1
|
Xiao F, Li Y, Zhang Y, Wang H, Zhang L, Ding Z, Gu Z, Xu S, Shi G. Construction of a novel sugar alcohol-inducible expression system in Bacillus licheniformis. Appl Microbiol Biotechnol 2020; 104:5409-5425. [PMID: 32333054 DOI: 10.1007/s00253-020-10618-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Bacillus licheniformis is an important industrial microorganism that can utilize a wide range of biomass. However, the lack of expression elements in B. licheniformis, especially regulated promoters, significantly restricts its applications. In this study, two promoters involved in the sugar alcohol uptake pathway, PmtlA and PmtlR, were characterized and developed as regulated promoters for expression. The results showed that mannitol, mannose, sorbitol, sorbose, and arabinose can act as inducers to activate expression from PmtlA at different levels. The induction by sorbitol was the strongest, and the optimal induction conditions were 15 g/L sorbitol during mid-logarithmic growth at 28 °C. In this work, the palindrome-like sequence 'TTGTCA-cacggctcc-TGCCAA' in PmtlA was identified as the binding site of the MtlR protein. This study helps to enrich the known inducible expression systems in B. licheniformis.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hanrong Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, People's Republic of China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
3
|
Kim M, Kim KY, Lee KM, Youn SH, Lee SM, Woo HM, Oh MK, Um Y. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity. BIORESOURCE TECHNOLOGY 2016; 218:1208-1214. [PMID: 27474955 DOI: 10.1016/j.biortech.2016.07.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid.
Collapse
Affiliation(s)
- Minsun Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Ki-Yeon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Kyung Min Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sung Hun Youn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Han Min Woo
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Cao W, Ma W, Zhang B, Wang X, Chen K, Li Y, Ouyang P. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. J Ind Microbiol Biotechnol 2016; 43:557-66. [PMID: 26733394 DOI: 10.1007/s10295-015-1725-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022]
Abstract
The development of efficient microbial processes for pinocembrin production has attracted considerable attention. However, pinocembrin biosynthetic efficiency is greatly limited by the low availability of the malonyl-CoA cofactor in Escherichia coli. Fatty acid biosynthesis is the only metabolic process in E. coli that consumes malonyl-CoA; therefore, we overexpressed the fatty acid biosynthetic pathway enzymes β-ketoacyl-ACP synthase III (FabH) and β-ketoacyl-ACP synthase II (FabF) alone and in combination, and investigated the effect on malonyl-CoA. Interestingly, overexpressing FabH, FabF or both enzymes in E. coli BL21 (DE3) decreased fatty acid synthesis and increased cellular malonyl-CoA levels 1.4-, 1.6-, and 1.2-fold, respectively. Furthermore, pinocembrin production was increased 10.6-, 31.8-, and 5.87-fold in recombinant strains overexpressing FabH, FabF and both enzymes, respectively. Overexpression of FabF, therefore, triggered the highest pinocembrin production and malonyl-CoA levels. The addition of cerulenin further increased pinocembrin production in the FabF-overexpressing strain, from 25.8 to 29.9 mg/L. These results demonstrated that overexpressing fatty acid synthases can increase malonyl-CoA availability and improve pinocembrin production in a recombinant E. coli host. This strategy may hold promise for the production of other important natural products in which cellular malonyl-CoA is rate limiting.
Collapse
Affiliation(s)
- Weijia Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Weichao Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Bowen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Yan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|