1
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
de Souza F, Gupta RK. Bacteria for Bioplastics: Progress, Applications, and Challenges. ACS OMEGA 2024; 9:8666-8686. [PMID: 38434856 PMCID: PMC10905720 DOI: 10.1021/acsomega.3c07372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Bioplastics are one of the answers that can point society toward a sustainable future. Under this premise, the synthesis of polymers with competitive properties using low-cost starting materials is a highly desired factor in the industry. Also, tackling environmental issues such as nonbiodegradable waste generation, high carbon footprint, and consumption of nonrenewable resources are some of the current concerns worldwide. The scientific community has been placing efforts into the biosynthesis of polymers using bacteria and other microbes. These microorganisms can be convenient reactors to consume food and agricultural wastes and convert them into biopolymers with inherently attractive properties such as biodegradability, biocompatibility, and appreciable mechanical and chemical properties. Such biopolymers can be applied to several fields such as packing, cosmetics, pharmaceutical, medical, biomedical, and agricultural. Thus, intending to elucidate the science of microbes to produce polymers, this review starts with a brief introduction to bioplastics by describing their importance and the methods for their production. The second section dives into the importance of bacteria regarding the biochemical routes for the synthesis of polymers along with their advantages and disadvantages. The third section covers some of the main parameters that influence biopolymers' production. Some of the main applications of biopolymers along with a comparison between the polymers obtained from microorganisms and the petrochemical-based ones are presented. Finally, some discussion about the future aspects and main challenges in this field is provided to elucidate the main issues that should be tackled for the wide application of microorganisms for the preparation of bioplastics.
Collapse
Affiliation(s)
- Felipe
Martins de Souza
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
| | - Ram K. Gupta
- National
Institute for Materials Advancement, Pittsburgh
State University, 1204 Research Road, Pittsburgh, Kansas 66762, United States
- Department
of Chemistry, Pittsburgh State University, 1701 South Broadway Street, Pittsburgh, Kansas 66762, United States
| |
Collapse
|
3
|
de Mello AFM, Vandenberghe LPDS, Machado CMB, Brehmer MS, de Oliveira PZ, Binod P, Sindhu R, Soccol CR. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 393:130078. [PMID: 37993072 DOI: 10.1016/j.biortech.2023.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.
Collapse
Affiliation(s)
- Ariane Fátima Murawski de Mello
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| | - Clara Matte Borges Machado
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Mateus Seleme Brehmer
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | | | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Hasaka S, Sakamoto S, Fujii K. The Potential of Digested Sludge-Assimilating Microflora for Biogas Production from Food Processing Wastes. Microorganisms 2023; 11:2321. [PMID: 37764166 PMCID: PMC10535770 DOI: 10.3390/microorganisms11092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Food processing wastes (FPWs) are residues generated in food manufacturing, and their composition varies depending on the type of food product being manufactured. Therefore, selecting and acclimatizing seed microflora during the initiation of biogas production is crucial for optimal outcomes. The present study examined the biogas production capabilities of digested sludge-assimilating and biogas-yielding soil (DABYS) and enteric (DABYE) microflorae when used as seed cultures for biogas production from FPWs. After subculturing and feeding these microbial seeds with various FPWs, we assessed their biogas-producing abilities. The subcultures produced biogas from many FPWs, except orange peel, suggesting that the heterogeneity of the bacterial members in the seed microflora facilitates quick adaptation to FPWs. Microflorae fed with animal-derived FPWs contained several methanogenic archaeal families and produced methane. In contrast, microflorae fed with vegetable-, fruit-, and crop-derived FPWs generated hydrogen, and methanogenic archaeal populations were diminished by repeated subculturing. The subcultured microflorae appear to hydrolyze carbohydrates and protein in FPWs using cellulase, pectinase, or protease. Despite needing enhancements in biogas yield for future industrial scale-up, the DABYS and DABYE microflorae demonstrate robust adaptability to various FPWs.
Collapse
Affiliation(s)
- Sato Hasaka
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Saki Sakamoto
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| | - Katsuhiko Fujii
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
- Applied Chemistry and Chemical Engineering Program, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano-cho, Hachioji 1920015, Tokyo, Japan
| |
Collapse
|
5
|
Dan T, Jing H, Shen T, Zhu J, Liu Y. Performance of production of polyhydroxyalkanoates from food waste fermentation with Rhodopseudomonas palustris. BIORESOURCE TECHNOLOGY 2023:129165. [PMID: 37182681 DOI: 10.1016/j.biortech.2023.129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
The use of waste as a carbon source can significantly reduce the cost of production of Polyhydroxyalkanoates (PHAs). In this study, an acidified hydrolysate solution derived from food waste (FW) was used as a carbon source for the synthesis of PHAs by Rhodopseudomonas palustris (R. palustris) and optimized the process parameters. The results showed that the PHAs yield reached 48.62% under optimal conditions (an incubation time of 30 days, volatile fatty acids (VFAs) in substrate concentration of 2202.21 mg⋅L-1, an initial pH of 8.0, and inoculum concentration of 15%). The fraction of VFAs affects the composition of PHAs, R. palustris first uses VFAs with an even number of carbons to synthesize poly(3-hydroxybutyrate)(3HB), and later uses VFAs with an odd number of carbons to synthesize poly-3-hydroxyvalerate (3HV). Pathways for the synthesis of PHAs by R. palustris were inferred. R. palustris is a strain with the potential to synthesize PHAs.
Collapse
Affiliation(s)
- Tingxing Dan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huiyan Jing
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian Shen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, 518115, China
| | - Yanping Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Miu DM, Eremia MC, Moscovici M. Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. MATERIALS 2022; 15:ma15041410. [PMID: 35207952 PMCID: PMC8875380 DOI: 10.3390/ma15041410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible biopolymers. These biomaterials have grown in importance in the fields of tissue engineering and tissue reconstruction for structural applications where tissue morphology is critical, such as bone, cartilage, blood vessels, and skin, among others. Furthermore, they can be used to accelerate the regeneration in combination with drugs, as drug delivery systems, thus reducing microbial infections. When cells are cultured under stress conditions, a wide variety of microorganisms produce them as a store of intracellular energy in the form of homo- and copolymers of [R]—hydroxyalkanoic acids, depending on the carbon source used for microorganism growth. This paper gives an overview of PHAs, their biosynthetic pathways, producing microorganisms, cultivation bioprocess, isolation, purification and characterization to obtain biomaterials with medical applications such as tissue engineering.
Collapse
Affiliation(s)
- Dana-Maria Miu
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Mihaela Carmen Eremia
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Correspondence:
| | - Misu Moscovici
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
| |
Collapse
|
7
|
Siva Sankari M, Vivekanandhan S, Misra M, Mohanty AK. Oil Cakes as Sustainable Agro‐Industrial Feedstock for Biocarbon Materials. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M. Siva Sankari
- V. H. N. S. N. College (Autonomous) Virudhunagar Sustainable Materials and Nanotechnology Lab (SMNL), Department of Physics 626 001 Tamil Nadu India
| | - S. Vivekanandhan
- V. H. N. S. N. College (Autonomous) Virudhunagar Sustainable Materials and Nanotechnology Lab (SMNL), Department of Physics 626 001 Tamil Nadu India
| | - M. Misra
- University of Guelph, Crop Science Building Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture 117 Reynolds Walk N1G 1Y4 Guelph Ontario Canada
- University of Guelph, Thornbrough Building School of Engineering 80 South Ring Road E N1G 1Y4 Guelph, Ontario Canada
| | - A. K. Mohanty
- University of Guelph, Crop Science Building Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture 117 Reynolds Walk N1G 1Y4 Guelph Ontario Canada
- University of Guelph, Thornbrough Building School of Engineering 80 South Ring Road E N1G 1Y4 Guelph, Ontario Canada
| |
Collapse
|
8
|
Thulasidharan D, Arumugam A, Uppuluri KB. Research and economic perspectives on an integrated biorefinery approach for the simultaneous production of polyhydroxyalkanoates and biohydrogen. Int J Biol Macromol 2021; 193:1937-1951. [PMID: 34752795 DOI: 10.1016/j.ijbiomac.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Alarming environmental impacts have been resulted across the globe due to the recovery and consumption of fossil fuels. The elevated global carbon footprint has paved the way to an alternative to combat the prevalent pollution. On the other hand, the fossil-based plastics produced from the byproducts of petroleum remain intact in the environment leading to pollution. Fossil abated bioproducts are in high demand due to the increase in pollution. This call to utilize feedstock for simultaneous production of biologically useful products through carbon capture utilisation where the leftover carbon-rich substrate is converted into usable chemicals like bioplastics, methanol, urea and various other industrially essential components. The present review extensively focuses on the research and economic perspectives of an integrated biorefinery and addresses technical breaches, bottlenecks, and efficient strategies for the simultaneous production of biohydrogen and polyhydroxyalkanoates.
Collapse
Affiliation(s)
- D Thulasidharan
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - A Arumugam
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India.
| | - Kiran Babu Uppuluri
- Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
9
|
Scognamiglio V, Giardi MT, Zappi D, Touloupakis E, Antonacci A. Photoautotrophs-Bacteria Co-Cultures: Advances, Challenges and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3027. [PMID: 34199583 PMCID: PMC8199690 DOI: 10.3390/ma14113027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/18/2023]
Abstract
Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
Collapse
Affiliation(s)
- Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Maria Teresa Giardi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
- Biosensor S.r.l., Via Olmetti 44, 00060 Formello, Italy
| | - Daniele Zappi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| |
Collapse
|
10
|
Valorization of agro-wastes for the biosynthesis and characterization of polyhydroxybutyrate by Bacillus sp. isolated from rice bran dumping yard. 3 Biotech 2021; 11:202. [PMID: 33927992 DOI: 10.1007/s13205-021-02722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/10/2021] [Indexed: 11/27/2022] Open
Abstract
Investigations have been made to determine the usage of inexpensive agro-waste products as an alternative carbon source for the production of degradable bacterial polyester. Among 33 bacterial isolates, a gram-positive bacterium PPECLRB-16 isolated from rice bran dumping yard was found to accumulate a relatively higher quantity of PHB and identified as Bacillus sp. through 16S rRNA gene sequence analysis. The higher PHB producing bacterial isolate was grown with different inexpensive agro-wastes to determine the suitable carbon source for its growth and PHB production. The one-factor-at-a-time approach comparatively enhanced PHB yield (5.64 g/L) when grown for 48 h with 1.5% (w/v) of defatted oil cake at a pH of 7.0. The bacterially accumulated PHB was isolated from the cells, purified, and characterized using solid-state 13C NMR, FT-IR, Powder XRD, TGA, GPC, Tensile and HR-SEM analyses. The hydrophobicity and printing accessibility of recovered PHB were demonstrated using contact angle measurement by coating on different surfaces. The results obtained in the present investigation have thrown light on the potential usage of agro-waste by-products, mainly oil cake, as an appropriate carbon source for the commercial production of PHB by Bacillus sp. in a cost-effective way.
Collapse
|
11
|
George DM, Vincent AS, Mackey HR. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00563. [PMID: 33304839 PMCID: PMC7714679 DOI: 10.1016/j.btre.2020.e00563] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.
Collapse
Key Words
- ALA, 5-Aminolevulinic acid
- APB, Anoxygenic phototrophic bacteria
- Anoxygenic phototrophic bacteria (APB)
- BChl, Bacteriochlorophyll
- BES, Bioelectrochemical systems
- BPV, Biophotovoltaic
- BPh, Bacteriopheophytin
- Bacteriochlorophyll (BChl)
- Chl, Chlorophyll
- CoQ10, Coenzyme Q10
- DET, Direct electron transfer
- DNA, Deoxyribonucleic acid
- DO, Dissolved oxygen
- DXP, 1 deoxy-d-xylulose 5-phosphate
- FPP, Farnesyl pyrophosphate
- Fe-S, Iron-Sulfur
- GNSB, Green non sulfur bacteria
- GSB, Green sulfur bacteria
- IPP, Isopentenyl pyrophosphate isomerase
- LED, light emitting diode
- LH2, light-harvesting component II
- MFC, Microbial fuel cell
- MVA, Mevalonate
- PH3B, Poly-3-hydroxybutyrate
- PHA, Poly-β-hydroxyalkanoates
- PHB, Poly-β-hydroxybutyrate
- PNSB, Purple non sulfur bacteria
- PPB, Purple phototrophic bacteria
- PSB, Purple sulfur bacteria
- Pheo-Q, Pheophytin-Quinone
- Photo-BES, Photosynthetic bioelectrochemical systems
- Photo-MFC, Photo microbial fuel cell
- Poly-β-hydroxyalkanoates (PHA)
- Purple phototrophic bacteria (PPB)
- Resource recovery
- RuBisCO, Ribulose-1,5-biphosphate carboxylase/oxygenase
- SCP, Single-cell protein
- SOB, Sulfide oxidizing bacteria
- SRB, Sulfate reducing bacteria
- Single-cell proteins (SCP)
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Annette S. Vincent
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
12
|
Jeong EL, Broad S, Moody R, Phillips-Jones M. The adherence-associated Fdp fasciclin I domain protein of the biohydrogen producer Rhodobacter sphaeroides is regulated by the global Prr pathway. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020; 45:26840-26854. [PMID: 33093750 PMCID: PMC7561615 DOI: 10.1016/j.ijhydene.2020.07.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 05/23/2023]
Abstract
Expression of fdp, encoding a fasciclin I domain protein important for adherence in the hydrogen-producing bacterium Rhodobacter sphaeroides, was investigated under a range of conditions to gain insights into optimization of adherence for immobilization strategies suitable for H2 production. The fdp promoter was linked to a lacZ reporter and expressed in wild type and in PRRB and PRRA mutant strains of the Prr regulatory pathway. Expression was significantly negatively regulated by Prr under all conditions of aerobiosis tested including anaerobic conditions (required for H2 production), and aerobically regardless of growth phase, growth medium complexity or composition, carbon source, heat and cold shock and dark/light conditions. Negative fdp regulation by Prr was reflected in cellular levels of translated Fdp protein. Since Prr is required directly for nitrogenase expression, we propose optimization of Fdp-based adherence in R. sphaeroides for immobilized biohydrogen production by inactivation of the PrrA binding site(s) upstream of fdp.
Collapse
Affiliation(s)
- E.-L. Jeong
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - S.J. Broad
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - R.G. Moody
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - M.K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
13
|
Ebrahimian F, Karimi K, Kumar R. Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 116:40-48. [PMID: 32784120 DOI: 10.1016/j.wasman.2020.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste is an environmental threat worldwide; however, the organic fraction of municipal solid waste (OF-MSW) has a great potential for the generation of fuels and high-value products. In the current study, OF-MSW was utilized for the production of ethanol, hydrogen, as well as 2,3-butanediol, an octane booster, by using Enterobacter aerogenes. Furthermore, a promising alternative to non-biodegradable petrochemical-based polymers, polyhydroxyalkanoates (PHAs), was produced. The OF-MSW was first pretreated by an acetic acid catalyzed ethanol organosolv pretreatment at 120 and 160 °C followed by enzymatic hydrolysis of the residual solids. The residual unhydrolyzed solids resulting from enzymatic hydrolysis were further anaerobically digested for methane production. The enzymatic hydrolysis of the solids prepared at 120 °C for 60 min led to the production of hydrolysate with the highest glucose production yield of 498.5 g/kg dry untreated OF-MSW, which was fermented to 139.1 g 2,3-butanediol, 98.3 g ethanol, 28.6 g acetic acid, 71.4 L biohydrogen, and 40 g PHAs. Moreover, 23.1 L biomethane was produced through the anaerobic digestion of the enzymatic hydrolysis residue solids. Thus, appreciable amounts of energy (8236.9 kJ) and an eco-friendly bioplastic were produced by the valorization of carbon sources available in OF-MSW.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rajeev Kumar
- Center of Environmental and Research Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507, USA.
| |
Collapse
|
14
|
Biohydrogen production beyond the Thauer limit by precision design of artificial microbial consortia. Commun Biol 2020; 3:443. [PMID: 32796915 PMCID: PMC7429504 DOI: 10.1038/s42003-020-01159-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023] Open
Abstract
Dark fermentative biohydrogen (H2) production could become a key technology for providing renewable energy. Until now, the H2 yield is restricted to 4 moles of H2 per mole of glucose, referred to as the "Thauer limit". Here we show, that precision design of artificial microbial consortia increased the H2 yield to 5.6 mol mol-1 glucose, 40% higher than the Thauer limit. In addition, the volumetric H2 production rates of our defined artificial consortia are superior compared to any mono-, co- or multi-culture system reported to date. We hope this study to be a major leap forward in the engineering of artificial microbial consortia through precision design and provide a breakthrough in energy science, biotechnology and ecology. Constructing artificial consortia with this drawing-board approach could in future increase volumetric production rates and yields of other bioprocesses. Our artificial consortia engineering blueprint might pave the way for the development of a H2 production bioindustry.
Collapse
|
15
|
El-malek FA, Khairy H, Farag A, Omar S. The sustainability of microbial bioplastics, production and applications. Int J Biol Macromol 2020; 157:319-328. [DOI: 10.1016/j.ijbiomac.2020.04.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 01/09/2023]
|
16
|
Arumugam A, Furhana Shereen M. Bioconversion of Calophyllum inophyllum oilcake for intensification of rhamnolipid and polyhydroxyalkanoates co-production by Enterobacter aerogenes. BIORESOURCE TECHNOLOGY 2020; 296:122321. [PMID: 31677405 DOI: 10.1016/j.biortech.2019.122321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The biologically derived products are highly valued due to their biodegradability, low toxicity, and renewability. However, most production processes are exorbitant due to high raw material cost and the downstream processing required for product recovery and purification. Therefore, the present study utilized the low-cost lignocellulosic biomass, Calophyllum inophyllum oilcake for the simultaneous production of PHA and rhamnolipid by a facultative anaerobe Enterobacter aerogenes. Both the products are produced during the stationary phase and constitute β- hydroxyalkanoic acids, which makes it feasible for the co-production through a single fermentation process. From the batch fermentation studies, it was revealed that the under optimum condition rhamnolipid and PHA yield are 5.81 g/L and 4.2 g/L: 5%(v/v) of inoculum size, pH of 6.5, C:N ratio of 5:1 and urea are found to be the best nitrogen source for the fermentation process. Characterization studies for extracted PHA and RL was done using- FTIR, NMR and TGA analysis.
Collapse
Affiliation(s)
- A Arumugam
- School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, India.
| | - M Furhana Shereen
- School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, India
| |
Collapse
|
17
|
Zhao L, Cheng Y, Yin Z, Chen D, Bao M, Lu J. Insights into the effect of different levels of crude oil on hydrolyzed polyacrylamide biotransformation in aerobic and anoxic biosystems: Bioresource production, enzymatic activity, and microbial function. BIORESOURCE TECHNOLOGY 2019; 293:122023. [PMID: 31472407 DOI: 10.1016/j.biortech.2019.122023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The differences of crude oil recovery ratio resulted in different levels of crude oil in actual hydrolyzed polyacrylamide (HPAM)-containing wastewater. The effect of crude oil on HPAM biotransformation was explored from bioresource production, enzymatic activity and microbial function. In aerobic biosystems, the highest polyhydroxyalkanoate (PHA) yield (19.6%-40.2%) and dehydrogenase (DH) activity (4.06-8.32 mg·g-1 VSS) occurred in the 48th hour, and increased with crude oil concentration (0-400 mg·L-1). In anoxic biosystems, the highest PHA yield (24.5%-50.5%) and DH activity (3.24-6.69 mg·g-1 VSS) occurred in the 72nd hour, and increased with crude oil concentration. The higher substrate removal (38.5%-65.7%) occurred in aerobic biosystems, while the higher PHA accumulation occurred in anoxic biosystems. PHA yield, DH activity and HPAM removal were related. Microbial function related to HPAM biodegradation and PHA synthesis was discussed. The main function of Pseudomonas and Bacillus in aerobic biosystems was to degrade HPAM, and in anoxic biosystems was to synthesize PHA.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dafan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
18
|
Zhao L, Han D, Yin Z, Bao M, Lu J. Biohydrogen and polyhydroxyalkanoate production from original hydrolyzed polyacrylamide-containing wastewater. BIORESOURCE TECHNOLOGY 2019; 287:121404. [PMID: 31108414 DOI: 10.1016/j.biortech.2019.121404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
This work aimed to study biohydrogen (H2) and polyhydroxyalkanoate (PHA) production from original hydrolyzed polyacrylamide (HPAM)-containing wastewater. NH4+-N from HPAM hydrolysis was removed efficiently through short-cut nitrification and anoxic ammonia oxidation (anammox). Carbon/Nitrogen (C/N) ratios of effluent reached 51-97, and TOC decreased only 2%-4%, providing potential for subsequent H2 and PHA production. The maximum yields of H2 (0.833 mL·mg-1substrate) and Volatile Fatty Acid (VFA) (465 mg·L-1) occurred at influent C/N ratio of 51. Substrate removal increased linearly with the activities of dehydrogenase and hydrogenase (R2 ≥ 0.990), and H2 yield rose exponentially with enzyme activities (R2 ≥ 0.989). The maximum PHA yield (54.2% VSS) occurred at the 42nd hour and influent C/N ratio of 97. PHA yield was positively correlated with substrate uptake. The change of H2-producing, PHA-accumulating and HPAM-degradating bacteria indicated that those functional microorganisms had synergistic effects on H2 production and substrate uptake, as well as PHA accumulation and substrate uptake.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dong Han
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
19
|
Kumar P, Kim BS. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. BIORESOURCE TECHNOLOGY 2018; 269:544-556. [PMID: 30201320 DOI: 10.1016/j.biortech.2018.08.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are the only polyesters that are completely synthesized biologically and possess features equivalent to petroleum-based plastics besides being biodegradable. PHA based materials may certainly prove helpful in addressing the concerns caused due to the indiscriminate use of synthetic plastics. However, the cost of producing these polymers on a large scale is still uneconomical. Various approaches have been developed to tackle this issue through usage of agro-industrial wastes, co-production of high market value products, polymer extraction using green solvents, etc. The advent of recombineering and CRISPR technologies has broadened the scope of constructing a microbe capable of synthesizing multiple products with economic feasibility. Quite a few high-market value chemicals are possible to synthesize along with the favorable accumulation of PHA. The present article attempts to review all PHA polymer co-production processes with other chemicals reported till date and discusses the opportunities for their large-scale operation in future.
Collapse
Affiliation(s)
- Prasun Kumar
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
20
|
La A, Perré P, Taidi B. Process for symbiotic culture of Saccharomyces cerevisiae and Chlorella vulgaris for in situ CO2 mitigation. Appl Microbiol Biotechnol 2018; 103:731-745. [DOI: 10.1007/s00253-018-9506-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
21
|
Ntaikou I, Koumelis I, Tsitsilianis C, Parthenios J, Lyberatos G. Comparison of yields and properties of microbial polyhydroxyalkanoates generated from waste glycerol based substrates. Int J Biol Macromol 2018; 112:273-283. [DOI: 10.1016/j.ijbiomac.2018.01.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/22/2022]
|
22
|
Arumugam A, Senthamizhan S, Ponnusami V, Sudalai S. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator. Int J Biol Macromol 2018; 112:598-607. [DOI: 10.1016/j.ijbiomac.2018.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
|
23
|
Sivagurunathan P, Kuppam C, Mudhoo A, Saratale GD, Kadier A, Zhen G, Chatellard L, Trably E, Kumar G. A comprehensive review on two-stage integrative schemes for the valorization of dark fermentative effluents. Crit Rev Biotechnol 2017; 38:868-882. [DOI: 10.1080/07388551.2017.1416578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Chandrasekhar Kuppam
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Reduit, Republic of Mauritius
| | - Ganesh D. Saratale
- Department of Food Science & Biotechnology, Dongguk University- Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Republic of Korea
| | - Abudukeremu Kadier
- Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, National University of Malaysia (UKM), Selangor, Malaysia
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, PR China
| | | | | | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
24
|
Wang Q, Zheng H, Wan X, Huang H, Li J, Nomura CT, Wang C, Chen S. Optimization of Inexpensive Agricultural By-Products as Raw Materials for Bacitracin Production in Bacillus licheniformis DW2. Appl Biochem Biotechnol 2017; 183:1146-1157. [PMID: 28593603 DOI: 10.1007/s12010-017-2489-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 11/26/2022]
Abstract
Bacitracin is a broad-spectrum antibiotic used extensively as a feed additive. In this study, inexpensive agricultural by-products were used as nitrogen sources for bacitracin production. Based on both the orthogonal tests, a combination of 7% soybean meal (SBM) +2% low protein rapeseed cake (LPRC) was optimal for bacitracin production. Compared to the original formula, the titer of bacitracin increased by 20.5% reaching 910.4 U/ml in flasks. The titer of bacitracin and the ratio of bacitracin A increased by 12.4 and 6.8% in a 50-l fermentor. Furthermore, this study also explored the effects of exogenously adding different amino acids on the yield of bacitracin. The addition of Cys and Glu enhanced bacitracin production by 5.7 and 5.0%, respectively. This study provided the inexpensive nutrient inputs into efficient bacitracin production and also the insight to further research enabling better utilization of oil cakes for economic viability of the bioprocess industry.
Collapse
Affiliation(s)
- Qin Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Wan
- Oilcrops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Hongfeng Huang
- Oilcrops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Junhui Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Christopher T Nomura
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
- Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY, 13210, USA
| | - Changjun Wang
- Tobacco Research Institute of Hubei Province, Wuhan, 430062, China.
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Tian Q, Zhuang L, Ong SK, Wang Q, Wang K, Xie X, Zhu Y, Li F. Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal. WATER RESEARCH 2017; 119:267-275. [PMID: 28477542 DOI: 10.1016/j.watres.2017.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Under decreasing C/N (from 8.8 to 3.5) conditions, an alternating anaerobic/aerobic biofilter (AABF) was used to remove nitrogen and accumulate/recover phosphorus (P) from synthetic wastewater. The AABF was periodically (every 10 days) fed with an additional carbon source (10 L, chemical oxygen demand (COD) = 900 mg L-1 sodium acetate (NaAC) solution) in the anaerobic phase to induce the release of P sequestered in the biofilm. An increase in PHA storage in the biofilm was observed and characterized with TEM and a GC-MS method. The accumulation of P and removal of total nitrogen occurred primarily in the aerobic phase. As the NH4+-N loading rate increased from 0.095 to 0.238 kg m-3 d-1 at a total empty bed retention time (EBRT) of 4.6 h, the TN removal in AABF was reduced from 91.2% to 43.4%, while the P removal or recovery rate remained unaffected. The high-throughput community sequencing analysis indicated that the relative abundance of Candidatus Competibacter, Nitrospira and Arcobacter increased while the Accumulibacter phosphatis decreased with an increase of ammonium loading rate within a short operational period (30 days). A putative N and P removal pattern via simultaneous nitrification and PHA-based denitrification, as well as P accumulation in the biofilm was proposed. The research demonstrated that an efficient N removal and P recovery process, i.e., simultaneous nitrification and denitrification, P accumulation and carbon source-regulated P recovery can be achieved by the symbiotic functional groups in a single biofilm reactor.
Collapse
Affiliation(s)
- Qing Tian
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China.
| | - Linjie Zhuang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Say Kee Ong
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, IA, 50011, USA.
| | - Qi Wang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Kangwei Wang
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Xuehui Xie
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Yanbin Zhu
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Fang Li
- Department of Environmental Science and Engineering, Donghua University, 2999 Shanghai North People's Road, 201620, PR China
| |
Collapse
|
26
|
Integrative Approach for Producing Hydrogen and Polyhydroxyalkanoate from Mixed Wastes of Biological Origin. Indian J Microbiol 2016; 56:293-300. [PMID: 27407293 DOI: 10.1007/s12088-016-0595-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, an integrative approach to produce biohydrogen (H2) and polyhydroxyalkanoates (PHA) from the wastes of biological origin was investigated. A defined set of mixed cultures was used for hydrolysis and the hydrolysates were used to produce H2. The effluent from H2 production stage was used for PHA production. Under batch culture, a maximum of 62 l H2/kg of pure potato peels (Total solid, TS 2 %, w/v) and 54 l H2/kg of mixed biowastes (MBW1) was recorded. Using effluent from the H2 production stage of biowaste mixture (MBW1), Bacillus cereus EGU43 could produce 195 mg PHA/l and 15.6 % (w/w). Further, supplementation of GM-2 medium (0.1×) and glucose (0.5 %) in H2 production stage effluents, resulted in significant improvements of up to 11 and 41.7 % of PHA contents, respectively. An improvement of 3.9- and 17-fold in PHA yields as compared to with and without integrative H2 production from the MBW1 has been recorded. This integrative approach seems to be a suitable process to improve the yields of H2 and PHA by mixing biowastes.
Collapse
|
27
|
Muangwong A, Boontip T, Pachimsawat J, Napathorn SC. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microb Cell Fact 2016; 15:55. [PMID: 26988857 PMCID: PMC4797247 DOI: 10.1186/s12934-016-0454-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/09/2016] [Indexed: 11/11/2022] Open
Abstract
Background Our study aimed to search for novel bacteria capable of producing polyhydroxyalkanoates (PHAs) using crude glycerol residue obtained from biodiesel production in which used cooking oils were the substrates. Results Newly isolated bacteria from soils in Thailand were screened for the efficient production of PHAs from crude glycerol. The bacterial strains were cultivated on glucose, refined glycerol, crude glycerol, or various cooking oils (canola oil, palm oil, soybean oil, sunflower oil, corn oil, grape seed oil, olive oil, rice bran oil, camellia seed oil) for growth and PHA production. The effects of the total organic carbon (TOC) concentration and the mole ratio of carbon to nitrogen were investigated in batch cultivation. 1H NMR, two dimensional-1H-correlation spectroscopy (2D-1H-COSY) and 13C NMR analyses confirmed four bacterial strains were capable of producing medium-chain-length PHAs (mcl-PHAs), consisting of 3-hydroxyoctanoate (3HO) and 3-hydroxy-5-cis-dodecanoate (3H5DD), from crude glycerol. On the basis of phenotypic features and genotypic investigations, the bacterial strains were assigned as: ASC1, Acinetobacter genus (94.9 % similarity); ASC2, Pseudomonas genus (99.2 % similarity); ASC3, Enterobacter genus (99.2 % similarity); ASC4, Bacillus genus (98.4 % similarity). The highest amount of mcl-PHAs, 17.5 ± 0.8 g/L (content 61.8 ± 3.3 % wt), with 3HO (14.7 ± 2.2 mol %), 3H5DD (85.3 ± 2.2 mol %), and a total biomass of 32.3 ± 0.3 g/L, was obtained from Pseudomonas sp. ASC2 in batch cultivation after 36 h. The mcl-PHAs recovered had a number-average molecular weight (MN) of 3.6 × 104 Da. Homopolymeric 3H5DD was obtained when the cultivation time was prolonged to 96 h. Conclusions Novel PHA-producing strains were isolated and identified. These bacterial strains are able to produce mcl-PHAs from crude glycerol. The mcl-PHAs produced contained a high percentage of 3H5DD, which suggests their future application as softeners mixed with other biomaterials. The unsaturated side chain of 3H5DD monomers containing double bounds offers additional potential for improving the properties of the mcl-PHAs or extending their applications to the food industry.
Collapse
Affiliation(s)
- Amtiga Muangwong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Thanawat Boontip
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Jittakan Pachimsawat
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand. .,Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
28
|
Wecker P, Moppert X, Simon-Colin C, Costa B, Berteaux-Lecellier V. Discovery of a mcl-PHA with unexpected biotechnical properties: the marine environment of French Polynesia as a source for PHA-producing bacteria. AMB Express 2015; 5:74. [PMID: 26606919 PMCID: PMC4659796 DOI: 10.1186/s13568-015-0163-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/12/2015] [Indexed: 01/28/2023] Open
Abstract
A library of microorganisms
originating from various marine environments in French Polynesia was screened for polyhydroxyalkanoate producing bacteria. No significant connection was found between the geo-ecological source of bacteria and their ability to produce polyhydroxyalkanoate. A bacterial strain designated as Enterobacter FAK 1384 was isolated from a shark jaw. When grown on coprah oil, this bacterium produces a PHA constituting of 62 mol % 3-hydroxydecanoate and lower amount of 12 mol % 3-hydroxydodecenoate and of 7.6 mol % 3-hydroxydodecanoate. These interesting properties make this mcl-PHA a good candidate for further exploitations in many industrial sectors, as in film and coating manufacturing, as well as for biomedical applications.
Collapse
|
29
|
Cai J, Chen M, Wang G, Pan G, Yu P. Fermentative hydrogen and polyhydroxybutyrate production from pretreated cyanobacterial blooms. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Alagu RM, Sundaram EG, Natarajan E. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell. BIORESOURCE TECHNOLOGY 2015; 193:463-468. [PMID: 26162524 DOI: 10.1016/j.biortech.2015.06.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Pyrolysis of Calophyllum inophyllum shell was performed in a fixed bed pyrolyser to produce pyrolytic oil. Both thermal (without catalysts) and catalytic pyrolysis process were conducted to investigate the effect of catalysts on pyrolysis yield and pyrolysis oil characteristics. The yield of pyrolytic oil through thermal pyrolysis was maximum (41% wt) at 425 °C for particle size of 1.18 mm and heating rate of 40 °C/min. In catalytic pyrolysis the pyrolytic oil yield was maximum (45% wt) with both zeolite and kaolin catalysts followed by Al2O3 catalyst (44% wt). The functional groups and chemical components present in the pyrolytic oil are identified by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques. This study found that C. inophyllum shell is a potential new green energy source and that the catalytic pyrolysis process using zeolite catalyst improves the calorific value and acidity of the pyrolytic oil.
Collapse
Affiliation(s)
- R M Alagu
- Department of Mechanical Engineering, Tagore Engineering College, Chennai, Tamil Nadu, India.
| | - E Ganapathy Sundaram
- Department of Mechanical Engineering, Velammal Engineering College, Chennai, Tamil Nadu, India.
| | - E Natarajan
- Institute for Energy Studies, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
31
|
Bacterial synthesis of polyhydroxyalkanoates using dark fermentation effluents: Comparison between pure and enriched mixed cultures. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
32
|
Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context. Scientometrics 2015; 105:1019-1030. [PMID: 32214549 PMCID: PMC7089286 DOI: 10.1007/s11192-015-1715-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 12/02/2022]
Abstract
Tropical trees of Calophyllum genus (Calophyllaceae) have chemical and biological importance as potential source of secondary active metabolites which can lead to the development of new drugs. Research on this species has been rising since 1992 due to the discovering of anti-HIV properties of Calanolide A found in Calophyllum inophyllum leaves. This compound is the most important natural product for potential development of new anti-HIV drugs and phytomedicines. The scientometric analysis (1953–2014) here performed revealed that the most studied species of Calophyllum genus are: C. inophyllum and C. brasiliense, distributed in the Asian, and American continents, respectively. Current research on these species is carried out mainly in India and Brazil, respectively, where these species grow. Research on C. brasiliense is focused mainly on ecological, antiparasitic, cytotoxic properties, and isolation of new compounds. Chemical studies and biodiesel development are the main topics in the case of C. inophyllum. Text mining analysis revealed that coumarins, and xanthones are the main secondary active metabolites responsible for most of the reported pharmacological properties, and are potential compounds for the treatment of leukemia and against intracellular parasites causing American Trypanosomiasis and Leshmaniasis. On the other hand, C. inophyllum represents an important source for the development of 2nd generation biodiesel. Medicinal and industrial applications of these species may impulse sustainable forest plantations. To our knowledge this is the first scientometric and text mining analysis of chemical and biomedical research on Calophyllum genus, C. brasiliense and C. inophyllum.
Collapse
|
33
|
Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. BIORESOURCE TECHNOLOGY 2015; 176:136-41. [PMID: 25460994 DOI: 10.1016/j.biortech.2014.11.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Biological production of hydrogen (H2) and polyhydroxybutyrate (PHB) from pea-shell slurry (PSS) was investigated using defined mixed culture (MMC4, composed of Enterobacter, Proteus, Bacillus spp.). Under batch culture, 19.0LH2/kg of PSS (total solid, TS, 2%w/v) was evolved. Using effluent from the H2 producing stage, Bacillus cereus EGU43 could produce 12.4% (w/w) PHB. Dilutions of PSS hydrolysate containing glucose (0.5%, w/v) resulted in 45-75LH2/kg TS fed and 19.1% (w/w) of PHB content. Under continuous culture, MMC4 immobilized on coconut coir (CC) lead to an H2 yield of 54L/kg TS fed and a PHB content of 64.7% (w/w). An improvement of 2- and 3.7-fold in H2 and PHB yields were achieved in comparison to control. This integrative approach using defined set of bacterial strains can prove effective in producing biomolecules from biowastes.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi 110007, India; Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Prasun Kumar
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi 110007, India; Department of Biotechnology, Pune University, Pune 411007, India
| | - Mamtesh Singh
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi 110007, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Vipin C Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi 110007, India.
| |
Collapse
|
34
|
Jasamai M, Jalil J, Jantan I. Molecular docking study on platelet-activating factor antagonistic activity of bioactive compounds isolated from Guttiferae andArdisiaspecies. Nat Prod Res 2014; 29:1055-8. [DOI: 10.1080/14786419.2014.971317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Sreedevi S, Unni KN, Sajith S, Priji P, Josh MS, Benjamin S. Bioplastics: Advances in Polyhydroxybutyrate Research. ADVANCES IN POLYMER SCIENCE 2014. [DOI: 10.1007/12_2014_297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|