1
|
Seid N, Wießner L, Aliyu H, Neumann A. Stirring the hydrogen and butanol production from Enset fiber via simultaneous saccharification and fermentation (SSF) process. BIORESOUR BIOPROCESS 2024; 11:96. [PMID: 39390133 PMCID: PMC11466926 DOI: 10.1186/s40643-024-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Enset fiber is a promising feedstock for biofuel production with the potential to reduce carbon emissions and improve the sustainability of the energy system. This study aimed to maximize hydrogen and butanol production from Enset fiber through simultaneous saccharification and fermentation (SSF) process in bottles as well as in bioreactor. The SSF process in bottles resulted in a higher butanol concentration of 11.36 g/L with a yield of 0.23 g/g and a productivity of 0.16 g/(L h) at the optimal process parameters of 5% (w/v) substrate loading, 16 FPU/g cellulase loading, and 100 rpm agitation speed from pretreated Enset fiber. Moreover, a comparable result to the bottle experiment was observed in the bioreactor with pH-uncontrolled SSF process, although with a decreased in butanol productivity to 0.095 g/(L h). However, using the pre-hydrolysis simultaneous saccharification and fermentation (PSSF) process in the bioreactor with a 7% (w/v) substrate loading led to the highest butanol concentration of 12.84 g/L with a productivity of 0.104 g/(L h). Furthermore, optimizing the SSF process parameters to favor hydrogen resulted in an increased hydrogen yield of 198.27 mL/g-Enset fiber at atmospheric pressure, an initial pH of 8.0, and 37 °C. In general, stirring the SSF process to shift the product ratio to either hydrogen or butanol was possible by adjusting temperature and pressure. At 37 °C and atmospheric pressure, the process resulted in an e-mol yield of 12% for hydrogen and 38% for butanol. Alternatively, at 30 °C and 0.55 bar overpressure, the process achieved a yield of 6% e-mol of hydrogen and 48% e-mol of butanol. This is the first study to produce hydrogen and butanol from Enset fiber using the SSF process and contributes to the development of a circular bioeconomy.
Collapse
Affiliation(s)
- Nebyat Seid
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, P.O.B: 1176, Addis Ababa, Ethiopia.
| | - Lea Wießner
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Habibu Aliyu
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology (KIT), 76344, Karlsruhe, Germany
| | - Anke Neumann
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
| |
Collapse
|
2
|
Qiu B, Alberto M, Mohsenpour S, Foster AB, Ding S, Guo Z, Xu S, Holmes SM, Budd PM, Fan X, Gorgojo P. Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS). SUSTAINABILITY 2021. [DOI: 10.3390/su13074026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The greatest lever for advancing climate adaptation and mitigation is the defossilization of energy systems. A key opportunity to replace fossil fuels across sectors is the use of renewable hydrogen. In this context, the main political and social push is currently on climate neutral hydrogen (H2) production through electrolysis using renewable electricity. Another climate neutral possibility that has recently gained importance is biohydrogen production from biogenic residual and waste materials. This paper introduces for the first time a novel concept for the production of hydrogen with net negative emissions. The derived concept combines biohydrogen production using biotechnological or thermochemical processes with carbon dioxide (CO2) capture and storage. Various process combinations referred to this basic approach are defined as HyBECCS (Hydrogen Bioenergy with Carbon Capture and Storage) and described in this paper. The technical principles and resulting advantages of the novel concept are systematically derived and compared with other Negative Emission Technologies (NET). These include the high concentration and purity of the CO2 to be captured compared to Direct Air Carbon Capture (DAC) and Post-combustion Carbon Capture (PCC) as well as the emission-free use of hydrogen resulting in a higher possible CO2 capture rate compared to hydrocarbon-based biofuels generated with Bioenergy with Carbon Capture and Storage (BECCS) technologies. Further, the role of carbon-negative hydrogen in future energy systems is analyzed, taking into account key societal and technological drivers against the background of climate adaptation and mitigation. For this purpose, taking the example of the Federal Republic of Germany, the ecological impacts are estimated, and an economic assessment is made. For the production and use of carbon-negative hydrogen, a saving potential of 8.49–17.06 MtCO2,eq/a is estimated for the year 2030 in Germany. The production costs for carbon-negative hydrogen would have to be below 4.30 € per kg in a worst-case scenario and below 10.44 € in a best-case scenario in order to be competitive in Germany, taking into account hydrogen market forecasts.
Collapse
|
4
|
Bermudez Jaimes JH, Torres Alvarez ME, Bannwart de Moraes E, Wolf Maciel MR, Maciel Filho R. Separation and Semi-Empiric Modeling of Ethanol-Water Solutions by Pervaporation Using PDMS Membrane. Polymers (Basel) 2020; 13:E93. [PMID: 33383641 PMCID: PMC7795344 DOI: 10.3390/polym13010093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
High energy demand, competitive fuel prices and the need for environmentally friendly processes have led to the constant development of the alcohol industry. Pervaporation is seen as a separation process, with low energy consumption, which has a high potential for application in the fermentation and dehydration of ethanol. This work presents the experimental ethanol recovery by pervaporation and the semi-empirical model of partial fluxes. Total permeate fluxes between 15.6-68.6 mol m-2 h-1 (289-1565 g m-2 h-1), separation factor between 3.4-6.4 and ethanol molar fraction between 16-171 mM (4-35 wt%) were obtained using ethanol feed concentrations between 4-37 mM (1-9 wt%), temperature between 34-50 ∘C and commercial polydimethylsiloxane (PDMS) membrane. From the experimental data a semi-empirical model describing the behavior of partial-permeate fluxes was developed considering the effect of both the temperature and the composition of the feed, and the behavior of the apparent activation energy. Therefore, the model obtained shows a modified Arrhenius-type behavior that calculates with high precision the partial-permeate fluxes. Furthermore, the versatility of the model was demonstrated in process such as ethanol recovery and both ethanol and butanol dehydration.
Collapse
Affiliation(s)
- John Hervin Bermudez Jaimes
- School of Chemical Engineering, Separation Process Development Laboratory, State University of Campinas, Albert Einstein 500, Campinas 13083-582, Brazil; (M.E.T.A.); (E.B.d.M.); (M.R.W.M.); (R.M.F.)
| | | | | | | | | |
Collapse
|
5
|
Modelling of a microreactor for the partial oxidation of 1-butanol on a titania supported gold catalyst. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Wang Y, Qiu B, Fan S, Liu J, Qin Y, Jian S, Wang Y, Xiao Z. Membrane Distillation of Butanol from Aqueous Solution with Polytetrafluoroethylene Membrane. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuyang Wang
- Sichuan UniversitySchool of Chemical Engineering No. 24 South Section 1, Yihuan Road 610065 Chengdu China
| | - Boya Qiu
- Sichuan UniversitySchool of Chemical Engineering No. 24 South Section 1, Yihuan Road 610065 Chengdu China
| | - Senqing Fan
- Sichuan UniversitySchool of Chemical Engineering No. 24 South Section 1, Yihuan Road 610065 Chengdu China
| | - Jingyun Liu
- Sichuan UniversitySchool of Chemical Engineering No. 24 South Section 1, Yihuan Road 610065 Chengdu China
| | - Yangmei Qin
- Sichuan UniversitySchool of Chemical Engineering No. 24 South Section 1, Yihuan Road 610065 Chengdu China
| | - Shizhao Jian
- Sichuan UniversitySchool of Chemical Engineering No. 24 South Section 1, Yihuan Road 610065 Chengdu China
| | - Yinan Wang
- Sichuan UniversitySchool of Chemical Engineering No. 24 South Section 1, Yihuan Road 610065 Chengdu China
| | - Zeyi Xiao
- Sichuan UniversitySchool of Chemical Engineering No. 24 South Section 1, Yihuan Road 610065 Chengdu China
| |
Collapse
|
7
|
Biswas S, Katiyar R, Gurjar BR, Pruthi V. Role of Different Feedstocks on the Butanol Production Through Microbial and Catalytic Routes. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2018. [DOI: 10.1515/ijcre-2016-0215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Among the renewable fuels, butanol has become an attractive, economic and sustainable choice because of cost elevation in petroleum fuel, diminishing the oil reserves and an increase of green house effect. Butanol can be derived from renewable sources by using the natural bio-resources and agro-wastes such as orchard wastes, peanut wastes, wheat straw, barley straw and grasses via Acetone Butanol Ethanol (ABE) process. On the other hand, butanol can be directly formed from chemical route involving catalysts also such as from ethanol through aldol condensation. This review presents extensive evaluation for the production of butanol deploying microbial and catalytic routes.
Collapse
Affiliation(s)
- Shalini Biswas
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Richa Katiyar
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - B. R. Gurjar
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Vikas Pruthi
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
- Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
8
|
Khan Y, Marin M, Karinen R, Lehtonen J, Kanervo J. 1-Butanol dehydration in microchannel reactor: Kinetics and reactor modeling. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Ndaba B, Chiyanzu I, Marx S. n-Butanol derived from biochemical and chemical routes: A review. ACTA ACUST UNITED AC 2015; 8:1-9. [PMID: 28352567 PMCID: PMC4980751 DOI: 10.1016/j.btre.2015.08.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/24/2015] [Accepted: 08/01/2015] [Indexed: 10/31/2022]
Abstract
Traditionally, bio-butanol is produced with the ABE (Acetone Butanol Ethanol) process using Clostridium species to ferment sugars from biomass. However, the route is associated with some disadvantages such as low butanol yield and by-product formation (acetone and ethanol). On the other hand, butanol can be directly produced from ethanol through aldol condensation over metal oxides/ hydroxyapatite catalysts. This paper suggests that the chemical conversion route is more preferable than the ABE process, because the reaction proceeds more quickly compared to the fermentation route and fewer steps are required to get to the product.
Collapse
Affiliation(s)
- B Ndaba
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - I Chiyanzu
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - S Marx
- Focus area: Energy system, School of Chemical and Minerals Engineering, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|