1
|
Wu Y, Yang T, Wu Y, Liang Y, Zeng X, Yu Z, Peng P. Co-metabolic Biotransformation of Bisphenol AF by a Bisphenol A-Growing Bacterial Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22799-22807. [PMID: 39665776 DOI: 10.1021/acs.est.4c10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The fluorinated bisphenol A (2,2-bis[4-hydroxyphenyl]propane, BPA) substitute bisphenol AF (BPAF) could be more persistent and toxic than BPA, but little is known about its environmental fate. In this study, we established a co-metabolic BPAF-degrading bacterial enrichment culture with BPA as the growth substrate. BPAF degradation by the enrichment culture was dependent on BPA, and BPAF could be eliminated to below the detection limit with successive additions of BPA. BPAF was mainly degraded via phenolic ring hydroxylation and sequential ring cleavage, which are minor BPA transformation pathway. Conjugated BPAF products were also identified based on the characteristic CF3- fragment and were found to accumulate during BPAF degradation. Sphingopyxis was the key BPA and BPAF degrader in the aerobic enrichment cultures, which was the most abundant genera in only BPA-added and BPA and BPAF-added cultures and was proven to be able to degrade BPA and BPAF by isolation. The aerobic co-metabolic BPAF degrading community also contain non-BPA and BPAF degraders, such as Pandoraea, which may play a supporting role in the community.
Collapse
Affiliation(s)
- Yiding Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyue Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511457, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
2
|
Qiu L, Guo X, Liang Z, Lu Q, Wang S, Shim H. Uncovering the metabolic pathway of novel Burkholderia sp. for efficient triclosan degradation and implication: Insight from exogenous bioaugmentation and toxicity pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122111. [PMID: 37392866 DOI: 10.1016/j.envpol.2023.122111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Triclosan (TCS), a synthetic and broad-spectrum antimicrobial agent, is frequently detected in various environmental matrices. A novel TCS degrading bacterial strain, Burkholderia sp. L303, was isolated from local activated sludge. The strain could metabolically degrade TCS up to 8 mg/L, and optimal conditions for TCS degradation were at temperature of 35 °C, pH 7, and an increased inoculum size. During TCS degradation, several intermediates were identified, with the initial degradation occurring mainly through hydroxylation of aromatic ring, followed by dechlorination. Further intermediates such as 2-chlorohydroquinone, 4-chlorocatechol, and 4-chlorophenol were produced via ether bond fission and C-C bond cleavage, which could be further transformed into unchlorinated compounds, ultimately resulting in the complete stoichiometric free chloride release. Bioaugmentation of strain L303 in non-sterile river water demonstrated better degradation than in sterile water. Further exploration of the microbial communities provided insights into the composition and succession of the microbial communities under the TCS stress as well as during the TCS biodegradation process in real water samples, the key microorganisms involved in TCS biodegradation or showing resistance to the TCS toxicity, and the changes in microbial diversity related to exogenous bioaugmentation, TCS input, and TCS elimination. These findings shed light on the metabolic degradation pathway of TCS and highlight the significance of microbial communities in the bioremediation of TCS-contaminated environments.
Collapse
Affiliation(s)
- Lan Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Xiaoyuan Guo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Zhiwei Liang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China; Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qihong Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shanquan Wang
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China.
| |
Collapse
|
3
|
Ma H, Zhao Y, Yang K, Wang Y, Zhang C, Ji M. Application oriented bioaugmentation processes: Mechanism, performance improvement and scale-up. BIORESOURCE TECHNOLOGY 2022; 344:126192. [PMID: 34710609 DOI: 10.1016/j.biortech.2021.126192] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation is an optimization method with great potential to improve the treatment effect by introducing specific strains into the biological treatment system. In this study, a comprehensive review of the mechanism of bioaugmentation from the aspect of microbial community structure, the optimization methods facilitating application as well as feasible approaches of scale-up application has been provided. The different contribution of indigenous and exogenous strains was critically analyzed, the relationship between microbial community variation and system performance was clarified. Operation regulation and immobilization technologies are effective methods to deal with the possible failure of bioaugmentation. The gradual expansion from lab-scale, pilot scale to full-scale, the transformation and upgrading of wastewater treatment plants through the combination of direct dosing and biofilm, and the application of side-stream reactors are feasible ways to realize the full-scale application. The future challenges and prospects in this field were also proposed.
Collapse
Affiliation(s)
- Huilin Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Šabić Runjavec M, Vuković Domanovac M, Meštrović E. Removal of organic pollutants from real pharmaceutical industrial wastewater with environmentally friendly processes. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01919-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
6
|
Yu K, Yi S, Li B, Guo F, Peng X, Wang Z, Wu Y, Alvarez-Cohen L, Zhang T. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. MICROBIOME 2019; 7:16. [PMID: 30728080 PMCID: PMC6366072 DOI: 10.1186/s40168-019-0634-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Understanding microbial interactions in engineering bioprocesses is important to enhance and optimize performance outcomes and requires dissection of the multi-layer complexities of microbial communities. However, unraveling microbial interactions as well as substrates involved in complex microbial communities is a challenging task. Here, we demonstrate an integrated approach of metagenomics, metatranscriptomics, and targeted metabolite analysis to identify the substrates involved in interspecies interactions from a potential cross-feeding model community-bisphenol A (BPA)-biodegrading community, aiming to establish an identification method of microbial interactions in engineering or environmental bioprocesses. RESULTS The community-level BPA-metabolic pathway was constructed using integrated metagenomics and targeted metabolite analyses. The dynamics of active functions and metabolism of major community members were identified using metagenomic and metatranscriptomic analyses in concert. Correlating the community BPA biodegradation performance to the individual bacterial activities enabled the discovery of substrates involved in a synergistic interaction of cross-feeding between BPA-degrading Sphingonomas species and intermediate users, Pseudomonas sp. and Pusillimonas sp. This proposed synergistic interaction was confirmed by the co-culture of a Sphingonomas sp. and Pseudomonas sp. isolates, which demonstrated enhanced BPA biodegradation compared to the isolate of Sphingonomas sp. alone. CONCLUSION The three types of integrated meta-omics analyses effectively revealed the metabolic capability at both community-wide and individual bacterial levels. The correlation between these two levels revealed the hidden connection between apparent overall community performance and the contributions of individual community members and their interactions in a BPA-degrading microbial community. In addition, we demonstrated that using integrated multi-omics in conjunction with culture-based confirmation approach is effective to elucidate the microbial interactions affecting the performance outcome. We foresee this approach would contribute the future application and operation of environmental bioprocesses on a knowledge-based control.
Collapse
Affiliation(s)
- Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China.
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China.
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA.
- Environmental microbiology and bioinformatics Laboratory, Shenzhen Graduate School, Peking University, Nanshan district, Shenzhen, Guangdong, China.
| | - Shan Yi
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA
| | - Bing Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Feng Guo
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xingxing Peng
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zhiping Wang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China.
| |
Collapse
|
7
|
Chen Y, Lan S, Wang L, Dong S, Zhou H, Tan Z, Li X. A review: Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. CHEMOSPHERE 2017; 174:173-182. [PMID: 28161518 DOI: 10.1016/j.chemosphere.2017.01.129] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
The performance and stabilization of biological wastewater treatment systems 1are closely related to the microbial community structure and dynamics. In this paper, the effects and mechanisms of influent composition, process configuration, operating parameters (dissolved oxygen [DO], pH, hydraulic retention time [HRT] and sludge retention time [SRT]) and environmental condition (temperature) to the change of microbial community structure and process performance (nitrification, denitrification, biological phosphorus removal, organics mineralization and utilization, etc.) are critically reviewed. Furthermore, some strategies for microbial community structure regulation, mainly bioaugmentation, process adjustment and operating parameters optimization, applied in the current wastewater treatment systems are also discussed. Although the recent studies have strengthened our understanding on the relationship between microbial community structure and wastewater treatment process performance, how to fully tap the microbial information, optimize the microbial community structure and maintain the process performance in wastewater treatment systems are still full of challenges.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Longhui Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China.
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| |
Collapse
|
8
|
Arriaga S, de Jonge N, Nielsen ML, Andersen HR, Borregaard V, Jewel K, Ternes TA, Nielsen JL. Evaluation of a membrane bioreactor system as post-treatment in waste water treatment for better removal of micropollutants. WATER RESEARCH 2016; 107:37-46. [PMID: 27794216 DOI: 10.1016/j.watres.2016.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Organic micropollutants (OMPs) such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants was examined together with the development and stability of the microbial community. Two stages of operation were studied during a period of 9 months, one with (S1) and one without (S2) the addition of exogenous OMPs. Ibuprofen and naproxen had the highest degradation rates with values of 248 μg/gVSS·h and 71 μg/gVSS·h, whereas diclofenac was a more persistent OMP (7.28 μg/gVSS·h). Mineralization of 14C-labeled OMPs in batch kinetic experiments indicates that higher removal rates (∼0.8 ng/mgTSS·h) with a short lag phase can be obtained when artificial addition of organic micropollutants was performed. Similar microbial populations dominated S1 and S2, despite the independent operations. Hydrogenophaga, Nitrospira, p55-a5, the actinobacterial Tetrasphaera, Propionicimonas, Fodinicola, and Candidatus Microthrix were the most abundant groups in the polishing MBR. Finally, potential microbial candidates for ibuprofen and naproxen degradation are proposed.
Collapse
Affiliation(s)
- Sonia Arriaga
- Instituto Potosino de Investigación Científica y Tecnológica, Environmental Sciences Department, Camino a la Presa San José 2055, Lomas 4a Sección, CP 78216, San Luis Potosí, Mexico; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Nadieh de Jonge
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Marc Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800, Kgs. Lyngby, Denmark
| | | | - Kevin Jewel
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Thomas A Ternes
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark.
| |
Collapse
|
9
|
Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:620-640. [PMID: 27552641 DOI: 10.1016/j.jenvman.2016.07.049] [Citation(s) in RCA: 591] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/29/2016] [Accepted: 07/14/2016] [Indexed: 05/18/2023]
Abstract
The pharmaceutical and personal care products (PPCPs) are emerging pollutants which might pose potential hazards to environment and health. These pollutants are becoming ubiquitous in the environments because they cannot be effectively removed by the conventional wastewater treatment plants due to their toxic and recalcitrant performance. The presence of PPCPs has received increasing attention in recent years, resulting in great concern on their occurrence, transformation, fate and risk in the environments. A variety of technologies, including physical, biological and chemical processes have been extensively investigated for the removal of PPCPs from wastewater. In this paper, the classes, functions and the representatives of the frequently detected PPCPs in aquatic environments were summarized. The analytic methods for PPCPs were briefly introduced. The removal efficiency of PPCPs by wastewater treatment plants was analyzed and discussed. The removal of PPCPs from wastewater by physical, chemical and biological processes was analyzed, compared and summarized. Finally, suggestions are made for future study of PPCPs. This review can provide an overview for the removal of PPCPs from wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
10
|
Zhou NA, Gough HL. Enhanced Biological Trace Organic Contaminant Removal: A Lab-Scale Demonstration with Bisphenol A-Degrading Bacteria Sphingobium sp. BiD32. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8057-8066. [PMID: 27338240 DOI: 10.1021/acs.est.6b00727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Discharge of trace organic contaminants (TOrCs) from wastewater treatment plants (WWTPs) may contribute to deleterious effects on aquatic life. Release to the environment occurs both through WWTP effluent discharge and runoff following land applications of biosolids. This study introduces Enhanced Biological TOrC Removal (EBTCR), which involves continuous bioaugmentation of TOrC-degrading bacteria for improved removal in WWTPs. Influence of bioaugmentation on enhanced degradation was investigated in two lab-scale sequencing batch reactors (SBRs), using bisphenol A (BPA) as the TOrC. The reactors were operated with 8 cycles per day and at two solids retention times (SRTs). Once each day, the test reactor was bioaugmented with Sphingobium sp. BiD32, a documented BPA-degrading culture. After bioaugmentation, BPA degradation (including both the dissolved and sorbed fractions) was 2-4 times higher in the test reactor than in a control reactor. Improved removal persisted for >5 cycles following bioaugmentation. By the last cycle of the day, enhanced BPA removal was lost, although it returned with the next bioaugmentation. A net loss of Sphingobium sp. BiD32 was observed in the reactors, supporting the original hypothesis that continuous bioaugmentation (rather than single-dose bioaugmentation) would be required to improve TOrCs removal during wastewater treatment. This study represents a first demonstration of a biologically based approach for enhanced TOrCs removal that both reduces concentrations in wastewater effluent and prevents transfer to biosolids.
Collapse
Affiliation(s)
- Nicolette A Zhou
- University of Washington , Department of Civil and Environmental Engineering; More Hall 201, Box 352700, Seattle, Washington 98195-2700, United States
| | - Heidi L Gough
- University of Washington , Department of Civil and Environmental Engineering; More Hall 201, Box 352700, Seattle, Washington 98195-2700, United States
| |
Collapse
|
11
|
Fujiwara H, Soda S, Fujita M, Ike M. Kinetics of bisphenol A degradation by Sphingomonas paucimobilis FJ-4. J Biosci Bioeng 2016; 122:341-4. [PMID: 27038671 DOI: 10.1016/j.jbiosc.2016.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/18/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
Abstract
A chemostat was operated to characterize degradation of bisphenol A by Sphingomonas paucimobilis FJ-4. The chemostat at 30°C was fed with a medium containing 150 mg L(-1) of BPA as the sole carbon and energy source. At the short cell retention time of 8 h, the bacterial cells were washed out from the chemostat. At long cell retention times of 12, 16, 24, and 48 h, steady-states of the bacterial growth on BPA degradation were achieved after a lag time of 16-57 h. A mathematical model was applied to evaluate the BPA degradation ability of strain FJ-4. The maximum specific degradation rate, the half saturation constant, the cell yield, and the specific decay rate were estimated respectively as 0.46 mg-BPA (mg-VSS h)(-1), 13.1 mg L(-1), 0.39 mg-VSS mg-BPA(-1), and 0.0014 h(-1).
Collapse
Affiliation(s)
- Hitoshi Fujiwara
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Soda
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masanori Fujita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Zhou NA, Kjeldal H, Gough HL, Nielsen JL. Identification of Putative Genes Involved in Bisphenol A Degradation Using Differential Protein Abundance Analysis of Sphingobium sp. BiD32. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12232-41. [PMID: 26390302 DOI: 10.1021/acs.est.5b02987] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Discharge of the endocrine disrupting compound bisphenol A (BPA) with wastewater treatment plant (WWTP) effluents into surface waters results in deleterious effects on aquatic life. Sphingobium sp. BiD32 was previously isolated from activated sludge based on its ability to degrade BPA. This study investigated BPA metabolism by Sphingobium sp. BiD32 using label-free quantitative proteomics. The genome of Sphingobium sp. BiD32 was sequenced to provide a species-specific platform for optimal protein identification. The bacterial proteomes of Sphingobium sp. BiD32 in the presence and absence of BPA were identified and quantified. A total of 2155 proteins were identified; 1174 of these proteins were quantified, and 184 of these proteins had a statistically significant change in abundance in response to the presence/absence of BPA (p ≤ 0.05). Proteins encoded by genes previously identified to be responsible for protocatechuate degradation were upregulated in the presence of BPA. The analysis of the metabolites from BPA degradation by Sphingobium sp. BiD32 detected a hydroxylated metabolite. A novel p-hydroxybenzoate hydroxylase enzyme detected by proteomics was implicated in the metabolic pathway associated with the detected metabolite. This enzyme is hypothesized to be involved in BPA degradation by Sphingobium sp. BiD32, and may serve as a future genetic marker for BPA degradation.
Collapse
Affiliation(s)
- Nicolette A Zhou
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
- Department of Civil and Environmental Engineering, University of Washington , More Hall 201 Box 352700, Seattle, Washington 98195-2700, United States
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Heidi L Gough
- Department of Civil and Environmental Engineering, University of Washington , More Hall 201 Box 352700, Seattle, Washington 98195-2700, United States
| | - Jeppe L Nielsen
- Department of Chemistry and Bioscience, Aalborg University , Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
13
|
Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp. Biodegradation 2015; 26:259-69. [PMID: 25929330 DOI: 10.1007/s10532-015-9732-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Heavy contamination of soil with crude oil has caused significant negative environmental impacts and presents substantial hazards to human health. To explore a highly efficient bioaugmentation strategy for these contaminations, experiments were conducted over 180 days in soil heavily contaminated with crude oil (50,000 mg kg(-1)), with four treatments comprised of Bacillus subtilis inoculation with no further inoculation (I), or reinoculation after 100 days with either B. subtilis (II), Acremonium sp.(III), or a mixture of both organisms (IV). The removal values of total petroleum hydrocarbons were 60.1 ± 2.0, 60.05 ± 3.0, 71.3 ± 5.2 and 74.2 ± 2.7 % for treatment (I-IV), respectively. Treatments (III-IV) significantly enhanced the soil bioremediation compared with treatments (I-II) (p < 0.05). Furthermore, significantly (p < 0.05) greater rates of degradation for petroleum hydrocarbon fractions were observed in treatments (III-IV) compared to treatments (I-II), and this was especially the case with the degradative rates for polycyclic aromatic hydrocarbons and crude oil heavy fractions. Dehydrogenase activity in treatment (III-IV) containing Acremonium sp. showed a constant increase until the end of experiments. Therefore reinoculation with pure fungus or fungal-bacterial consortium should be considered as an effective strategy in bioaugmentation for soil heavily contaminated with crude oil.
Collapse
|