1
|
Haider MN, O'Higgins L, O'Shea R, Archer L, Wall DM, Verma N, Rodero MDR, Mehmood MA, Murphy JD, Bose A. Selecting optimal algal strains for robust photosynthetic upgrading of biogas under temperate oceanic climates. Biotechnol Adv 2025; 82:108581. [PMID: 40258525 DOI: 10.1016/j.biotechadv.2025.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Biogas generated from anaerobic digestion can be upgraded to biomethane by photosynthetic biogas upgrading, using CO2 as a bioresource for algal (cyanobacteria and microalgae) cultivation. This allows the upgrading technology to offer economic and environmental benefits to conventional physiochemical upgrading techniques (which can be energy-intensive and costly) by co-generating biomethane with high-value biomass. However, a critical challenge in implementing this technology in temperate oceanic climatic conditions (as found in Japan, and the northwest coasts of Europe and of North America, with average temperatures ranging between 5 and 20 °C) is the selection of algal strains that must be capable of sustained growth under lower ambient temperatures. Accordingly, this paper investigated the selection of algae that met seven key criteria: optimal growth at high pH (9-11); at alkalinity of 1.5-2.5 g inorganic carbon per litre; operation at low temperature (5-20 °C); tolerance to high CO2 concentrations (above 20 %); capability for mixotrophic cultivation; ability to accumulate high-value metabolites such as photosynthetic pigments and bioactive fatty acids; and ease of harvesting. Of the twenty-six algal species assessed and ranked using a Pugh Matrix, Anabaena sp. and Phormidium sp. were assessed as the most favourable species, followed by Oscillatoria sp., Spirulina subsalsa, and Leptolyngbya sp. Adaptive laboratory evolution together with manipulation of abiotic factors could be effectively utilised to increase the efficiency and economic feasibility of the use of the selected strain in a photosynthetic biogas upgrading system, through improvement of growth and yield of high-value compounds.
Collapse
Affiliation(s)
- Muhammad Nabeel Haider
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Linda O'Higgins
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Richard O'Shea
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Lorraine Archer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David M Wall
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Nikita Verma
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jerry D Murphy
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Archishman Bose
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland.
| |
Collapse
|
2
|
Lama S, Pappa M, Brandão Watanabe N, Formosa-Dague C, Marchal W, Adriaensens P, Vandamme D. Interference of extracellular soluble algal organic matter on flocculation-sedimentation harvesting of Chlorella sp. BIORESOURCE TECHNOLOGY 2024; 411:131290. [PMID: 39153690 DOI: 10.1016/j.biortech.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Extracellular soluble algal organic matter (AOM) significantly interferes with microalgae flocculation. This study investigated the effects of various AOM fractions on Chlorella sp. flocculation using ferric chloride (FeCl3), sodium hydroxide (NaOH), and chitosan. All flocculants achieved high separation efficiency (87-99 %), but higher dosages were required in the presence of AOM. High molecular weight (>50 kDa) AOM fraction was identified as the primary inhibitor of flocculation across different pH levels, whereas low/medium molecular weight (<3 and <50 kDa) AOM had minimal impact. Compositional analysis revealed that the inhibitory AOM fraction is a glycoprotein rich in carbohydrates, including neutral, amino, and acidic sugars. The significance of this study is in identifying carboxyl groups (-COOH) from acidic monomers in >50 kDa AOM that inhibit flocculation. Understanding AOM composition and the interaction dynamics between AOM, cells, and flocculants is crucial for enhancing the techno-economics and sustainability of flocculation-based microalgae harvesting.
Collapse
Affiliation(s)
- Sanjaya Lama
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Michaela Pappa
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Nathalia Brandão Watanabe
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Chemical Engineering Department, Escola Politécnica of the University of São Paulo, São Paulo, Brazil.
| | - Cécile Formosa-Dague
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, France.
| | - Wouter Marchal
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Peter Adriaensens
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Dries Vandamme
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
3
|
Prabha S, Vijay AK, Paul RR, George B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152795. [PMID: 34979226 DOI: 10.1016/j.scitotenv.2021.152795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Aravind K Vijay
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Basil George
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India.
| |
Collapse
|
4
|
de Lima Barizão AC, de Oliveira JP, Gonçalves RF, Cassini ST. Nanomagnetic approach applied to microalgae biomass harvesting: advances, gaps, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44795-44811. [PMID: 34244940 DOI: 10.1007/s11356-021-15260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microalgae biomass is a versatile option for a myriad of purposes, as it does not require farmable land for cultivation and due of its high CO2 fixation efficiency during growth. However, biomass harvesting is considered a bottleneck in the process because of its high cost. Magnetic harvesting is a promising method on account of its low cost, high harvesting speed, and efficiency, which can be used to improve the results of other harvesting methods. Here, we present the state of the art of the magnetic harvesting method. Detailed approaches involving different nanomaterials are described, including types, route of synthesis, and functionalization, variables that interfere with harvesting, and recycling methods of nanoparticles and medium. In addition to discussing the overall perspectives of the method, we provide a guideline for future research.
Collapse
Affiliation(s)
- Ana Carolina de Lima Barizão
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espírito Santo, Maruípe avenue, Vitória, ES, 29053-360, Brazil
| | - Ricardo Franci Gonçalves
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Sérvio Túlio Cassini
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil.
| |
Collapse
|
5
|
Electro-Fenton Based Technique to Enhance Cell Harvest and Lipid Extraction from Microalgae. ENERGIES 2020. [DOI: 10.3390/en13153813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, lipid extraction remains a major bottleneck in microalgae technology for biofuel production. In this study, an effective and easily controlled cell wall disruption method based on electro-Fenton reaction was used to enhance lipid extraction from the wet biomass of Nannochloropsis oceanica IMET1. The results showed that 1.27 mM of hydroxide radical (HO•) was generated under the optimal conditions with 9.1 mM FeSO4 in a 16.4 mA·cm−2 current density for 37.0 min. After the electro-Fenton treatment, the neutral lipid extraction yield of microalgae (~155 mg) increased from 40% to 87.5%, equal to from 12.2% to 26.7% dry cell weight (DCW). In particular, the fatty acid composition remained stable. The cell wall disruption and lipid extraction processes were displayed by the transmission electron microscope (TEM) and fluorescence microscopy (FM) observations, respectively. Meanwhile, the removal efficiency of algal cells reached 85.2% within 2 h after the reaction was terminated. Furthermore, the biomass of the microalgae cultured in the electrolysis wastewater treated with fresh nutrients reached 3 g/L, which is 12-fold higher than that of the initial after 24 days. These finds provided an economic and efficient method for lipid extraction from wet microalgae, which could be easily controlled by current magnitude regulation.
Collapse
|
6
|
The Microalgae Biorefinery: A Perspective on the Current Status and Future Opportunities Using Genetic Modification. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is clear scientific evidence that emissions of greenhouse gases (GHG), arising from fossil fuel combustion and land-use change as a result of human activities, are perturbing the Earth’s climate. Microalgae-derived biofuels have been chased since the 1980s without success but, lately, a new biorefinery concept is receiving increasing attention. Here, we discuss the possible solutions to the many problems that make this process unrealised to date, considering also the possibility of including genetically modified (GM) organisms to improve the productivity and process economics. Currently, unless coupled to a service or higher value product production, biofuels derived from microalgae fail to achieve economic reality. However, provided sufficient development of new technologies, potentially including new or improved organisms to lower both production and processing costs, as well as looking at the utility of distributed versus centralised production models, algae biofuels could achieve an impact, off-setting our heavy reliance on petroleum-based liquid fuels.
Collapse
|
7
|
Wang S, Yerkebulan M, Abomohra AEF, El-Khodary S, Wang Q. Microalgae harvest influences the energy recovery: A case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. BIORESOURCE TECHNOLOGY 2019; 286:121371. [PMID: 31030071 DOI: 10.1016/j.biortech.2019.121371] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 05/16/2023]
Abstract
In the present study, centrifugation was used as a standard harvest method, while chemical flocculation was comparatively used as a cost-effective harvest method for microalgae. Lipid recovery from the centrifuged cells was 17.4%, which significantly increased by flocculation to 20.7%. Although both harvest methods showed similar thermal decomposition patterns, flocculated biomass showed 15.7% higher bio-char formation than the centrifuged cells, which resulted in significant reduction in the bio-oil yield by 18.5%. The estimated energy output of bio-oil using centrifugation and flocculation were 0.87 and 0.68 GJ per ton, respectively. For biodiesel production, the energy output using centrifugation and flocculation were 0.177 and 0.211 GJ per ton, respectively. Due to the higher biodiesel yield, better bio-oil quality and lower energy consumption, flocculation was suggested by the present study as a superior method over centrifugation for microalgae harvest from the economic point of view.
Collapse
Affiliation(s)
- Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China
| | - Mukhambet Yerkebulan
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China
| | - Abd El-Fatah Abomohra
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Sherif El-Khodary
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Building Physics and Environment Institute, Housing & Building National Research Center (HBRC), 12311 Dokki, Giza, Egypt
| | - Qian Wang
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China
| |
Collapse
|
8
|
Ma Y, Gao Z, Wang Q, Liu Y. Biodiesels from microbial oils: Opportunity and challenges. BIORESOURCE TECHNOLOGY 2018; 263:631-641. [PMID: 29759818 DOI: 10.1016/j.biortech.2018.05.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 05/26/2023]
Abstract
Although biodiesel has been extensively explored as an important renewable energy source, the raw materials-associated cost poses a serious challenge on its large-scale commercial production. The first and second generations of biodiesel are mainly produced from usable raw materials, e.g. edible oils, crops etc. Such a situation inevitably imposes higher demands on land and water usage, which in turn compromise future food and water supply. Obviously, there is an urgent need to explore alternative feedstock, e.g. microbial oils which can be produced by many types of microorganisms including microalgae, fungi and bacteria with the advantages of small footprint, high lipid content and efficient uptake of carbon dioxide. Therefore, this review offers a comprehensive picture of microbial oil-based technology for biodiesel production. The perspectives and directions forward are also outlined for future biodiesel production and commercialization.
Collapse
Affiliation(s)
- Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhen Gao
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
9
|
't Lam G, Vermuë M, Eppink M, Wijffels R, van den Berg C. Multi-Product Microalgae Biorefineries: From Concept Towards Reality. Trends Biotechnol 2018; 36:216-227. [DOI: 10.1016/j.tibtech.2017.10.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
|
10
|
Choi HJ. Use of methyl esterified eggshell membrane for treatment of aqueous solutions contaminated with anionic sulfur dye. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2638-2646. [PMID: 29168703 DOI: 10.2166/wst.2017.346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present study assessed the adsorption of an anionic dye (sulfur blue) by methyl-esterified eggshell membrane (MESM), a low-cost and abundant material from waste. Adsorption kinetics were investigated using parameters such as pH, contact time, initial dye concentration, solution temperature, dosage of adsorbent, and particle size of adsorbent. After methyl esterification, the specific surface area significantly increased and the negative surface charge of the eggshell membrane changed to positive for all pH values, which increased the sulfur dye sorption capacity. The optimal conditions for sorption of sulfur dye onto MESM resulted in >98% removal and were as follows: <35 μm particle size, pH 8, 20 min contact time and 313 K temperature. In this respect, 0.68-0.73 dry weight mg/L sulfur dye was adsorbed per 1 mg/L MESM. The Langmuir adsorption capacity for sulfur dye was 187.6 mg/g. In addition, sulfur removal was spontaneous and uptake was endothermic. MESM is an inexpensive and effective adsorbent.
Collapse
Affiliation(s)
- Hee-Jeong Choi
- Department of Energy and Environment Convergence, Catholic Kwandong University, Beomil-ro 579, Gangneung, Korea E-mail:
| |
Collapse
|
11
|
Kim DY, Lee K, Lee J, Lee YH, Han JI, Park JY, Oh YK. Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. BIORESOURCE TECHNOLOGY 2017; 239:190-196. [PMID: 28521228 DOI: 10.1016/j.biortech.2017.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Chemical flocculation is considered to be an overall low-cost and up-scalable process for harvesting of microalgae. In this study a new flocculation approach utilizing metal coagulant (Fe2(SO4)3) and sulfuric acid (H2SO4) was introduced for harvesting of Chlorella sp. KR-1, which overcome two main issues of contamination and reuse of coagulant. Reduction of pH successfully released precipitates attached to the microalgae, and the remaining acidic solution containing recovered ferric ions could be reused for harvesting up to three times with high, better-than 98% efficiencies. Moreover, the acid-treated microalgal biomass could be directly used for lipid extraction without additional catalyst. High extraction yields of around 32% were achieved with FAME conversion efficiencies of around 90%. The integrated approach devised in the present study is expected to make the best use of the age-old yet effective harvesting means of flocculation, which can be a practical and economical option in microalgal biorefinery.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea; Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyubock Lee
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jiye Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Young-Hee Lee
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Yeon Park
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| |
Collapse
|
12
|
Eppink MHM, Olivieri G, Reith H, van den Berg C, Barbosa MJ, Wijffels RH. From Current Algae Products to Future Biorefinery Practices: A Review. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:99-123. [PMID: 28265702 DOI: 10.1007/10_2016_64] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are considered to be one of the most promising next generation bio-based/food feedstocks with a unique lipid composition, high protein content, and an almost unlimited amount of other bio-active molecules. High-value components such as the soluble proteins, (poly) unsaturated fatty acids, pigments, and carbohydrates can be used as an important ingredient for several markets, such as the food/feed/chemical/cosmetics and health industries. Although cultivation costs have decreased significantly in the last few decades, large microalgae production processes become economically viable if all complex compounds are optimally valorized in their functional state. To isolate these functional compounds from the biomass, cost-effective, mild, and energy-efficient biorefinery techniques need to be developed and applied. In this review we describe current microalgae biorefinery strategies and the derived products, followed by new technological developments and an outlook toward future products and the biorefinery philosophy.
Collapse
Affiliation(s)
- Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box. 16, 6700 AA, Wageningen, The Netherlands.
| | - Giuseppe Olivieri
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box. 16, 6700 AA, Wageningen, The Netherlands
| | - Hans Reith
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box. 16, 6700 AA, Wageningen, The Netherlands
| | - Corjan van den Berg
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box. 16, 6700 AA, Wageningen, The Netherlands
| | - Maria J Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box. 16, 6700 AA, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box. 16, 6700 AA, Wageningen, The Netherlands.,University of Nordland, 8049, Bodø, Norway
| |
Collapse
|
13
|
Choi JA, Kim DY, Seo YH, Han JI. Application of Fe(NO 3) 3-based as nitrogen source and coagulant for cultivation and harvesting of Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2016; 222:374-379. [PMID: 27744162 DOI: 10.1016/j.biortech.2016.09.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
In this study, Chlorella sorokiniana was successfully cultivated in the recycled medium whose nitrogen was supplied directly from the coagulant, Fe(NO3)3. With a dosage of 0.80g/L, harvesting efficiency of 95% could be achieved. What is more, this amount of nitrate in the coagulant was enough to fully support the growth of C. sorokiniana during the 8day cultivation period, almost as much as the initial nitrogen content in the BG11 culture medium. Other nutrients had to be supplemented, however, with at least 50% amount as in the BG11 recipe. C. sorokiniana culture grown in recycled medium replenished with 50% of nutrients showed much higher Fatty acid methyl esters (FAME) productivity than the control, with 88.3mg/L/day. The recycle of the medium is certainly a way of reducing the water footprint for the purpose of microalgae-derived biodiesel production; better still, it may serve to lower the nutrient footprint.
Collapse
Affiliation(s)
- Jung Ah Choi
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Dong-Yeon Kim
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yeong Hwan Seo
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
14
|
Karemore A, Sen R. Downstream processing of microalgal feedstock for lipid and carbohydrate in a biorefinery concept: a holistic approach for biofuel applications. RSC Adv 2016. [DOI: 10.1039/c6ra01477a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Downstream processing of algal biomass for conversion into biofuel products biodiesel and bioethanol in an integrated mode to develop a microalgae based biorefinery.
Collapse
Affiliation(s)
- Ankush Karemore
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | - Ramkrishna Sen
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|
15
|
Kim DY, Vijayan D, Praveenkumar R, Han JI, Lee K, Park JY, Chang WS, Lee JS, Oh YK. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. BIORESOURCE TECHNOLOGY 2016; 199:300-310. [PMID: 26342788 DOI: 10.1016/j.biortech.2015.08.107] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
Recently, biofuels and nutraceuticals produced from microalgae have emerged as major interests, resulting in intensive research of the microalgal biorefinery process. In this paper, recent developments in cell-wall disruption and extraction methods are reviewed, focusing on lipid and astaxanthin production from the biotechnologically important microalgae Chlorella and Haematococcus, respectively. As a common, critical bottleneck for recovery of intracellular components such as lipid and astaxanthin from these microalgae, the composition and structure of rigid, thick cell-walls were analyzed. Various chemical, physical, physico-chemical, and biological methods applied for cell-wall breakage and lipid/astaxanthin extraction from Chlorella and Haematococcus are discussed in detail and compared based on efficiency, energy consumption, type and dosage of solvent, biomass concentration and status (wet/dried), toxicity, scalability, and synergistic combinations. This report could serve as a useful guide to the implementation of practical downstream processes for recovery of valuable products from microalgae including Chlorella and Haematococcus.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Durairaj Vijayan
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Ramasamy Praveenkumar
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Kyubock Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Ji-Yeon Park
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Won-Seok Chang
- Korea District Heating Corp., Bungdang-dong, Seongnam-si, Gyoenggi-do 463-908, Republic of Korea
| | - Jin-Suk Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea.
| |
Collapse
|
16
|
Seo YH, Park D, Oh YK, Yoon S, Han JI. Harvesting of microalgae cell using oxidized dye wastewater. BIORESOURCE TECHNOLOGY 2015; 192:802-806. [PMID: 26077359 DOI: 10.1016/j.biortech.2015.05.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
In this study, oxidized dye wastewaters were tested for their potential to be used as a cheap coagulant for microalgae harvesting. Two dyes (methylene blue (MB) and methyl orange (MO)) were selected as model dyes, and the Fenton-like reaction under high temperature (90 °C, 1 min) employed as an oxidative treatment option. A maximum harvesting efficiency over 90% was obtained with both MB and MO at a dilution ratio of 5:1 (dye wastewater: cell culture), when the optimal oxidation condition was 20 mg/L of dye, 1 mM of FeCl3, and 0.5% of H2O2 concentration. This phenomenon could be explained by the possibility that amine groups are formed and exposed in oxidized dyes, which act as a kind of amine-based coagulant just like chitosan. This study clearly showed that dye wastewater, when properly oxidized, could serve as a potent coagulant for microalgae harvesting, potentially rendering the harvesting cost reduced to a substantial degree.
Collapse
Affiliation(s)
- Yeong Hwan Seo
- Department of Civil and Environmental Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Doyoung Park
- Department of Civil and Environmental Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - You-Kwan Oh
- Clean Fuel Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|