1
|
Xu T, Li H, Zhang S, Xue Q, Hewage R, Wang J, Guo F, Zhao D, Ai G, Kahramon D, Xiang H, Han J. Production of polyhydroxybutyrate from wheat straw hydrolysate using a low-salt requiring and alkaliphilic Halomonas nigrificans X339 under non-sterile open condition. BIORESOURCE TECHNOLOGY 2025; 424:132276. [PMID: 39986623 DOI: 10.1016/j.biortech.2025.132276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Utilizing agricultural waste is a sustainable approach to reduce the production cost of bio-based products. Here, we report a novel haloalkaliphilic strain, Halomonas nigrificans X339, which exhibits an exceptional ability to utilize various low-cost carbon sources. Compared to other halophiles, X339 could be cultivated at an optimal salinity as low as 2 % (w/v). X339 accumulated extraordinarily large granules of polyhydroxybutyrate (PHB). In open batch fermentation, X339 produced 5.11 g/L of PHB from wheat straw hydrolysate (WSH) at 3 % salinity and pH 9, with a PHB/carbon source conversion rate of 0.30 g/g. This represents the highest PHB yield reported from straw hydrolysates in shake-flask fermentation by halophiles. Additionally, whole genome of X339 was sequenced to identify candidate genes related to carbon source utilization. Our findings will benefit researchers in developing a suitable chassis for Next Generation Industrial Biotechnology, and offer a sustainable and eco-friendly solution for bio-based products.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Hao Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Shengjie Zhang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Qiong Xue
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Richard Hewage
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Jinhong Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Feng Guo
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, Yunnan University, Kunming 650504, People's Republic of China.
| | - Dahe Zhao
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Guomin Ai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Davranov Kahramon
- Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100128, Republic of Uzbekistan.
| | - Hua Xiang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Jing Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
2
|
Yuan Q, Chen S, Chen Y, Zhang X, Lou Y, Li X, Liang Q, Zhang Y, Sun Y. Evaluating AGS efficiency in PHA synthesis and extraction integrated with nutrient removal: The impact of COD concentrations. CHEMOSPHERE 2024; 368:143708. [PMID: 39515542 DOI: 10.1016/j.chemosphere.2024.143708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As natural and biodegradable biopolymers, Polyhydroxyalkanoates (PHA) were synthetized by aerobic granules sludge (AGS) in a sequential batch reactor in this study. The effect of different COD concentrations on PHA accumulation and nutrients removal were investigated. At the same time, different pretreatment methods for PHA extraction, including NaClO pretreatment for extracellular polymeric substances (EPS) removal, Na2CO3 pretreatment for EPS recovery, and grinding pretreatment to reduce particle size and augment the surface area available for interaction with the extraction solvent, were compared. The results showed that the PHA yield increased more than 2 times (from 91.1 to 233.3 mgPHA/gCDW (cell dry weight)) when COD concentration increased from 800 to 1600 mg/L. Polyhydroxybutyrate (PHB) and polyhydroxyvalerate (PHV) both accounted for half of the total, while PHB fraction rose to 71% when COD concentration went up to 1600 mg/L. The PHB can be consumed 3 times faster than PHV. High COD concentration (1600 mg/L) adversely impacted the structure stability of AGS and the phosphorus removal efficiency, while the system consistently exhibited robust nitrogen removal capabilities, with ammonium and TN removal efficiencies exceeding >90%. The dominant bacteria shifted from Flavobacterium to Halomona and Hydrogenophaga as the COD concentration increased. In terms of PHA extraction, Na2CO3 pretreatment, which was used for EPS recovery, had the best PHA recovery with nearly 100% purity and EPS removal efficiency compared with NaClO and grinding pretreatments.
Collapse
Affiliation(s)
- Quan Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Song Chen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yun Chen
- Thunip Co., Ltd., Beijing, 100084, China
| | - Xinyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuqing Lou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xueting Li
- Thunip Co., Ltd., Beijing, 100084, China
| | - Qian Liang
- Thunip Co., Ltd., Beijing, 100084, China
| | - Yanping Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
3
|
Martinaud E, Hierro-Iglesias C, Hammerton J, Hadad B, Evans R, Sacharczuk J, Lester D, Derry MJ, Topham PD, Fernandez-Castane A. Valorising Cassava Peel Waste Into Plasticized Polyhydroxyalkanoates Blended with Polycaprolactone with Controllable Thermal and Mechanical Properties. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:3503-3515. [PMID: 39161457 PMCID: PMC11330390 DOI: 10.1007/s10924-023-03167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 08/21/2024]
Abstract
Approximately 99% of plastics produced worldwide were produced by the petrochemical industry in 2019 and it is predicted that plastic consumption may double between 2023 and 2050. The use of biodegradable bioplastics represents an alternative solution to petroleum-based plastics. However, the production cost of biopolymers hinders their real-world use. The use of waste biomass as a primary carbon source for biopolymers may enable a cost-effective production of bioplastics whilst providing a solution to waste management towards a carbon-neutral and circular plastics economy. Here, we report for the first time the production of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with a controlled molar ratio of 2:1 3-hydroxybutyrate:3-hydroxvalerate (3HB:3HV) through an integrated pre-treatment and fermentation process followed by alkaline digestion of cassava peel waste, a renewable low-cost substrate, through Cupriavidus necator biotransformation. PHBV was subsequently melt blended with a biodegradable polymer, polycaprolactone (PCL), whereby the 30:70 (mol%) PHBV:PCL blend exhibited an excellent balance of mechanical properties and higher degradation temperatures than PHBV alone, thus providing enhanced stability and controllable properties. This work represents a potential environmental solution to waste management that can benefit cassava processing industries (or other crop processing industries) whilst developing new bioplastic materials that can be applied, for example, to packaging and biomedical engineering. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10924-023-03167-4.
Collapse
Affiliation(s)
- Emma Martinaud
- École Nationale Supérieure de Chimie, de Biologie et de Physique, Polytechnic Institute of Bordeaux, 33607 Pessac Cedex, France
- Energy and Bioproducts Research Institute, Aston University, Birmingham, B4 7ET UK
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | | | - James Hammerton
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Bawan Hadad
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Rob Evans
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Jakub Sacharczuk
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry, CV4 7AL UK
| | - Matthew J. Derry
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Paul D. Topham
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Alfred Fernandez-Castane
- Energy and Bioproducts Research Institute, Aston University, Birmingham, B4 7ET UK
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| |
Collapse
|
4
|
Ebu SM, Ray L, Panda AN, Gouda SK. De novo assembly and comparative genome analysis for polyhydroxyalkanoates-producing Bacillus sp. BNPI-92 strain. J Genet Eng Biotechnol 2023; 21:132. [PMID: 37991636 PMCID: PMC10665291 DOI: 10.1186/s43141-023-00578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Certain Bacillus species play a vital role in polyhydroxyalkanoate (PHA) production. However, most of these isolates did not properly identify to species level when scientifically had been reported. RESULTS From NGS analysis, 5719 genes were predicted in the de novo genome assembly. Based on genome annotation using RAST server, 5,527,513 bp sequences were predicted with 5679 bp number of protein-coding sequence. Its genome sequence contains 35.1% and 156 GC content and contigs, respectively. In RAST server analysis, subsystem (43%) and non-subsystem coverage (57%) were generated. Ortho Venn comparative genome analysis indicated that Bacillus sp. BNPI-92 shared 2930 gene cluster (core gene) with B. cereus ATCC 14579 T (AE016877), B. paranthracis Mn5T (MACE01000012), B. thuringiensis ATCC 10792 T (ACNF01000156), and B. antrics Amen T (AE016879) strains. For our strain, the maximum gene cluster (190) was shared with B. cereus ATCC 14579 T (AE016877). For Ortho Venn pair wise analysis, the maximum overlapping gene clusters thresholds have been detected between Bacillus s p.BNPI-92 and Ba. cereus ATCC 14579 T (5414). Average nucleotide identity (ANI) such as OriginalANI and OrthoANI, in silicon digital DND-DNA hybridization (isDDH), Type (Strain) Genome Server (TYGS), and Genome-Genome Distance Calculator (GGDC) were more essentially related Bacillus sp. BNPI-92 with B. cereus ATCC 14579 T strain. Therefore, based on the combination of RAST annotation, OrthoVenn server, ANI and isDDH result Bacillus sp.BNPI-92 strain was strongly confirmed to be a B. cereus type strain. It was designated as B. cereus BNPI-92 strain. In B. cereus BNPI-92 strain whole genome sequence, PHA biosynthesis encoding genes such as phaP, phaQ, phaR (PHA synthesis repressor phaR gene sequence), phaB/phbB, and phaC were predicted on the same operon. These gene clusters were designated as phaPQRBC. However, phaA was located on other operons. CONCLUSIONS This newly obtained isolate was found to be new a strain based on comparative genomic analysis and it was also observed as a potential candidate for PHA biosynthesis.
Collapse
Affiliation(s)
- Seid Mohammed Ebu
- Department of Applied Biology, SoANS, Adama Science and Technology University, Oromia, Ethiopia.
| | - Lopamudra Ray
- School of Law, Campus -16 Adjunct Faculty, School of Biotech, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Ananta N Panda
- School of Biotechnology, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Sudhansu K Gouda
- School of Biotechnology, Campus-11 KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
5
|
Liu S, Zhou M, Daigger GT, Huang J, Song G. Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117771. [PMID: 37004484 DOI: 10.1016/j.jenvman.2023.117771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The high-efficiency and additionally economic benefits generated from aerobic granular sludge (AGS) wastewater treatment have led to its increasing popularity among academics and industrial players. The AGS process can recycle high value-added biomaterials including extracellular polymeric substances (EPS), sodium alginate-like external polymer (ALE), polyhydroxyfatty acid (PHA), and phosphorus (P), etc., which can serve various fields including agriculture, construction, and chemical while removing pollutants from wastewaters. The effects of various key operation parameters on formation and structural stability of AGS are comprehensively summarized. The degradable metabolism of typical pollutants and corresponding microbial diversity and succession in the AGS wastewater treatment system are also discussed, especially with a focus on emerging contaminants removal. In addition, recent attempts for potentially effective production of high value-added biomaterials from AGS are proposed, particularly concerning improving the yield, quality, and application of these biomaterials. This review aims to provide a reference for in-depth research on the AGS process, suggesting a new alternative for wastewater treatment recycling.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Miao Zhou
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Montiel-Jarillo G, Morales-Urrea DA, Contreras EM, López-Córdoba A, Gómez-Pachón EY, Carrera J, Suárez-Ojeda ME. Improvement of the Polyhydroxyalkanoates Recovery from Mixed Microbial Cultures Using Sodium Hypochlorite Pre-Treatment Coupled with Solvent Extraction. Polymers (Basel) 2022; 14:polym14193938. [PMID: 36235886 PMCID: PMC9573287 DOI: 10.3390/polym14193938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The use of mixed microbial cultures (MMC) and organic wastes and wastewaters as feed sources is considered an appealing approach to reduce the current polyhydroxyalkanoates (PHAs) production costs. However, this method entails an additional hurdle to the PHAs downstream processing (recovery and purification). In the current work, the effect of a sodium hypochlorite (NaClO) pre-treatment coupled with dimethyl carbonate (DMC) or chloroform (CF) as extraction solvents on the PHAs recovery efficiency (RE) from MMC was evaluated. MMC were harvested from a sequencing batch reactor (SBR) fed with a synthetic prefermented olive mill wastewaster. Two different carbon-sources (acetic acid and acetic/propionic acids) were employed during the batch accumulation of polyhydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from MMC. Obtained PHAs were characterized by 1H and 13C nuclear magnetic resonance, gel-permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. The results showed that when a NaClO pre-treatment is not added, the use of DMC allows to obtain higher RE of both biopolymers (PHB and PHBV), in comparison with CF. In contrast, the use of CF as extraction solvent required a pre-treatment step to improve the PHB and PHBV recovery. In all cases, RE values were higher for PHBV than for PHB.
Collapse
Affiliation(s)
- Gabriela Montiel-Jarillo
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Diego A. Morales-Urrea
- División Catalizadores y Superficies, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
- Correspondence: (D.A.M.-U.); (M.E.S.-O.)
| | - Edgardo M. Contreras
- División Catalizadores y Superficies, Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Alex López-Córdoba
- Grupo de Investigación en Bioeconomía y Sostenibilidad Agroalimentaria, Escuela de Administración de Empresas Agropecuarias, Facultad Seccional Duitama, Universidad Pedagógica y Tecnológica de Colombia, Carrera 18 con Calle 22, Duitama 150461, Colombia
| | - Edwin Yesid Gómez-Pachón
- Grupo de Investigación en Diseño, Innovación y Asistencia Técnica de Materiales Avanzados-DITMAV, Escuela de Diseño Industrial, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Duitama 150461, Colombia
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d’Enginyeria. Edifici Q Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (D.A.M.-U.); (M.E.S.-O.)
| |
Collapse
|
7
|
Mohammed S, Ray L. Polyhydroxyalkanoate recovery from newly screened Bacillus sp. LPPI-18 using various methods of extraction from Loktak Lake sediment sample. J Genet Eng Biotechnol 2022; 20:115. [PMID: 35932435 PMCID: PMC9357249 DOI: 10.1186/s43141-022-00392-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nowadays, the conventional plastic wastes are very challenging to environments and its production cost also creates an economic crisis due to petrochemical-based plastic. In order to solve this problem, the current studies were aimed at screening and characterizing these polyhydroxyalkanoate (PHA)-producing isolates and evaluating the suitability of some carbon source for newly screened PHA-producing isolates. MATERIAL AND METHODS Some carbon sources such as D-fructose, glucose, molasses, D-ribose and sucrose were evaluated for PHA production. Data were analyzed using SPSS version 20. The 16SrRNA gene sequence of these isolates was performed. These newly isolated taxa were related to Bacillus species. It was designated as Bacillus sp. LPPI-18 and affiliated Bacillus cereus ATCC 14577T (AE01687) (99.10%). Paenibacillus sp. 172 (AF273740.1) was used as an outgroup. RESULTS Bacillus sp. LPPI-18 is a gram-positive, rod-shaped, endospore former, and citrate test positive. This isolate showed positive for amylase, catalase, pectinase, and protease test. They produced intracellular PHA granules when this isolate was stained with Sudan Black B (SBB) and Nile blue A (NBA) preliminary and specific staining dyes, respectively. Both temperature and pH used to affect polyhydroxyalkanoates (PHA) productivity. Bacteria are able to reserve PHA in the form of granules during stress conditions. This isolate produces only when supplied with carbon sources. More PHA contents (PCs) were obtained from glucose, molasses, and D-fructose. In this regard, the maximum mean value of PC was obtained from glucose (40.55±0.7%) and the minimum was obtained from D-ribose (12.4±1.4%). Great variations (P≤0.05) of PCs were observed among glucose and sucrose, molasses and sucrose, and D-fructose and sucrose carbon sources for PHA productivity (PP) of cell dry weight (CDW) g/L. After extraction, PHA film was produced for this typical isolate using glucose as a sole carbon source. Fourier transform infrared spectrum was performed for this isolate and showed the feature of polyester at 1719.64 to 1721.16 wavelengths for these extracted samples. The peak of fingerprinting (band of carboxylic acid group) at this wavelength is a characteristic feature of polyhydroxybutyrate (PHB) and corresponds to the ester functional group (C=O). CONCLUSION In this study, newly identified Bacillus sp. LPPI-18 is found to be producing biodegradable polymers that are used to replace highly pollutant conventional plastic polymers. This isolate is also used to employ certain cost-effective carbon sources for the production of PHA polymers.
Collapse
Affiliation(s)
- Seid Mohammed
- Department of Applied Biology, SoANS, Adama Science and Technology University, Oromia, Ethiopia. .,School of Law, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Lopamudra Ray
- School of Law, KIIT University, Bhubaneswar, Odisha, 751024, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
8
|
Zhao L, Bao M, Zhao D, Li F. Correlation between polyhydroxyalkanoates and extracellular polymeric substances in the activated sludge biosystems with different carbon to nitrogen ratio. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Heo S, Liu YQ. Dependence of poly-β-hydroxybutyrate accumulation in sludge on biomass concentration in SBRs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149138. [PMID: 34346384 DOI: 10.1016/j.scitotenv.2021.149138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The combination of wastewater treatment with polyhydroxyalkanoate production has attracted increasing interest in the context of the circular economy. Recent studies have thus attempted to optimize the conditions for polyhydroxyalkanoate accumulation in sludge when treating wastewater. The effects of biomass concentration and sludge morphologies in reactors on PHB storage, however, were neglected in the literature. Therefore, in this study settling time and organic loading rate were manipulated to adjust sludge morphology and biomass concentration in sequential batch reactors (SBRs) to investigate their influence on PHB storage in the feast phase. Our study shows that reducing settling times in SBRs from 10 to 0 min under organic loading rate of 3 g L-1 d-1 resulted in the decrease in biomass concentration at steady states from 4.2 to 1.0 g L-1 and the change of sludge morphology from well-settled granules to poorly settled pinpoint flocs, but PHB content in sludge at the end of feast phase increased from 7.7 to 26.7%. The well-fitted regression lines between PHB content, SRT, feast/famine and food/microorganisms ratios and biomass concentration under different settling times suggest that PHB was highly dependent on biomass concentration but independent on sludge morphology. Under settling time of 0 min, the increase in OLR from 3 to 7.5 g L-1 d-1 resulted in an increased biomass concentration from 1.0 to 2.1 g L-1 and an increase in PHB content from 26.7 to 33.8%. The batch and fed-batch experiments with different biomass concentrations also showed the influence of biomass concentration on PHB accumulation in sludge. The conclusion of the dependence of PHB content on biomass concentration under a fixed OLR and varied OLRs drawn from this study enables sludge PHB content as high as possible by adjusting biomass concentration in SBRs apart from the selective enriching strategies for PHB accumulating organisms when treating VFA-rich wastewater.
Collapse
Affiliation(s)
- Seongbong Heo
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
10
|
Amorim de Carvalho CD, Ferreira Dos Santos A, Tavares Ferreira TJ, Sousa Aguiar Lira VN, Mendes Barros AR, Bezerra Dos Santos A. Resource recovery in aerobic granular sludge systems: is it feasible or still a long way to go? CHEMOSPHERE 2021; 274:129881. [PMID: 33582539 DOI: 10.1016/j.chemosphere.2021.129881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Lately, wastewater treatment plants are much often being designed as wastewater-resource factories inserted in circular cities. Among biological treatment technologies, aerobic granular sludge (AGS), considered an evolution of activated sludge (AS), has received great attention regarding its resource recovery potential. This review presents the state-of-the-art concerning the influence of operational parameters on the recovery of alginate-like exopolysaccharides (ALE), tryptophan, phosphorus, and polyhydroxyalkanoates (PHA) from AGS systems. The carbon to nitrogen ratio was identified as a parameter that plays an important role for the optimal production of ALE, tryptophan, and PHA. The sludge retention time effect is more pronounced for the production of ALE and tryptophan. Additionally, salinity levels in the bioreactors can potentially be manipulated to increase ALE and phosphorus yields simultaneously. Some existing knowledge gaps in the scientific literature concerning the recovery of these resources from AGS were also identified. Regarding industrial applications, tryptophan has the longest way to go. On the other hand, ALE production/recovery could be considered the most mature process if we take into account that existing alternatives for phosphorus and PHA production/recovery are optimized for activated sludge rather than granular sludge. Consequently, to maintain the same effectiveness, these processes likely could not be applied to AGS without undergoing some modification. Therefore, investigating to what extent these adaptations are necessary and designing alternatives is essential.
Collapse
Affiliation(s)
- Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
11
|
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:374-388. [PMID: 33139190 DOI: 10.1016/j.wasman.2020.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs). Bio-based PHA production, particularly using cheap carbon sources with MMCs, is getting more attention. The main bottlenecks are the low production yield and the inconsistency of the biopolymers. Bioaugmentation and metabolic engineering together with cost effective downstream processing are promising approaches to overcome the hurdles of commercial PHA production from waste streams.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
12
|
Evaluation of the production of alginate-like exopolysaccharides (ALE) and tryptophan in aerobic granular sludge systems. Bioprocess Biosyst Eng 2020; 44:259-270. [PMID: 32889571 DOI: 10.1007/s00449-020-02439-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023]
Abstract
The engineering and microbiological aspects involved in the production of alginate-like exopolysaccharides (ALE) and tryptophan (TRY) in aerobic granular sludge systems were evaluated. The inclusion of short anoxic phase (A/O/A cycle-anaerobic, oxic, and anoxic phase) and the control of sludge retention time (SRT ≈ 10 days) proved to be an important strategy to increase the content of these bioproducts in granules. The substrate concentration also has a relevant impact on the production of ALE and TRY. The results of the microbiological analysis showed that slow-growing heterotrophic microbial groups (i.e., PAOs and GAOs) might be associated with the production of ALE, and the EPS-producing fermentative bacteria might be associated with the TRY production. The preliminary economic evaluation indicated the potential of ALE recovery in AGS systems in decreasing the OPEX (operational expenditure) of the treatment, especially for larger sewage treatment plants or industrial wastewaters with a high organic load.
Collapse
|
13
|
Zhao L, Cheng Y, Yin Z, Chen D, Bao M, Lu J. Insights into the effect of different levels of crude oil on hydrolyzed polyacrylamide biotransformation in aerobic and anoxic biosystems: Bioresource production, enzymatic activity, and microbial function. BIORESOURCE TECHNOLOGY 2019; 293:122023. [PMID: 31472407 DOI: 10.1016/j.biortech.2019.122023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The differences of crude oil recovery ratio resulted in different levels of crude oil in actual hydrolyzed polyacrylamide (HPAM)-containing wastewater. The effect of crude oil on HPAM biotransformation was explored from bioresource production, enzymatic activity and microbial function. In aerobic biosystems, the highest polyhydroxyalkanoate (PHA) yield (19.6%-40.2%) and dehydrogenase (DH) activity (4.06-8.32 mg·g-1 VSS) occurred in the 48th hour, and increased with crude oil concentration (0-400 mg·L-1). In anoxic biosystems, the highest PHA yield (24.5%-50.5%) and DH activity (3.24-6.69 mg·g-1 VSS) occurred in the 72nd hour, and increased with crude oil concentration. The higher substrate removal (38.5%-65.7%) occurred in aerobic biosystems, while the higher PHA accumulation occurred in anoxic biosystems. PHA yield, DH activity and HPAM removal were related. Microbial function related to HPAM biodegradation and PHA synthesis was discussed. The main function of Pseudomonas and Bacillus in aerobic biosystems was to degrade HPAM, and in anoxic biosystems was to synthesize PHA.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dafan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
14
|
An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill. Int J Biol Macromol 2019; 134:1085-1096. [DOI: 10.1016/j.ijbiomac.2019.05.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022]
|
15
|
Mannina G, Presti D, Montiel-Jarillo G, Suárez-Ojeda ME. Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. BIORESOURCE TECHNOLOGY 2019; 282:361-369. [PMID: 30884455 DOI: 10.1016/j.biortech.2019.03.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures (MMCs) is proposed. PHA-accumulating capacity of the MMC was selected in a sequencing batch reactor (SBR) fed with a synthetic effluent emulating a fermented oil mill wastewater (OMW). The highest recovery yield and purity (74 ± 8% and 100 ± 5%, respectively) was obtained when using NH4-Laurate for which operating conditions of the extraction process such as temperature, concentration and contact time were optimized. Best conditions for PHA extraction from MMC turned to be: i) a pre-treatment with NaClO at 85 °C with 1 h of contact time, followed by ii) a treatment with lauric acid in a ratio acid lauric to biomass of 2:1 and 3 h of contact time.
Collapse
Affiliation(s)
- Giorgio Mannina
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 8, Palermo, IT, Italy.
| | - Dario Presti
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 8, Palermo, IT, Italy
| | - Gabriela Montiel-Jarillo
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria. Edifici Q Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria. Edifici Q Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
16
|
Uma V, Gandhimathi R. Organic removal and synthesis of biopolymer from synthetic oily bilge water using the novel mixed bacterial consortium. BIORESOURCE TECHNOLOGY 2019; 273:169-176. [PMID: 30445269 DOI: 10.1016/j.biortech.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Synthetic oily bilge water (OBW) treatment and subsequent production of biopolymer were studied by using a sequential batch reactor (SBR). The effect of various influencing parameters such as solids retention time (SRT), cycle time (CT), substrate concentration, pH level on the organic removal and synthesis of polyhydroxyalkanoates (PHA) was examined by novel soil bacteria isolated from hydrocarbon contaminated site near Karaikal port, India. The isolates were identified as Pseudomonas tuomuerensis and Pseudomonas nitroreducens using 16S rRNA. Sudan Black B staining was performed to visualize the presence of PHA. The experimental results showed that a decrease in substrate concentration to 5000 mg/L of soluble COD (CODs) showed maximum organic removal (81%) and maximum PHA yields of its cell dry mass (81%). The PHA yield was maximum at SRT of 5 d, pH = 7 and CT of 24 h. The produced PHA was characterized by using FTIR, XRD and SEM analysis.
Collapse
Affiliation(s)
- V Uma
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu 620 015, India
| | - R Gandhimathi
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu 620 015, India.
| |
Collapse
|
17
|
Vjayan T, Vadivelu VM. Effect of famine-phase reduced aeration on polyhydroxyalkanoate accumulation in aerobic granules. BIORESOURCE TECHNOLOGY 2017; 245:970-976. [PMID: 28946198 DOI: 10.1016/j.biortech.2017.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
The effects of variable aeration in the famine period on polyhydroxyalkanoate (PHA) accumulation in aerobic granules were investigated. Results showed that regardless of the aeration rates used during famine period, all aerobic granules achieved a similar chemical oxygen demand removal and PHA content. The decrease in famine-period aeration rates accelerated the maximum PHA accumulation together with increase in granular size and settling ability. The PHA-accumulating microorganisms were found to have shifted closer to the surface of the granules when the aeration rate was reduced. Moreover, PHA compositional changes occurred, where the hydroxyvalerate content had increased with the reduction in aeration rate. Ultimately, the results indicate that the requirement of aeration for PHA accumulation in aerobic granules is highly insignificant in the famine phase. PHA production in aerobic granules under zero aeration in the famine period may result in an energy input reduction of up to 74%.
Collapse
Affiliation(s)
- T Vjayan
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - V M Vadivelu
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
18
|
Carbon recovery from wastewater through bioconversion into biodegradable polymers. N Biotechnol 2017; 37:9-23. [DOI: 10.1016/j.nbt.2016.05.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
|
19
|
Amorim CL, Moreira IS, Duque AF, van Loosdrecht MCM, Castro PML. Aerobic Granular Sludge. TECHNOLOGIES FOR THE TREATMENT AND RECOVERY OF NUTRIENTS FROM INDUSTRIAL WASTEWATER 2017. [DOI: 10.4018/978-1-5225-1037-6.ch009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aerobic Granular Sludge (AGS) has been successfully applied for carbon, nitrogen and phosphorous removal from wastewaters, in a single tank, reducing the space and energy requirements. This is especially beneficial for, often space restricted, industrial facilities. Moreover, AGS holds a promise for the toxic pollutants removal, due to its layered and compact structure and the bacteria embedding in a protective extracellular polymeric matrix. These outstanding features contribute to AGS tolerance to toxicity and stability. Strategies available to deal with toxic compounds, namely granulation with effluents containing toxics and bioaugmentation, are addressed here. Different applications for the toxics/micropollutants removal through biosorption and/or biodegradation are presented, illustrating the technology versatility. The anthropogenic substances effects on system performance and bacterial populations established within AGS are also addressed. Combination of contaminants removal to allow water discharge, and simultaneous valuable products recovery are presented as final remark.
Collapse
Affiliation(s)
- Catarina L. Amorim
- Universidade Católica Portuguesa, Portugal & University of Aveiro, Portugal
| | | | - Anouk F. Duque
- Universidade Católica Portuguesa, Portugal & Universidade Nova de Lisboa, Portugal
| | | | | |
Collapse
|
20
|
Cui YW, Gong XY, Shi YP, Wang Z(D. Salinity effect on production of PHA and EPS byHaloferax mediterranei. RSC Adv 2017. [DOI: 10.1039/c7ra09652f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Salinity effect on production of PHA and EPS byHaloferax mediterranei.
Collapse
Affiliation(s)
- You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- College of Energy and Environmental Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Xiao-Yu Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- College of Energy and Environmental Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Yun-Peng Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- College of Energy and Environmental Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Zhiwu (Drew) Wang
- Occoquan Laboratory
- Department of Civil and Environmental Engineering
- Virginia Polytechnic Institute and State University
- USA
| |
Collapse
|
21
|
Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains. Appl Biochem Biotechnol 2016; 180:1110-1127. [DOI: 10.1007/s12010-016-2155-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
|
22
|
Zhang Q, Hu J, Lee DJ. Aerobic granular processes: Current research trends. BIORESOURCE TECHNOLOGY 2016; 210:74-80. [PMID: 26873285 DOI: 10.1016/j.biortech.2016.01.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided.
Collapse
Affiliation(s)
- Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
23
|
Gobi K, Vadivelu VM. Dynamics of polyhydroxyalkanoate accumulation in aerobic granules during the growth-disintegration cycle. BIORESOURCE TECHNOLOGY 2015; 196:731-735. [PMID: 26235884 DOI: 10.1016/j.biortech.2015.07.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
The polyhydroxyalkanoate (PHA) accumulation dynamics in aerobic granules that undergo the growth-disintegration cycle were investigated. Four sequencing batch reactors (SBR) were inoculated with aerobic granules at different stages of development (different sizes). Different sizes of aerobic granules showed varying PHA contents. Thus, further study was conducted to investigate the diffusion of substrate and oxygen on PHA accumulation using various organic loading rates (OLR) and aeration rates (AR). An increase in OLR from 0.91 to 3.64kg COD/m(3)day increased the PHA content from 0.66 to 0.87g PHA/g CDW. Meanwhile, an AR increase from 1 to 4L/min only accelerated the maximum PHA accumulation without affecting the PHA content. However, the PHA composition only changes with AR, while the hydroxyvalerate (HV) content increased at a higher AR.
Collapse
Affiliation(s)
- K Gobi
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - V M Vadivelu
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|