1
|
Bulkan G, Sitaresmi S, Yudhanti GT, Millati R, Wikandari R, Taherzadeh MJ. Enhancing or Inhibitory Effect of Fruit or Vegetable Bioactive Compound on Aspergillus niger and A. oryzae. J Fungi (Basel) 2021; 8:jof8010012. [PMID: 35049952 PMCID: PMC8780140 DOI: 10.3390/jof8010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Fruit and vegetable processing wastes are global challenges but also suitable sources with a variety of nutrients for different fermentative products using bacteria, yeast or fungi. The interaction of microorganisms with bioactive compounds in fruit waste can have inhibitory or enhancing effect on microbial growth. In this study, the antimicrobial effect of 10 bioactive compounds, including octanol, ellagic acid, (−)-epicatechin, quercetin, betanin, ascorbic acid, limonene, hexanal, car-3-ene, and myrcene in the range of 0–240 mg/L on filamentous fungi Aspergillus oryzae and Aspergillus niger were investigated. These fungi were both found to be resistant to all compounds except octanol, which can be used as a natural antifungal agent, specifically against A. oryzae and A. niger contamination. On the contrary, polyphenols (quercetin and ellagic acid), ascorbic acid, and hexanal enhanced A. niger biomass yield 28%, 7.8%, 16%, and 6%, respectively. Furthermore, 240 mg/L car-3-ene was found to increase A. oryzae biomass yield 8%, while a 9% decrease was observed at lower concentration, 24 mg/L. Similarly, up to 17% decrease of biomass yield was observed from betanin and myrcene. The resistant nature of the fungi against FPW bioactive compounds shows the potential of these fungi for further application in waste valorization.
Collapse
Affiliation(s)
- Gülru Bulkan
- Swedish Centre for Resource Recovery, University of Borås, 50190 Boras, Sweden;
- Correspondence:
| | - Sitaresmi Sitaresmi
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.S.); (G.T.Y.); (R.M.); (R.W.)
| | - Gerarda Tania Yudhanti
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.S.); (G.T.Y.); (R.M.); (R.W.)
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.S.); (G.T.Y.); (R.M.); (R.W.)
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (S.S.); (G.T.Y.); (R.M.); (R.W.)
| | | |
Collapse
|
2
|
Chandolias K, Sugianto LAR, Izazi N, Millati R, Wikandari R, Ylitervo P, Niklasson C, Taherzadeh MJ. Protective effect of a reverse membrane bioreactor against toluene and naphthalene in anaerobic digestion. Biotechnol Appl Biochem 2021; 69:1267-1274. [PMID: 34196033 DOI: 10.1002/bab.2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Raw syngas contains tar contaminants including toluene and naphthalene, which inhibit its conversion to methane. Cell encasement in a hydrophilic reverse membrane bioreactor (RMBR) could protect the cells from hydrophobic contaminants. This study aimed to investigate the inhibition of toluene and naphthalene and the effect of using RMBR. In this work, toluene and naphthalene were added at concentrations of 0.5-1.0 and 0.1-0.2 g/L in batch operation. In continuous operation, concentration of 0-6.44 g/L for toluene and 0-1.28 g/L for naphthalene were studied. The results showed that no inhibition was observed in batch operation for toluene and naphthalene at concentrations up to 1 and 0.2 g/L, respectively. In continuous operation of free cell bioreactors (FCBRs), inhibition of toluene and naphthalene started at 2.05 and 0.63 g/L, respectively. When they were present simultaneously, inhibition of toluene and naphthalene occurred at concentrations of 3.14 and 0.63 g/L, respectively. In continuous RMBRs, no inhibition for toluene and less inhibition for naphthalene were observed, resulting in higher methane production from RMBR than that of FCBR. These results indicated that RMBR system gave a better protection effect against inhibitors compared with FCBR.
Collapse
Affiliation(s)
- Konstantinos Chandolias
- Swedish Center for Resource Recovery, University of Borås, Borås, Sweden.,Energy and Resources, Research Institutes of Sweden, RISE AB, Borås, Sweden
| | | | - Nurina Izazi
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Päivi Ylitervo
- Swedish Center for Resource Recovery, University of Borås, Borås, Sweden
| | - Claes Niklasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | |
Collapse
|
3
|
Hunter SM, Blanco E, Borrion A. Expanding the anaerobic digestion map: A review of intermediates in the digestion of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144265. [PMID: 33422959 DOI: 10.1016/j.scitotenv.2020.144265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is a promising technology as a renewable source of energy products, but these products have low economic value and process control is challenging. Identifying intermediates formed throughout the process could enhance understanding and offer opportunities for improved monitoring, control, and valorisation. In this review, intermediates present in the anaerobic digestion process are identified and discussed, including the following: volatile fatty acids, carboxylic acid, amino acids, furans, terpenes and phytochemicals. The key limitations associated with exploiting these intermediates are also addressed including challenging mixed cultures of microbiology, complex feedstocks, and difficult extraction and separation techniques.
Collapse
Affiliation(s)
- Sarah M Hunter
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Edgar Blanco
- Anaero Technology Limited, Cowley Road, Cambridge, UK
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK.
| |
Collapse
|
4
|
Semi-continuous production of volatile fatty acids from citrus waste using membrane bioreactors. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Potential Recovery of Biogas from Lime Waste after Juice Extraction Using Solid–Liquid Extraction Process. RECYCLING 2020. [DOI: 10.3390/recycling5020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A large percentage of fruit mass is left as waste after the consumption or processing of citrus fruits. The inappropriate disposal of these wastes directly leads to environmental and economic concerns. However, scientific investigations have demonstrated that citrus wastes, due to their high concentration in soluble sugars, can be a source of cellulosic biomass for biogas recovery. d-Limonene, the major constituent of essential oils present in citrus wastes, is however, known to hamper the conversion process of citrus wastes to biogas. With the aim of improving biogas production, a study on the pre-treatment of lime fruit waste to reduce the effect of d-limonene was carried out. The pre-treatment process was done using hexane as the solvent in a solid–liquid extraction process to leach out essential oils from lime wastes. Solid–liquid extraction was carried out in a Soxhlet apparatus with pulverized lime waste at 68 °C for 180 min; then the residue was washed and aerated. From the pre-treatment procedure, 21.3 mL of essential oil was recovered, indicating an oil yield of 3.8%. Substrates of untreated and pre-treated lime waste were digested in batches under mesophilic conditions for a period of 28 days. The biogas yield of each substrate was evaluated and the results compared. Substrate of untreated lime waste yielded 66.9 mL/g VS. biogas after the digestion period. In comparison, pre-treated lime waste gave a better biogas yield of 93.2 mL/g VS. after 28 days, indicating an improvement in biogas yield by about 40%. The findings of this research show that there is a viable recovery option of biogas from lime waste, and recommendations of this research can be further explored to develop an economically viable biogas plant process that efficiently utilizes citrus wastes. This would boost the drive of government towards alternative sources of energy and also fulfil two of the sustainable development goals presented by the United Nations.
Collapse
|
6
|
Eryildiz B, Taherzadeh MJ. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 302:122800. [PMID: 31986336 DOI: 10.1016/j.biortech.2020.122800] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Citrus waste from e.g., juice production is a potential substrate for anaerobic digestion (AD). However, due to the toxic citrus peel oil content, citrus waste has several challenges in biogas production. Hence, volatile fatty acids (VFAs) are very interesting intermediate products of AD. This paper was aimed to investigate VFA production from citrus wastes by boosting its production and inhibiting methane formation. Therefore, the effects of inoculum to substrate ratio (ISR), O2 presence, pH, and inhibitor for methanogens, in VFA production from citrus waste through acidification process were studied. The addition of 2 g/L methanogens inhibitor and the presence of O2 in the reactors were able to reduce methane production. The highest yield of VFA (0.793 g VFA/g VSadded) was achieved at controlled pH at 6 and low substrate loading (ISR 1:1). Acetic acid (32%), caproic acid (21%), and butyric acid (15%) dominate the VFA composition in this condition.
Collapse
Affiliation(s)
- Bahriye Eryildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469 Istanbul, Turkey; Swedish Centre for Resource Recovery, University of Borås, SE 501-90 Borås, Sweden
| | | |
Collapse
|
7
|
Wikandari R, Millati R, Taherzadeh MJ, Niklasson C. Effect of Effluent Recirculation on Biogas Production Using Two-stage Anaerobic Digestion of Citrus Waste. Molecules 2018; 23:molecules23123380. [PMID: 30572677 PMCID: PMC6320847 DOI: 10.3390/molecules23123380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 12/27/2022] Open
Abstract
Citrus waste is a promising potential feedstock for anaerobic digestion, yet the presence of inhibitors such as d-limonene is known to limit the process. Effluent recirculation has been proven to increase methane yield in a semi-continuous process for recalcitrant material, but it has never been applied to toxic materials. This study was aimed to investigate the effect of recirculation on biogas production from citrus waste as toxic feedstock in two-stage anaerobic digestion. The first digestion was carried out in a stirred tank reactor (STR). The effluent from the first-stage was filtered using a rotary drum filter to separate the solid and the liquid phase. The solid phase, rich in hydrophobic D-limonene, was discarded, and the liquid phase containing less D-limonene was fed into the second digester in an up-flow anaerobic sludge bed (UASB) reactor. A high organic loading rate (OLR 5 g VS/(L·day)) of citrus waste was fed into the first-stage reactor every day. The effluent of the first-stage was then fed into the second-stage reactor. This experiment was run for 120 days. A reactor configuration without recirculation was used as control. The result shows that the reactor with effluent recirculation produced a higher methane yield (160⁻203 NmL/g·VS) compared to that without recirculation (66⁻113 NmL/g·VS). More stable performance was also observed in the reactor with recirculation as shown by the pH of 5⁻6, while without recirculation the pH dropped to the range of 3.7⁻4.7. The VS reduction for the reactor with recirculation was 33⁻35% higher than that of the control without recirculation. Recirculation might affect the hydrolysis-acidogenesis process by regulating pH in the first-stage and removing most of the D-limonene content from the substrate through filtration.
Collapse
Affiliation(s)
- Rachma Wikandari
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | | | - Claes Niklasson
- Department of Chemical Reaction Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden.
| |
Collapse
|
8
|
Semi-Continuous Reverse Membrane Bioreactor in Two-Stage Anaerobic Digestion of Citrus Waste. MATERIALS 2018; 11:ma11081341. [PMID: 30072666 PMCID: PMC6119998 DOI: 10.3390/ma11081341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
The presence of an antimicrobial compound called D-Limonene in citrus waste inhibits methane production from such waste in anaerobic digestion. In this work, a two-stage anaerobic digestion method is developed using reverse membrane bioreactors (rMBRs) containing cells encased in hydrophilic membranes. The purpose of encasement is to retain a high cell concentration inside the bioreactor. The effectiveness of rMBRs in reducing cell washout is evaluated. Three different system configurations, comprising rMBRs, freely suspended cells (FCs), and a combination of both (abbreviated to rMBR–FCs), are incubated at three different organic loading rates (OLRs) each, namely 0.6, 1.2, and 3.6 g COD/(L cycle). Incubation lasts for eight feeding cycles at 55 °C. Methane yield and biogas composition results show that rMBRs perform better than rMBR–FCs and FCs at all three OLRs. Volatile fatty acid profiles and H2 production show that the reactors are working properly and no upset occurs. Additionally, a short digestion time of 4 days can be achieved using the rMBR configuration in this study.
Collapse
|
9
|
Dasa KT, Westman SY, Millati R, Cahyanto MN, Taherzadeh MJ, Niklasson C. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7263974. [PMID: 27699172 PMCID: PMC5031908 DOI: 10.1155/2016/7263974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022]
Abstract
Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested.
Collapse
Affiliation(s)
- Kris Triwulan Dasa
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Supansa Y. Westman
- Swedish Center for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Muhammad Nur Cahyanto
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Claes Niklasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
10
|
Reverse membrane bioreactor: Introduction to a new technology for biofuel production. Biotechnol Adv 2016; 34:954-975. [DOI: 10.1016/j.biotechadv.2016.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/08/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022]
|
11
|
|
12
|
Akinbomi J, Wikandari R, Taherzadeh MJ. Enhanced Fermentative Hydrogen and Methane Production from an Inhibitory Fruit-Flavored Medium with Membrane-Encapsulated Cells. MEMBRANES 2015; 5:616-31. [PMID: 26501329 PMCID: PMC4704002 DOI: 10.3390/membranes5040616] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Abstract
This study focused on the possibility of improving fermentative hydrogen and methane production from an inhibitory fruit-flavored medium using polyvinylidene fluoride (PVDF) membrane-encapsulated cells. Hexanal, myrcene, and octanol, which are naturally produced in fruits such as apple, grape, mango, orange, strawberry, and plum, were investigated. Batch and semi-continuous fermentation processes at 55 °C were carried out. Presence of 5 g/L of myrcene, octanol, and hexanal resulted in no methane formation by fermenting bacteria, while encapsulated cells in the membranes resulted in successful fermentation with 182, 111, and 150 mL/g COD of methane, respectively. The flavor inhibitions were not serious on hydrogen-producing bacteria. With free cells in the presence of 5 g/L (final concentration) of hexanal-, myrcene-, and octanol-flavored media, average daily yields of 68, 133, and 88 mL/g COD of hydrogen, respectively, were obtained. However, cell encapsulation further improved these hydrogen yields to 189, 179, and 198 mL/g COD. The results from this study indicate that the yields of fermentative hydrogen and methane productions from an inhibitory medium could be improved using encapsulated cells.
Collapse
Affiliation(s)
- Julius Akinbomi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden.
| | - Rachman Wikandari
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden.
| | | |
Collapse
|
13
|
Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes. ENERGIES 2015. [DOI: 10.3390/en8054253] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Wikandari R, Millati R, Cahyanto MN, Taherzadeh MJ. Biogas production from citrus waste by membrane bioreactor. MEMBRANES 2014; 4:596-607. [PMID: 25167328 PMCID: PMC4194050 DOI: 10.3390/membranes4030596] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/28/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022]
Abstract
Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF) membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR), the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR) was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.
Collapse
Affiliation(s)
- Rachma Wikandari
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 1, Borås 50190, Sweden.
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia.
| | - Muhammad Nur Cahyanto
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia.
| | - Mohammad J Taherzadeh
- Swedish Centre for Resource Recovery, University of Borås, Allégatan 1, Borås 50190, Sweden.
| |
Collapse
|