1
|
Matsuura SI, Ikeda T, Chiba M, Yamaguchi A. Enhancing azo dye degradation using dual enzyme systems immobilized on a mesoporous silica scaffold. J Biosci Bioeng 2025:S1389-1723(25)00083-0. [PMID: 40263035 DOI: 10.1016/j.jbiosc.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Highly efficient degradation of the azo dye methyl red has been achieved through a coupled enzymatic reaction using mesoporous silica as an immobilization scaffold for two different enzymes. The dispersion of the non-immobilized free azoreductase (AzoR) and glucose dehydrogenase (GDH) in the reaction solution caused vigorous aggregation of these heterologous enzymes, resulting in their deactivation. In the present study, we aimed to overcome this limitation by fusing Si-tag, a silica-binding protein, to both enzymes and simultaneously immobilizing them on the surface of highly ordered pores of mesoporous silica. Consequently, the degradation ratio of methyl red significantly increased with immobilization on the mesoporous silica compared to that from immobilization on a non-porous silica support. However, the immobilization of the AzoR and GDH with and without the Si-tag, respectively, on silica markedly decreased the enzyme activity during the reusability test owing to the desorption of GDH involved in coenzyme regeneration. By contrast, the activities of the two enzymes immobilized on the mesoporous silica surface markedly increased upon fusion of both with Si-tag. Furthermore, these dual enzyme-mesoporous silica composites prepared at high salt and surfactant concentrations exhibited higher durability and repeatability during methyl red degradation than when using non-porous silica.
Collapse
Affiliation(s)
- Shun-Ichi Matsuura
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan.
| | - Takeshi Ikeda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Manami Chiba
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan
| | - Aritomo Yamaguchi
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan
| |
Collapse
|
2
|
Lang W, Yuguchi Y, Ke CY, Chang TW, Kumagai Y, Kaenying W, Tagami T, Li F, Yamamoto T, Tajima K, Takahashi K, Isono T, Satoh T, Kimura A. Molecular structure of enzyme-synthesized amylose-like chimeric isomaltomegalosaccharides and their encapsulation of the sulfasalazine prodrug. Carbohydr Polym 2025; 349:122956. [PMID: 39638501 DOI: 10.1016/j.carbpol.2024.122956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
The glucoconjugation between linear chimeric α-(1→4)- and α-(1→6)-glucosidic segments exhibits functional properties throughout their structure. In this study, we enzymatically synthesized three new series of chimeric nonreducing isomaltomegalosaccharides (N-IMS-n/m), each featuring a constant n, α-(1→4)-segment (average degree of polymerization, DP = 22-25) at the nonreducing terminal, and varying m, α-(1→6)-main chain lengths (DP = 7-53). The synthesized compounds-N-IMS-25/7, N-IMS-24/19, and N-IMS-22/53-were compared to amylose (DP = 28) and previous samples of N-IMS-15/35 and D-IMS-28.3/13/3. D-IMS refers to a sugar with double α-(1→4)-segments at both the nonreducing and reducing ends. The binding affinity to the aromatic prodrug sulfasalazine (SZ) was assessed using a phase-solubility assay, followed by freeze-thawing. Wide-angle X-ray scattering revealed B-type crystalline patterns in bulk, and the crystallinity generally reduced with the increasing α-(1→6) segment. Interestingly, the B-type crystal structure was maintained even after SZ encapsulation, in contrast to the more common transition to V-type crystals upon drug encapsulation. Multi-angle dynamic light scattering and small-angle X-ray scattering revealed an intricate solution-state morphology, both in the absence and presence of SZ. Glucoconjugation aids in maintaining structural organization and integrity, even after the incorporation of the large SZ molecule.
Collapse
Affiliation(s)
- Weeranuch Lang
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Yoshiaki Yuguchi
- Faculty of Engineering, Osaka Electro-Communication University, Osaka 572-8530, Japan
| | - Chun-Yao Ke
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuya Kumagai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Wilaiwan Kaenying
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Bureau of Laboratory Quality Standards, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Feng Li
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; ICReDD List-PF, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan; Department of Chemical & Materials Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
3
|
Lang W, Tagami T, Kumagai Y, Tanaka S, Kang HJ, Okuyama M, Saburi W, Mori H, Hira T, Lee C, Isono T, Satoh T, Hara H, Kurokawa T, Sakairi N, Yuguchi Y, Kimura A. Tunable structure of chimeric isomaltomegalosaccharides with double α-(1 → 4)-glucosyl chains enhances the solubility of water-insoluble bioactive compounds. Carbohydr Polym 2023; 319:121185. [PMID: 37567719 DOI: 10.1016/j.carbpol.2023.121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Isomaltomegalosaccharides with α-(1 → 4) and α-(1 → 6)-segments solubilize water-insoluble ligands since the former complexes with the ligand and the latter solubilizes the complex. Previously, we enzymatically synthesized isomaltomegalosaccharide with a single α-(1 → 4)-segment at the reducing end (S-IMS) by dextran dextrinase (DDase), but the chain length [average degree of polymerization (DP) ≤ 9] was insufficient for strong encapsulation. We hypothesized that the conjugation of longer α-(1 → 4)-segment afforded the promising function although DDase is incapable to do so. In this study, the cyclodextrin glucanotransferase-catalyzed coupling reaction of α-cyclodextrin to S-IMS synthesized a new α-(1 → 4)-segment at the nonreducing end (N-4S) of S-IMS to form D-IMS [IMS harboring double α-(1 → 4)-segments]. The length of N-4S was modulated by the ratio between α-cyclodextrin and S-IMS, generating N-4Ss with DPs of 7-50. Based on phase-solubility analysis, D-IMS-28.3/13/3 bearing amylose-like helical N-4S with DP of 28.3 displayed a water-soluble complex with aromatic drugs and curcumin. Small-angle X-ray scattering revealed the chain adapted to rigid in solution in which the radius of gyration was estimated to 2.4 nm. Furthermore, D-IMS with short N-4S solubilized flavonoids of less-soluble multifunctional substances. In our research, enzyme-generated functional biomaterials from DDase were developed to maximize the hydrophobic binding efficacy towards water-insoluble bioactive compounds.
Collapse
Affiliation(s)
- Weeranuch Lang
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuya Kumagai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Seiya Tanaka
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hye-Jin Kang
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Chaehun Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Hiroshi Hara
- Department of Food Science and Human Nutrition, Fuji Women's University, Ishikari 061-3204, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nobuo Sakairi
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshiaki Yuguchi
- Faculty of Engineering, Osaka Electro-Communication University, Osaka 572-8530, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
4
|
Liu Y, Wu Y, Ji H, Li X, Jin Z, Svensson B, Bai Y. Cost-effective and controllable synthesis of isomalto/malto-polysaccharides from β-cyclodextrin by combined action of cyclodextrinase and 4,6-α-glucanotransferase GtfB. Carbohydr Polym 2023; 310:120716. [PMID: 36925243 DOI: 10.1016/j.carbpol.2023.120716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Isomalto/malto-polysaccharides (IMMPs) derived from malto-oligosaccharides such as maltoheptaose (G7) are elongated non-branched gluco-oligosaccharides produced by 4,6-α-glucanotransferase (GtfB). However, G7 is expensive and cumbersome to produce commercially. In this study, a cost-effective enzymatic process for IMMPs synthesis is developed that utilizes the combined action of cyclodextrinase from Palaeococcus pacificus (PpCD) and GtfB-ΔN from Limosilactobacillus reuteri 121 to convert β-cyclodextrin into IMMPs with a maximum yield (16.19 %, w/w). The purified IMMPs synthesized by simultaneous or sequential treatments, designated as IMMP-Sim and IMMP-Seq, possess relatively high contents of α-(1 → 6) glucosidic linkages. By controlling the release of G7 and smaller malto-oligosaccharides by PpCD, IMMP-Seq was obtained of DP varying from 12.9 to 29.5. Enzymatic fingerprinting revealed different linkage-type distribution of α-(1 → 6) linked segments with α-(1 → 4) segments embedded at the reducing end and middle part. The proportion of α-(1 → 6) segments containing the non-reducing end was 56.76 % for IMMP-Sim but 28.98 % for IMMP-Seq. Addition of G3 or G4 as specific acceptors resulted in IMMPs exhibiting low polydispersity. This procedure can be applied as a novel bioprocess that does not require costy high-purity malto-oligosaccharides and with control of the average DP of IMMPs by adjusting the substrate composition.
Collapse
Affiliation(s)
- Yixi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yazhen Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China; Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Lang W, Tagami T, Kang HJ, Okuyama M, Sakairi N, Kimura A. Partial depolymerization of tamarind seed xyloglucan and its functionality toward enhancing the solubility of curcumin. Carbohydr Polym 2023; 307:120629. [PMID: 36781280 DOI: 10.1016/j.carbpol.2023.120629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Polysaccharides of tamarind seed, a byproduct of the tamarind pulp industry, displayed a potential solubility improvement of lipophilic bioactive molecules but their textural characteristics hinder the dietary formulation. In contrast, the commonly available xyloglucan oligosaccharides (XOSs) with degrees of polymerization (DPs) of 7, 8, and 9 were too short to maintain their ability. The binding capacity of the between sizes is unknown due to a lack of appropriate preparation. We prepared xyloglucan megalosaccharides (XMSs) by partial depolymerization, where term megalosaccharide (MS) defines the middle chain-length saccharide between DPs 10 and 100. Digestion with fungal cellulase enabled reproducible active XMSs. Further identification of pure XMS segments indicated that XMS-B has an average DP of 17.2 (Gal3Glc8Xyl6) with a branched dimer of XOS 8 and 9 and was free of side-chain arabinose, the residue influencing high viscosity. Curcumin, a bioactive pigment, has poor bioavailability because of its water insolubility. XMSs with average DPs of 15.4-24.3 have similarly sufficient capacities to solubilize curcumin. The solubility of curcumin was improved 180-fold by the addition of 50 %, w/v, XMSs, which yielded a clear yellow liquid. Our findings indicated that XMSs were a promising added-value agent in foods and pharmaceuticals for the oral intake of curcumin.
Collapse
Affiliation(s)
- Weeranuch Lang
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Takayoshi Tagami
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Hye-Jin Kang
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Masayuki Okuyama
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Nobuo Sakairi
- Division of Environmental Materials Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Atsuo Kimura
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
6
|
Lang W, Sirisansaneeyakul S, Tagami T, Kang HJ, Okuyama M, Sakairi N, Kimura A. Nonreducing terminal chimeric isomaltomegalosaccharide and its integration with azoreductase for the remediation of soil-contaminated lipophilic azo dyes. Carbohydr Polym 2023; 305:120565. [PMID: 36737177 DOI: 10.1016/j.carbpol.2023.120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Lipophilic azo dyes are practically water-insoluble, and their dissolution by organic solvents and surfactants is harmful to biological treatment with living cells and enzymes. This study aimed to evaluate the feasibility of a newly synthesized nonreducing terminal chimeric isomaltomegalosaccharide (N-IMS) as a nontoxic solubilizer of four simulated lipophilic azo dye wastes for enzymatic degradation. N-IMS bearing a helical α-(1 → 4)-glucosidic segment derived from a donor substrate α-cyclodextrin was produced by a coupling reaction of cyclodextrin glucanotransferase. Inclusion complexing by N-IMS overcame the solubility issue with equilibrium constants of 1786-242 M-1 (methyl yellow > ethyl red > methyl red > azo violet). Circular dichroism spectra revealed the axial alignment of the aromatic rings in the N-IMS cavity, while UV-visible absorption quenching revealed that the azo bond of methyl yellow was particularly induced. Desorption of the dyes from acidic and neutral soils was specific to aqueous organic over alkali extraction. The dissolution kinetics of the incorporated dyes followed a sigmoid pattern facilitating the subsequent decolorization process with azoreductase. It was demonstrated that after soil extraction, the solid dyes dissolved with N-IMS assistance and spontaneously digested by coupled azoreductase/glucose dehydrogenase (for a cofactor regeneration system) with the liberation of the corresponding aromatic amine.
Collapse
Affiliation(s)
- Weeranuch Lang
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Sarote Sirisansaneeyakul
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.
| | - Takayoshi Tagami
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Hye-Jin Kang
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Masayuki Okuyama
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Nobuo Sakairi
- Division of Environmental Materials Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Atsuo Kimura
- Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
7
|
Wu Y, Li X, Jin Z, Svensson B, Bai Y. A practical approach to producing the single-arm linear dextrin, a chimeric glucosaccharide containing an (α-1 → 4) linked portion at the nonreducing end of an (α-1 → 6) glucochain. Carbohydr Polym 2023; 305:120520. [PMID: 36737184 DOI: 10.1016/j.carbpol.2022.120520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
How to improve the solubility of linear dextrins (LD) and retain their characteristic helix amphiphilic cavities with flexible embedding capability, is a question worth exploring without adding new chemical groups. The strategy presented in this study is to attach a highly flexible (α-1 → 6) glucochain at the reducing end of LD by preparing a new type of dextrin, referred to as single-arm linear dextrin (SLD). In the actual synthesis, an (α-1 → 6) linked oligosaccharide of DP¯ 10.7 (PDI = 1.28) was formed by extension of glucose units onto sucrose (2 M) by using L940W mutant of the glucansucrase GTF180-ΔN firstly. Next using γ-CD as glucosylation donor γ-CGTase extended this (α-1 → 6) glucochain with (α-1 → 4) bonds. SLD is a chimeric glucosaccharide comprising an (α-1 → 4) linked part (DP¯ 10.5) attached to the nonreducing end of an (α-1 → 6) glucochain as verified by enzyme fingerprinting and 1H NMR. Furthermore, SLD was validated to show greatly improved solubility and dispersibility of resveratrol in water, as indicated by a 3.12-fold enhancement over the solubility in the presence of 0.014 M SLD. This study provided a new strategy for solving the solubility problem of LD and opens possibilities for new design of the fine structure of starch-like materials.
Collapse
Affiliation(s)
- Yazhen Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Research Laboratory for Starch Related Enzyme, Jiangnan University, Wuxi, Jiangsu 214122, China; Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Lang W, Mondol D, Trakooncharoenvit A, Tagami T, Okuyama M, Hira T, Sakairi N, Kimura A. Formulation and evaluation of a novel megalomeric microemulsion from tamarind seed xyloglucan-megalosaccharides for improved high-dose quercetin delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Yang W, Su L, Wang L, Wu J, Chen S. Alpha-glucanotransferase from the glycoside hydrolase family synthesizes α(1–6)-linked products from starch: Features and synthesis pathways of the products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Physicochemical functionality of chimeric isomaltomegalosaccharides with α-(1 → 4)-glucosidic segments of various lengths. Carbohydr Polym 2022; 291:119562. [DOI: 10.1016/j.carbpol.2022.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022]
|
11
|
Xue N, Wang Y, Li X, Bai Y. Enzymatic synthesis, structure of isomalto/malto-polysaccharides from linear dextrins prepared by retrogradation. Carbohydr Polym 2022; 288:119350. [PMID: 35450622 DOI: 10.1016/j.carbpol.2022.119350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Abstract
Isomalto/malto-polysaccharides (IMMPs) with degree of polymerization (DP) 10-100 have novel potential applications, including enhanced solubility and anti-inflammatory. However, there are minimal synthetic methods for preparing IMMPs with a relatively higher DP, which is due to the lack of suitable molecular weight linear dextrins (I-LDs). The existing I-LDs preparation methods have disadvantages, such as low yield and uncontrollable molecular weight. Therefore, this study proposes a method for preparing soluble linear dextrins (S-LDs, Mw = 2.1 kDa) by low-temperature retrogradation from debranched waxy corn starch (Mw = 3.0 kDa). S-LDs reacted with 4,6-α-glucanotransferase GtfB-ΔN from Limosilactobacillus reuteri 121 to yield IMMPs with 12.3 kDa Mw and 83.8% α1 → 6 linkages content. Process monitoring revealed the synthesis mechanism and a detailed reaction process. Finally, IMMPs were identified by enzyme fingerprinting as α1 → 6 chains with α1 → 4 fragments inlaid at the reducing, non-reducing end, and middle part. This study provides a new synthesis method and more structural information for IMMPs.
Collapse
Affiliation(s)
- Naixiang Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
A practical approach to producing isomaltomegalosaccharide using dextran dextrinase from Gluconobacter oxydans ATCC 11894. Appl Microbiol Biotechnol 2022; 106:689-698. [DOI: 10.1007/s00253-021-11753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
|
13
|
Xue N, Svensson B, Bai Y. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1 → 6 linkages - A review. Carbohydr Polym 2022; 275:118705. [PMID: 34742430 DOI: 10.1016/j.carbpol.2021.118705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/02/2022]
Abstract
A variety of glucosaccharides composed of glucosyl residues can be classified into α- and β-type and have wide application in food and medicine areas. Among these glucosaccharides, β-type, such as cellulose and α-type, such as starch and starch derivatives, both contain 1 → 4 linkages and are well studied. Notably, in past decades also α1 → 6 glucosaccharides obtained increasing attention for unique physiochemical and biological properties. Especially in recent years, α1 → 6 glucosaccharides of different molecular weight distribution have been created and proved to be functional. However, compared to β- type and α1 → 4 glucosaccharides, only few articles provide a systematic overview of α1 → 6 glucosaccharides. This motivated, the present first comprehensive review on structure, function and synthesis of these α1 → 6 glucosaccharides, aiming both at improving understanding of traditional α1 → 6 glucosaccharides, such as isomaltose, isomaltooligosaccharides and dextrans, and to draw the attention to newly explored α1 → 6 glucosaccharides and their derivatives, such as cycloisomaltooligosaccharides, isomaltomegalosaccharides, and isomalto/malto-polysaccharides.
Collapse
Affiliation(s)
- Naixiang Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Zhao L, Sun Q, Pu H, Tang P, Liu Y, Li M, Ren X, Li H. Experimental and computer simulation investigations of ethyl red with modified β-cyclodextrins: Inclusion mechanism and structure characterization. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
16
|
Hara H, Kume S, Iizuka T, Fujimoto Y, Kimura A. Enzymatically synthesized megalo-type isomaltosaccharides enhance the barrier function of the tight junction in the intestinal epithelium. Biosci Biotechnol Biochem 2017; 82:629-635. [PMID: 29173029 DOI: 10.1080/09168451.2017.1398065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Megalo-type isomaltosaccharides are an enzymatically synthesized foodstuff produced by transglucosylation from maltodextrin, and they contain a mid-chain length polymer of D-glucose with α-1,6-glycoside linkages. The injection of a solution of megalo-type isomaltosaccharides (1-4%(w/v), average DP = 12.6), but not oligo-type isomaltosaccharides (average DP = 3.3), into the intestinal lumen dose-dependently reduced the transport rates of tight junction permeable markers in a ligated loop of the anesthetized rat jejunum. Application of the megalosaccharide also suppressed the transport of tight junction markers and enhanced transepithelial electrical resistance (TEER) in Caco-2 cell monolayers. Cholesterol sequestration by methyl-β-cyclodextrin in the Caco-2 monolayers abolished the effect of megalosaccharide. Treatment with anti-caveolin-1 and a caveolae inhibitor, but not clathrin-dependent endocytosis and macropinocytosis inhibitors, suppressed the increase in TEER. These results indicate that isomaltosaccharides promote the barrier function of tight junctions in the intestinal epithelium in a chain-length dependent manner and that caveolae play a role in the effect.
Collapse
Affiliation(s)
- Hiroshi Hara
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Shunsuke Kume
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | | | | | - Atsuo Kimura
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
17
|
García A, Leonardi D, Lamas MC. Promising applications in drug delivery systems of a novel β-cyclodextrin derivative obtained by green synthesis. Bioorg Med Chem Lett 2016; 26:602-608. [DOI: 10.1016/j.bmcl.2015.11.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
|
18
|
Zhao J, Chi Y, Liu F, Jia D, Yao K. Effects of Two Surfactants and Beta-Cyclodextrin on Beta-Cypermethrin Degradation by Bacillus licheniformis B-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10729-10735. [PMID: 26615963 DOI: 10.1021/acs.jafc.5b04485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The biodegradation efficiency of beta-cypermethrin (β-CY) is low especially at high concentrations mainly due to poor contact between this hydrophobic pesticide and microbial cells. In this study, the effects of two biodegradable surfactants (Tween-80 and Brij-35) and β-cyclodextrin (β-CD) on the growth and cell surface hydrophobicity (CSH) of Bacillus licheniformis B-1 were studied. Furthermore, their effects on the solubility, biosorption, and degradation of β-CY were investigated. The results showed that Tween-80 could slightly promote the growth of the strain while Brij-35 and β-CD exhibited little effect on its growth. The CSH of strain B-1 and the solubility of β-CY were obviously changed by using Tween-80 and Brij-35. The surfactants and β-CD could enhance β-CY biosorption and degradation by the strain, and the highest degradation was obtained in the presence of Brij-35. When the surfactant or β-CD concentration was 2.4 g/L, the degradation rate of β-CY in Brij-35, Tween-80, and β-CD treatments was 89.4%, 50.5%, and 48.1%, respectively. The half-life of β-CY by using Brij-35 was shortened by 69.1 h. Beta-CY content in the soil with both strain B-1 and Brij-35 decreased from 22.29 mg/kg to 4.41 mg/kg after incubation for 22 d. This work can provide a promising approach for the efficient degradation of pyrethroid pesticides by microorganisms.
Collapse
Affiliation(s)
- Jiayuan Zhao
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Yuanlong Chi
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Fangfang Liu
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Dongying Jia
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| | - Kai Yao
- College of Light Industry, Textile & Food Engineering, Sichuan University , 610065, Chengdu, Sichuan, P. R. China
| |
Collapse
|