/17/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022]
Abstract
Acetol, a C3 keto alcohol, is an important intermediate used to produce polyols and acrolein. To enhance acetol production from glycerol by Escherichia coli, a mutant (HJ02) was constructed by replacing the native glpK gene with the allele from E. coli Lin 43 and overexpression of yqhD, which encodes aldehyde oxidoreductase YqhD that converts methylglyoxal to acetol. Compared to the control strain without the glpK replacement, HJ02 had 5.5 times greater acetol production and a 53.4 % higher glycerol consumption rate. Then, glucose was added as a co-substrate to enhance NADPH availability and the ptsG gene was deleted in HJ02 (HJ04) to alleviate carbon catabolite repression, which led to a 30 % increase in the NADPH level and NADPH/NADP(+). Consequently, HJ04 accumulated up to 1.20 g/L of acetol, which is 69.0 % higher than that of HJ02. Furthermore, the gapA gene in HJ04 was silenced by antisense RNA (HJ05) to further enhance acetol production. The acetol concentration produced by HJ05 reached 1.82 g/L, which was 2.1 and 1.5 times higher than that of HJ02 and HJ04.Real-time PCR analysis indicates that glucose catabolism was rerouted from glycolysis to the oxidative pentose phosphate pathway in HJ05.
Collapse
|
13
|
Li N, Zhang B, Wang Z, Tang YJ, Chen T, Zhao X. Engineering Escherichia coli for fumaric acid production from glycerol. BIORESOURCE TECHNOLOGY 2014; 174:81-7. [PMID: 25463785 DOI: 10.1016/j.biortech.2014.09.147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 05/28/2023]
Abstract
The evolved mutant Escherichia coli E2 previously developed for succinate production from glycerol was engineered in this study for fumaric acid production under aerobic conditions. Through deletion of three fumarases, 3.65g/L fumaric acid was produced with the yield of 0.25mol/mol glycerol and a large amount of acetate was accumulated as the main byproduct. In order to reduce acetate production several strategies were attempted, among which increasing the flux of the anaplerotic pathways through overexpression of phosphoenolpyruvate carboxylase gene ppc or the glyoxylate shunt operon aceBA effectively reduced acetate and improved fumaric acid production. In fed-batch culture, the resulting strain EF02(pSCppc) produced 41.5g/L fumaric acid from glycerol with 70% of the maximum theoretical yield and an overall productivity of 0.51g/L/h.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bo Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, PR China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|