1
|
Du J, Hu S, Dong J, Wu R, Yu J, Yin H. Exploring the factors that affect the themostability of barley limit dextrinase - Inhibitor complex. J Mol Graph Model 2021; 109:108043. [PMID: 34649145 DOI: 10.1016/j.jmgm.2021.108043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Barley Limit dextrinase (Hordeum vulgare HvLD) is the unique endogenous starch-debranching enzyme, determining the production of a high degree of fermentation. The activity of HvLD is regulated by an endogenous LD inhibitor protein (LDI). In beer production, free LD is easy to inactivate in mashing process under the condition of high temperature. The binding of LD with LDI protects it against heat inactivation. Exploring the factors affecting the themostability of HvLD-LDI complex is important for beer production. In this work, the themostability of HvLD-LDI complex at different NaCl concentrations and temperatures were explored by molecular dynamics simulation and binding free energy calculation. In NaCl solution, the complex exhibits higher conformational stability at 343 K and 363 K than those in pure water. Root mean square fluctuation (RMSF) analysis identified the thermal sensitive regions of HvLD and LDI. The binding free energy results suggest that the LD-LDI complex is more stable in NaCl solution than those in pure water at high temperature. The residues with high contribution to the complex were identified. The structural and dynamic details will help us to understand the driving forces that lead to the themostability of HvLD-LDI complex at different temperatures and different salt concentrations, which will facilitate the optimization conditions of beer production for maintaining the thermal stability and activity of HvLD.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China; Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China.
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| | - Ruihan Wu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| |
Collapse
|
2
|
Li C, Dong G, Bian M, Liu X, Gong J, Hao J, Wang W, Li K, Ou W, Xia T. Brewing rich 2-phenylethanol beer from cassava and its producing metabolisms in yeast. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4050-4058. [PMID: 33349937 DOI: 10.1002/jsfa.11040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cassava is rich in nutrition and has high edible value, but the development of the cassava industry is limited by the traditional low added value processing and utilization mode. In this study, cassava tuber was used as beer adjunct to develop a complete set of fermentation technology for manufacturing cassava beer. RESULTS The activities of transaminase, phenylpyruvate decarboxylase and dehydrogenase in 2-phenylethanol Ehrlich biosynthesis pathway of Saccharomyces cerevisiae were higher in cassava beer than that of malt beer. Aminotransferase ARO9 gene and phenylpyruvate decarboxylase ARO10 gene were up-regulated in the late stage of fermentation, which indicated that they were the main regulated genes of 2-phenylethanol Ehrlich pathway with phenylalanine as substrate in cassava beer preparation. CONCLUSIONS Compared with traditional wheat beer, cassava beer was similar in the content of nutrition elements, diacetyl, total acid, alcohol and carbon dioxide, but has the characteristics of fresh fragrance and better taste. The hydrocyanic acid contained in cassava root tubes was catabolized during fermentation and compliant with the safety standard of beverage. Further study found that the content of 2-phenylethanol in cassava beer increased significantly, which gave cassava beer a unique elegant and delicate rose flavor. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Can Li
- School of Bioengineering, Qilu University of Technology, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| | - Geyu Dong
- School of Bioengineering, Qilu University of Technology, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| | - Meng Bian
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Xinli Liu
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Jing Gong
- TsingTao Brewery (Jinan) Co. LTD, Jinan, China
| | - Jingxin Hao
- TsingTao Brewery (Jinan) Co. LTD, Jinan, China
| | - Wenquan Wang
- College of Tropical Crops, Hainan University, Haiko, China
| | - Kaimian Li
- Tropical Crops Genetics Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haiko, China
| | - Wenjun Ou
- Tropical Crops Genetics Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haiko, China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| |
Collapse
|
3
|
A multi-omic screening approach for the discovery of thermoactive glycoside hydrolases. Extremophiles 2021; 25:101-114. [PMID: 33416984 DOI: 10.1007/s00792-020-01214-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Next-generation sequencing and computational biology have facilitated the implementation of new combinatorial screening approaches to discover novel enzymes of biotechnological interest. In this study, we describe the successful establishment of a multi-omic approach for the identification of thermostable hydrolase-encoding genes by determination of gene expression levels. We applied this combinatorial approach using an anaerobic enrichment culture from an Azorean hot spring sample grown on green coffee beans as recalcitrant substrate. An in-depth analysis of the microbial community resulted in microorganisms capable of metabolizing the selected substrate, such as the genera Caloramator, Dictyoglomus and Thermoanaerobacter as active and abundant microorganisms. To discover glycoside hydrolases, 90,342 annotated genes were screened for specific reaction types. A total number of 106 genes encoding cellulases (EC 3.2.1.4), beta-glucosidases (EC 3.2.1.21) and endo-1,4-beta-mannosidases (EC 3.2.1.78) were selected. Mapping of RNA-Seq reads to the related metagenome led to expression levels for each gene. Amongst those, 14 genes, encoding glycoside hydrolases, showed highest expression values, and were used for further cloning. Four proteins were biochemically characterized and were identified as thermoactive glycoside hydrolases with a broad substrate range. This work demonstrated that a combinatory omic approach is a suitable strategy identifying unique thermoactive enzymes from environmental samples.
Collapse
|
4
|
Abstract
Nowadays, the transport sector is one of the main sources of greenhouse gas (GHG) emissions and air pollution in cities. The use of renewable energies is therefore imperative to improve the environmental sustainability of this sector. In this regard, biofuels play an important role as they can be blended directly with fossil fuels and used in traditional vehicles’ engines. Bioethanol is the most used biofuel worldwide and can replace gasoline or form different gasoline-ethanol blends. Additionally, it is an important building block to obtain different high added-value compounds (e.g., acetaldehyde, ethylene, 1,3-butadiene, ethyl acetate). Today, bioethanol is mainly produced from food crops (first-generation (1G) biofuels), and a transition to the production of the so-called advanced ethanol (obtained from lignocellulosic feedstocks, non-food crops, or industrial waste and residue streams) is needed to meet sustainability criteria and to have a better GHG balance. This work gives an overview of the current production, use, and regulation rules of bioethanol as a fuel, as well as the advanced processes and the co-products that can be produced together with bioethanol in a biorefinery context. Special attention is given to the opportunities for making a sustainable transition from bioethanol 1G to advanced bioethanol.
Collapse
|
5
|
Du J, Dong J, Du S, Zhang K, Yu J, Hu S, Yin H. Understanding Thermostability Factors of Barley Limit Dextrinase by Molecular Dynamics Simulations. Front Mol Biosci 2020; 7:51. [PMID: 32478090 PMCID: PMC7241666 DOI: 10.3389/fmolb.2020.00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Limit dextrinase (LD) is the only endogenous starch-debranching enzyme in barley (Hordeum vulgare, Hv), which is the key factor affecting the production of a high degree of fermentation. Free LD will lose its activity in the mashing process at high temperature in beer production. However, there remains a lack of understanding on the factor affecting the themostability of HvLD at the atomic level. In this work, the molecular dynamics simulations were carried out for HvLD to explore the key factors affecting the thermal stability of LD. The higher value of root mean square deviation (RMSD), radius of gyration (Rg), and surface accessibility (SASA) suggests the instability of HvLD at high temperatures. Intra-protein hydrogen bonds and hydrogen bonds between protein and water decrease at high temperature. Long-lived hydrogen bonds, salt bridges, and hydrophobic contacts are lost at high temperature. The salt bridge interaction analysis suggests that these salt bridges are important for the thermostability of HvLD, including E568–R875, D317–R378, D803–R884, D457–R214, D468–R395, D456–R452, D399–R471, and D541–R542. Root mean square fluctuation (RMSF) analysis identified the thermal-sensitive regions of HvLD, which will facilitate enzyme engineering of HvLD for enhanced themostability.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Songjie Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Kun Zhang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Qu C, Chen L, Li Y, Fu H, Wang J. The redox-sensing transcriptional repressor Rex is important for regulating the products distribution in Thermoanaerobacterium aotearoense SCUT27. Appl Microbiol Biotechnol 2020; 104:5605-5617. [DOI: 10.1007/s00253-020-10554-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023]
|
7
|
Hatmaker EA, Klingeman DM, Martin RK, Guss AM, Elkins JG. Complete Genome Sequence of Caloramator sp. Strain E03, a Novel Ethanologenic, Thermophilic, Obligately Anaerobic Bacterium. Microbiol Resour Announc 2019; 8:e00708-19. [PMID: 31395644 PMCID: PMC6687931 DOI: 10.1128/mra.00708-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Caloramator sp. strain E03, an anaerobic thermophile that was isolated from a hot spring within the Rabbit Creek area of Yellowstone National Park. The assembly contains a single 2,984,770-bp contig with a G+C content of 31.3% and is predicted to encode 2,678 proteins.
Collapse
Affiliation(s)
- E Anne Hatmaker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Roman K Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - James G Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
8
|
Jiang D, Hao M, Fu J, Tian G, Ding F. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:701-710. [PMID: 28913618 DOI: 10.1007/s00484-017-1437-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.
Collapse
Affiliation(s)
- Dong Jiang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Hao
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Jingying Fu
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjin Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Fangyu Ding
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Comparison of Cassava Starch with Corn as a Feedstock for Bioethanol Production. ENERGIES 2018. [DOI: 10.3390/en11123476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cassava is a high potential feedstock for bioethanol production in Asian countries, primarily due to high yield of carbohydrate per unit land, and its ability to grow on marginal lands with minimal agrochemical requirements. The objective of this study was to compare the bioethanol production from cassava starch with corn starch using a conventional and a raw/granular starch hydrolyzing process (GSH). The fermentation performance of cassava starch was compared with three corn starch types with different amylose: Amylopectin ratios. The final ethanol concentration with cassava starch was similar to that of two corn starch types, dent corn and waxy corn for both processes. For the cassava starch, the ethanol concentration achieved with GSH process was 2.8% higher than that in the conventional process. Cassava starch yielded the highest fermentation rates of the four starches investigated, during the conventional process. Ethanol production and fermentation profiles comparable with corn, a widely used feedstock, makes cassava starch an attractive substrate for bioethanol production.
Collapse
|
10
|
Rahayu F, Kawai Y, Iwasaki Y, Yoshida K, Kita A, Tajima T, Kato J, Murakami K, Hoshino T, Nakashimada Y. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica. BIORESOURCE TECHNOLOGY 2017; 245:1393-1399. [PMID: 28583404 DOI: 10.1016/j.biortech.2017.05.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
A transformant of Moorella thermoacetica was constructed for thermophilic ethanol production from lignocellulosic biomass by deleting two phosphotransacetylase genes, pdul1 and pdul2, and introducing the native aldehyde dehydrogenase gene (aldh) controlled by the promoter from glyceraldehyde-3-phosphate dehydrogenase. The transformant showed tolerance to 540mM and fermented sugars including fructose, glucose, galactose and xylose to mainly ethanol. In a mixed-sugar medium of glucose and xylose, all of the sugars were consumed to produce ethanol at the yield of 1.9mol/mol-sugar. The transformant successfully fermented sugars in hydrolysate prepared through the acid hydrolysis of lignocellulose to ethanol, suggesting that this transformant can be used to ferment the sugars in lignocellulosic biomass for ethanol production.
Collapse
Affiliation(s)
- Farida Rahayu
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Indonesian Sweetener and Fiber Crops Research Institute, Jalan Raya Karangploso Km 9, Malang, East Java 65152, Indonesia
| | - Yuto Kawai
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuki Iwasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Koichiro Yoshida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Akihisa Kita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takahisa Tajima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Katsuji Murakami
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Tamotsu Hoshino
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
11
|
Optimization of Reducing Sugar Production from Manihot glaziovii Starch Using Response Surface Methodology. ENERGIES 2017. [DOI: 10.3390/en10010035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Moreno AD, Alvira P, Ibarra D, Tomás-Pejó E. Production of Ethanol from Lignocellulosic Biomass. PRODUCTION OF PLATFORM CHEMICALS FROM SUSTAINABLE RESOURCES 2017. [DOI: 10.1007/978-981-10-4172-3_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Improving the Thermostability of Acidic Pullulanase from Bacillus naganoensis by Rational Design. PLoS One 2016; 11:e0165006. [PMID: 27764201 PMCID: PMC5072709 DOI: 10.1371/journal.pone.0165006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
Pullulanase (EC 3.2.1.41) plays an important role in the specific hydrolysis of branch points in amylopectin. Enhancing its thermostability is required for its industrial application. In this study, rational protein design was used to improve the thermostability of PulB from Bacillus naganoensis (AB231790.1), which has strong enzymatic properties. Three positive single-site mutants (PulB-D328H, PulB-N387D, and PulB-A414P) were selected from six mutants. After incubation at 65°C for 5 min, the residual activities of PulB-D328H, PulB-N387D, and PulB-A414P were 4.5-, 1.7-, and 1.47-fold higher than PulB-WT, and their Tm values (the temperature at which half protein molecule denature) were 1.8°C, 0.4°C, and 0.9°C higher than PulB-WT, respectively. Then the final combined mutant PulB-328/387/414 was constructed. The t1/2 of it was 12.9-fold longer than that of PulB-WT at 65°C and the total increase in Tm of it (5.0°C) was almost 60% greater than the sum of individual increases (3.1°C). In addition, kinetic studies revealed that the kcat and the kcat/Km of PulB-328/387/414 increased by 38.8% and 12.9%. The remarkable improvement in thermostability and the high catalytic efficiency of PulB-328/387/414 make it suitable for industrial applications.
Collapse
|
14
|
Muktham R, K. Bhargava S, Bankupalli S, S. Ball A. A Review on 1<sup>st</sup> and 2<sup>nd</sup> Generation Bioethanol Production-Recent Progress. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jsbs.2016.63008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Moshi AP, Hosea KMM, Elisante E, Mamo G, Önnby L, Nges IA. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol. J Biosci Bioeng 2015; 121:457-63. [PMID: 26481161 DOI: 10.1016/j.jbiosc.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 11/15/2022]
Abstract
The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses.
Collapse
Affiliation(s)
- Anselm P Moshi
- Division of Biotechnology, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden; Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P. O. Box 35179, Tanzania; Tanzania Industrial Research and Development Organization (TIRDO), Kimweri Avenue, P. O. Box 23235, Dar es Salaam, Tanzania
| | - Ken M M Hosea
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P. O. Box 35179, Tanzania
| | - Emrode Elisante
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P. O. Box 35179, Tanzania
| | - Gashaw Mamo
- Division of Biotechnology, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Linda Önnby
- Division of Biotechnology, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Ivo Achu Nges
- Division of Biotechnology, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|