1
|
Statistical optimization of bioethanol production from giant reed hydrolysate by Candida tropicalis using Taguchi design. J Biotechnol 2022; 360:71-78. [PMID: 36272574 DOI: 10.1016/j.jbiotec.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 12/12/2022]
Abstract
The economic production of bioethanol as a sustainable liquid fuel is particularly needed and attractive. Giant reed as a low-cost and renewable biomass can be utilized as a sustainable feedstock for bioethanol development. The current research focuses on optimizing the fermentation parameters to increase ethanol concentration while lowering production costs. In this work, the giant reed was hydrolyzed thermochemically using HCl; cellulose and hemicellulose fractions were maximally converted at optimized hydrolysis conditions (5% HCl, 30 min, and 120 °C), resulting in a high sugar concentration (≈ 55 g/L), which were fermented by Candida tropicalis Y-26 for bioethanol production (≈ 15 g/L). Taguchi design was used to optimize the fermentation parameters (temperatures, pH, incubation period, and nitrogen sources). Under optimum fermentation conditions (25 °C; 24 h.; pH 5.5; and ammonium nitrate as a nitrogen source), the ethanol concentration at flask level accomplished ≈ 21 g/L, while its scale-up to bioreactor level contributed ≈ 25 g/L (equivalent to 250 kg ethanol/ton biomass) with ≈ 67% increase than the fermentation under unoptimized conditions. Overall, these findings proved that optimizing the fermentation parameters by Taguchi design and scaling up at a bioreactor could improve bioethanol production from giant reed biomass.
Collapse
|
2
|
Eckert C, Wildhagen H, Paulo MJ, Scalabrin S, Ballauff J, Schnabel SK, Vendramin V, Keurentjes JJB, Bogeat-Triboulot MB, Taylor G, Polle A. Genotypic and tissue-specific variation of Populus nigra transcriptome profiles in response to drought. Sci Data 2022; 9:297. [PMID: 35701429 PMCID: PMC9197931 DOI: 10.1038/s41597-022-01417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Climate change is one of the most important challenges for mankind in the far and near future. In this regard, sustainable production of woody crops on marginal land with low water availability is a major challenge to tackle. This dataset is part of an experiment, in which we exposed three genetically differentiated genotypes of Populus nigra originating from contrasting natural habitats to gradually increasing moderate drought. RNA sequencing was performed on fine roots, developing xylem and leaves of those three genotypes under control and moderate drought conditions in order to get a comprehensive dataset on the transcriptional changes at the whole plant level under water limiting conditions. This dataset has already provided insight in the transcriptional control of saccharification potential of the three Populus genotypes under drought conditions and we suggest that our data will be valuable for further in-depth analysis regarding candidate gene identification or, on a bigger scale, for meta-transcriptome analysis. Measurement(s) | transcriptome | Technology Type(s) | illumina sequencing | Factor Type(s) | treatment | Sample Characteristic - Organism | Populus nigra | Sample Characteristic - Environment | greenhouse experiment |
Collapse
Affiliation(s)
- Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| | - Henning Wildhagen
- HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Büsgenweg 1a, 37077, Göttingen, Germany.
| | - Maria João Paulo
- Biometris, Wageningen UR Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | | - Johannes Ballauff
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| | - Sabine K Schnabel
- Biometris, Wageningen UR Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Vera Vendramin
- IGA Technology Services, via Jacopo Linussio 51, Udine, Italy
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | | - Gail Taylor
- Department of Plant Sciences, University of California, One Shields Ave, Davis, CA, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| |
Collapse
|
3
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
4
|
Mamo G. Alkaline Active Hemicellulases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:245-291. [PMID: 31372682 DOI: 10.1007/10_2019_101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Xylan and mannan are the two most abundant hemicelluloses, and enzymes that modify these polysaccharides are prominent hemicellulases with immense biotechnological importance. Among these enzymes, xylanases and mannanases which play the vital role in the hydrolysis of xylan and mannan, respectively, attracted a great deal of interest. These hemicellulases have got applications in food, feed, bioethanol, pulp and paper, chemical, and beverage producing industries as well as in biorefineries and environmental biotechnology. The great majority of the enzymes used in these applications are optimally active in mildly acidic to neutral range. However, in recent years, alkaline active enzymes have also become increasingly important. This is mainly due to some benefits of utilizing alkaline active hemicellulases over that of neutral or acid active enzymes. One of the advantages is that the alkaline active enzymes are most suitable to applications that require high pH such as Kraft pulp delignification, detergent formulation, and cotton bioscouring. The other benefit is related to the better solubility of hemicelluloses at high pH. Since the efficiency of enzymatic hydrolysis is often positively correlated to substrate solubility, the hydrolysis of hemicelluloses can be more efficient if performed at high pH. High pH hydrolysis requires the use of alkaline active enzymes. Moreover, alkaline extraction is the most common hemicellulose extraction method, and direct hydrolysis of the alkali-extracted hemicellulose could be of great interest in the valorization of hemicellulose. Direct hydrolysis avoids the time-consuming extensive washing, and neutralization processes required if non-alkaline active enzymes are opted to be used. Furthermore, most alkaline active enzymes are relatively active in a wide range of pH, and at least some of them are significantly or even optimally active in slightly acidic to neutral pH range. Such enzymes can be eligible for non-alkaline applications such as in feed, food, and beverage industries.This chapter largely focuses on the most important alkaline active hemicellulases, endo-β-1,4-xylanases and β-mannanases. It summarizes the relevant catalytic properties, structural features, as well as the real and potential applications of these remarkable hemicellulases in textile, paper and pulp, detergent, feed, food, and prebiotic producing industries. In addition, the chapter depicts the role of these extremozymes in valorization of hemicelluloses to platform chemicals and alike in biorefineries. It also reviews hemicelluloses and discusses their biotechnological importance.
Collapse
|
5
|
Sharma K, Antunes IL, Rajulapati V, Goyal A. Molecular characterization of a first endo-acting β-1,4-xylanase of family 10 glycoside hydrolase (PsGH10A) from Pseudopedobacter saltans comb. nov. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Autotransporter-Based Surface Display of Hemicellulases onPseudomonas putida: Whole-Cell Biocatalysts for the Degradation of Biomass. ChemCatChem 2017. [DOI: 10.1002/cctc.201700577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Walker JA, Pattathil S, Bergeman LF, Beebe ET, Deng K, Mirzai M, Northen TR, Hahn MG, Fox BG. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:31. [PMID: 28184246 PMCID: PMC5288845 DOI: 10.1186/s13068-017-0703-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/06/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. RESULTS Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss of specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides. CONCLUSIONS The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.
Collapse
Affiliation(s)
- Johnnie A. Walker
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Sivakumar Pattathil
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Lai F. Bergeman
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Emily T. Beebe
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kai Deng
- US Department of Energy Joint Bioenergy Institute, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA 94551 USA
| | - Maryam Mirzai
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Trent R. Northen
- US Department of Energy Joint Bioenergy Institute, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Michael G. Hahn
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Brian G. Fox
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
8
|
Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:73. [PMID: 28344648 PMCID: PMC5361838 DOI: 10.1186/s13068-017-0756-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/10/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. RESULTS In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L-1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L-1 and 82.74% degradation at 10 g L-1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. CONCLUSIONS This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.
Collapse
Affiliation(s)
- Nisha Singh
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Anshu S. Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Deepak K. Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Ravi. P. Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Colin J. Barrow
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
| | - Munish Puri
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
- Centre for Marine Bioproducts Development, Medical Biotechnology, Flinders University, Adelaide, Australia
| |
Collapse
|
9
|
Design and optimization of a sono-hybrid process for bioethanol production from Parthenium hysterophorus. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Zhang J, Gu F, Zhu JY, Zalesny RS. Using a combined hydrolysis factor to optimize high titer ethanol production from sulfite-pretreated poplar without detoxification. BIORESOURCE TECHNOLOGY 2015; 186:223-231. [PMID: 25817033 DOI: 10.1016/j.biortech.2015.03.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 05/16/2023]
Abstract
Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to poplar NE222 chips in a range of chemical loadings, temperatures, and times. The combined hydrolysis factor (CHF) as a pretreatment severity accurately predicted xylan dissolution by SPORL. Good correlations between CHF and pretreated solids enzymatic digestibility, sugar yield, and the formations of furfural and acetic acid were obtained. Therefore, CHF was used to balance sugar yield with the formation of fermentation inhibitors for high titer ethanol production without detoxification. The results indicated that optimal sugar yield can be achieved at CHF=3.1, however, fermentation using un-detoxified whole slurries of NE222 pretreated at different severities by SPORL indicated CHF≈2 produced best results. An ethanol titer of 41 g/L was achieved at total solids of approximately 20 wt% without detoxification with a low cellulase loading of 15 FPU/g glucan (27 mL/kg untreated wood).
Collapse
Affiliation(s)
- Jingzhi Zhang
- School of Life Sci. Technol., Beijing Univ. Chem. Technol., Beijing, China; USDA Forest Service, Forest Products Laboratory, Madison, WI, USA
| | - Feng Gu
- USDA Forest Service, Forest Products Laboratory, Madison, WI, USA; Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, China
| | - J Y Zhu
- USDA Forest Service, Forest Products Laboratory, Madison, WI, USA.
| | - Ronald S Zalesny
- USDA Forest Service, Northern Research Station, Rhinelander, WI, USA
| |
Collapse
|
11
|
Nawani N, Binod P, Koutinas AA, Khan F. Special issue on International Conference on Advances in Biotechnology and Bioinformatics 2013. Preface. BIORESOURCE TECHNOLOGY 2014; 165:199-200. [PMID: 24906213 DOI: 10.1016/j.biortech.2014.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Neelu Nawani
- Department of Biotechnology, Dr. D.Y. Patil Institute of Biotechnology and Bioinformatics, Pune, India
| | - P Binod
- Centre for Biofuels & Biotechnology Division, CSIR-National Institute of Science and Technology, Trivandrum, India
| | - A A Koutinas
- Department of Chemistry, University of Patras, Patras, Greece
| | - Firoz Khan
- Department of Biotechnology, Dr. D.Y. Patil Institute of Biotechnology and Bioinformatics, Pune, India
| |
Collapse
|