1
|
Wang F, Dong H, Yu W, Gao Y, Mao G, An Y, Xie H, Song A, Zhang Z. Enhanced enzymatic sugar production from corn stover by combination of water extraction and glycerol-assisted instant catapult steam explosion. BIORESOUR BIOPROCESS 2024; 11:31. [PMID: 38647976 PMCID: PMC10992945 DOI: 10.1186/s40643-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 04/25/2024] Open
Abstract
Glycerol-assisted instant catapult steam explosion (ICSE) of lignocellulose is an effective pretreatment method for enhancing sugar production compared to glycerol-free ICSE. In this study, glycerol-assisted ICSE of corn stover was studied in order to understand the reaction mechanisms and further optimize the process. Results showed that water extraction of corn stover prior to ICSE reduced pseudo-lignin formation. The combination of water extraction and glycerol-assisted ICSE led to the formation of lignin with a lower molecular weight (Mw) of 2851 g/mol than 3521 g/mole of that from the combination of water extraction and glycerol-free ICSE. 1H-13C NMR analysis revealed that glycerol likely reacted with lignin carboxylic OHs through esterification while etherification of aliphatic OHs was not observed in ICSE. These lignin analyses indicated that glycerol protected lignin from condensation/repolymerization during glycerol-assisted ICSE. Enzymatic hydrolysis results showed that without water extraction increasing glycerol usage from 0.2 kg/kg stover to 0.4 kg/kg stover improved glucan digestibility to 78% but further increase to 0.5 kg/kg stover reduced glucan digestibility. In addition, at the glycerol usage of 0.2-0.4 kg/kg stover, washing of pretreated stover for removal of glycerol and other biomass-derived compounds did not improve glucan digestibility compared to unwashed ones. Combination of water extraction and glycerol-assisted ICSE led to a high glucan digestibility of 89.7% and a total glucose yield of 25.5 g glucose/100 g stover, which were 30.1% and 7.5 g/100 g stover higher than those derived from glycerol-free ICSE of stover, respectively. Since glycerol is a low-cost carbon source, the resulting enzymatic hydrolysate that contained both glucose and glycerol may be directly used to produce bioproducts by microbial fermentation.
Collapse
Affiliation(s)
- Fengqin Wang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Hongli Dong
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Weiwei Yu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Yinling Gao
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Guotao Mao
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Yanxia An
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Hui Xie
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| | - Andong Song
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
2
|
Velvizhi G, Jacqueline PJ, Shetti NP, K L, Mohanakrishna G, Aminabhavi TM. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118527. [PMID: 37429092 DOI: 10.1016/j.jenvman.2023.118527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Sustainable technologies pave the way to address future energy demand by converting lignocellulosic biomass into fuels, carbon-neutral materials, and chemicals which might replace fossil fuels. Thermochemical and biochemical technologies are conventional methods that convert biomass into value-added products. To enhance biofuel production, the existing technologies should be upgraded using advanced processes. In this regard, the present review explores the advanced technologies of thermochemical processes such as plasma technology, hydrothermal treatment, microwave-based processing, microbial-catalyzed electrochemical systems, etc. Advanced biochemical technologies such as synthetic metabolic engineering and genomic engineering have led to the development of an effective strategy to produce biofuels. The microwave-plasma-based technique increases the biofuel conversion efficiency by 97% and the genetic engineering strains increase the sugar production by 40%, inferring that the advanced technologies enhances the efficiency. So understanding these processes leads to low-carbon technologies which can solve the global issues on energy security, the greenhouse gases emission, and global warming.
Collapse
Affiliation(s)
- G Velvizhi
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| | - P Jennita Jacqueline
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India; School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Latha K
- Department of Mathematics, Easwari Engineering College, Chennai, 600 089, Tamil Nadu, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| |
Collapse
|
3
|
Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, Show PL, Sun F. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 368:128356. [PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenying Pan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Maobing Tu
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Malaysia
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Lima PJM, da Silva RM, Neto CACG, Gomes E Silva NC, Souza JEDS, Nunes YL, Sousa Dos Santos JC. An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem 2022; 69:2794-2818. [PMID: 33481298 DOI: 10.1002/bab.2098] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Glycerol is a common by-product of industrial biodiesel syntheses. Due to its properties, availability, and versatility, residual glycerol can be used as a raw material in the production of high value-added industrial inputs and outputs. In particular, products like hydrogen, propylene glycol, acrolein, epichlorohydrin, dioxalane and dioxane, glycerol carbonate, n-butanol, citric acid, ethanol, butanol, propionic acid, (mono-, di-, and triacylglycerols), cynamoil esters, glycerol acetate, benzoic acid, and other applications. In this context, the present study presents a critical evaluation of the innovative technologies based on the use of residual glycerol in different industries, including the pharmaceutical, textile, food, cosmetic, and energy sectors. Chemical and biochemical catalysts in the transformation of residual glycerol are explored, along with the factors to be considered regarding the choice of catalyst route used in the conversion process, aiming at improving the production of these industrial products.
Collapse
Affiliation(s)
- Paula Jéssyca Morais Lima
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - Rhonyele Maciel da Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | | | - Natan Câmara Gomes E Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| | - Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil.,Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| |
Collapse
|
5
|
Sun C, Ren H, Sun F, Hu Y, Liu Q, Song G, Abdulkhani A, Loke Show P. Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126264. [PMID: 34737053 DOI: 10.1016/j.biortech.2021.126264] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The complex structure of lignocellulosic biomass forms the recalcitrance to prevent the embedded holo-cellulosic sugars from undergoing the biodegradation. Therefore, a pretreatment is often required for an efficient enzymatic lignocellulosic hydrolysis. Recently, glycerol organosolv (GO) pretreatment is revealed potent in selective deconstruction of various lignocellulosic biomass and effective improvement of enzymatic hydrolysis. Evidently, the GO pretreatment is capable to modify the structure of dissolved components by glycerolysis, i.e., by trans-glycosylation onto glyceryl glycosides and by hydroxylation grafting onto glyceryl lignin. Such modifications tend to protect these main components against excessive degradation, which can be mainly responsible for the obviously less fermentation inhibitors arising in the GO pretreatment. This pretreatment can provide opportunities for valorization of emerging lignocellulosic biorefinery with production of value-added biochemicals. Recent advances in GO pretreatment of lignocellulosic biomass followed by enzymatic hydrolysis are reviewed, and perspectives are made for addressing remaining challenges.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiangqiang Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ali Abdulkhani
- Dept. of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Malaysia
| |
Collapse
|
6
|
Hassanpour M, Abbasabadi M, Strong J, Gebbie L, Te'o VSJ, O'Hara IM, Zhang Z. Scale-up of two-step acid-catalysed glycerol pretreatment for production of oleaginous yeast biomass from sugarcane bagasse by Rhodosporidium toruloides. BIORESOURCE TECHNOLOGY 2020; 313:123666. [PMID: 32562969 DOI: 10.1016/j.biortech.2020.123666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Two-step dilute acid and acid-catalysed glycerol pretreatment was developed to maximise sugar yield from sugarcane bagasse. At the laboratory scale, dilute acid pretreatment at 130 °C followed by acid-catalysed glycerol pretreatment at 170 °C led to a total sugar (C5 + C6) yield of 82%, 31% higher than that from one-step acid-catalysed glycerol pretreatment. At the pilot scale, the two-step dilute acid and acid-catalysed glycerol pretreatment led to a maximum sugar yield of 74%, 13% higher than that from one-step pretreatment with 52% reduction in glycerol usage. The enzymatic hydrolysate containing glucose and residual glycerol were used to produce microbial oils by a Rhodosporidium toruloides strain. A fed-batch cultivation strategy led to the production of 44.8 g/L cell mass, including 26.6 g/L oil, 8.6 g/L protein and 12.7 mg/L carotenoid. The cell mass and oil yields were 19% higher than those from batch cultivation as feedstock inhibition and catabolite repression were alleviated.
Collapse
Affiliation(s)
- Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Mahsa Abbasabadi
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - James Strong
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Leigh Gebbie
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Valentino Setoa Junior Te'o
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| |
Collapse
|
7
|
Rahmati S, Doherty W, Dubal D, Atanda L, Moghaddam L, Sonar P, Hessel V, Ostrikov K(K. Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00241k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
At a time of rapid depletion of oil resources, global food shortages and solid waste problems, it is imperative to encourage research into the use of appropriate pre-treatment techniques using regenerative raw materials such as lignocellulosic biomass.
Collapse
Affiliation(s)
- Shahrooz Rahmati
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| | - William Doherty
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Deepak Dubal
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Materials Science
| | - Luqman Atanda
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Lalehvash Moghaddam
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Prashant Sonar
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- School of Engineering
| | - Kostya (Ken) Ostrikov
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| |
Collapse
|
8
|
Pascal K, Ren H, Sun FF, Guo S, Hu J, He J. Mild Acid-Catalyzed Atmospheric Glycerol Organosolv Pretreatment Effectively Improves Enzymatic Hydrolyzability of Lignocellulosic Biomass. ACS OMEGA 2019; 4:20015-20023. [PMID: 31788636 PMCID: PMC6882100 DOI: 10.1021/acsomega.9b02993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/29/2019] [Indexed: 06/05/2023]
Abstract
Conventional atmospheric glycerol organosolv pretreatment is energy-intensive with the requirement of long time and/or high temperature. Herein, acid-catalyzed atmospheric glycerol organosolv (ac-AGO) pretreatment was developed under a mild condition to modify the sugarcane bagasse structure for improving enzymatic hydrolyzability. Using single factor and central composite design experiments, ac-AGO pretreatment was optimized at 200 °C for 15 min with 0.06% H2SO4 addition, wherein the hemicellulose and lignin removal rates were 82 and 52%, respectively, with extremely high cellulose retention of 98%. The ac-AGO-pretreated substrate exhibited good enzymatic hydrolyzability at a modest cellulase loading, affording a 70% glucose yield after 72 h. Multiple analysis tools were used to correlate the hydrolyzability of the substrate with its structural features. The results indicated that the mild ac-AGO pretreatment can modify the lignocellulosic biomass structure to achieve good hydrolyzability, mainly resulting in significant hemicellulose removal.
Collapse
Affiliation(s)
- Kaneza Pascal
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Hongyan Ren
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fubao Fuelbiol Sun
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuxian Guo
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Jinguang Hu
- Department
of Chemical and Petroleum Engineering, University
of Calgary, Calgary T2N 1N4, Canada
| | - Jing He
- Key
Laboratory of Development and Application of Rural Renewable Energy,
National Agricultural Science & Technology Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| |
Collapse
|
9
|
Ji L, Lei F, Zhang W, Song X, Jiang J, Wang K. Enhancement of bioethanol production from Moso bamboo pretreated with biodiesel crude glycerol: Substrate digestibility, cellulase absorption and fermentability. BIORESOURCE TECHNOLOGY 2019; 276:300-309. [PMID: 30641328 DOI: 10.1016/j.biortech.2019.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Utilization of sustainable energy is limited by energy requirement for the manufacturing of renewable fuels. Moso bamboo was pretreated with industrially derived crude glycerol obtained from different sources at 150/160 °C for 3 h. This bamboo, pretreated with base biodiesel glycerol with pressure filtration removal method, showed a high glucose yield of 94.95% and an ethanol yield of 73.10% of the theoretical. Major glycerol content was removed by pressure filtration, leaving a small amount of fatty acid soap in the pretreated sample, which formed an emulsion that reduced lignin redisposition onto the biomass surface and effectively blocked lignin absorption of cellulase, allowing greater enzymatic hydrolysis and fermentation system function. The surface was more hydrophilic and a higher lignin removal was achieved: 39.24% with base biodiesel glycerol pretreatment compared to 26.08% with sodium hydroxide glycerol pretreatment. This study provides a useful and cost-effective process, BBGP, for high-yield ethanol production.
Collapse
Affiliation(s)
- Li Ji
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xianliang Song
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Hassanpour M, Cai G, Gebbie LK, Speight RE, Junior Te'o VS, O'Hara IM, Zhang Z. Co-utilization of acidified glycerol pretreated-sugarcane bagasse for microbial oil production by a novel Rhodosporidium strain. Eng Life Sci 2019; 19:217-228. [PMID: 32625004 DOI: 10.1002/elsc.201800127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/02/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co-utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol-pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by-product. It is expected that microbial oil production can be significantly improved through process optimization.
Collapse
Affiliation(s)
- Morteza Hassanpour
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Guiqin Cai
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Leigh K Gebbie
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane QLD Australia
| | - Robert E Speight
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane QLD Australia
| | - Valentino S Junior Te'o
- School of Earth Environmental and Biological Sciences Queensland University of Technology Brisbane QLD Australia
| | - Ian M O'Hara
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| |
Collapse
|
11
|
Cai G, Moghaddam L, O'Hara IM, Zhang Z. Microbial oil production from acidified glycerol pretreated sugarcane bagasse by Mortierella isabellina. RSC Adv 2019; 9:2539-2550. [PMID: 35520487 PMCID: PMC9059841 DOI: 10.1039/c8ra08971j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022] Open
Abstract
An integrated microbial oil production process consisting of acidified glycerol pretreatment of sugarcane bagasse, enzymatic hydrolysis, microbial oil production by Mortierella isabellina NRRL 1757 and oil recovery by hydrothermal liquefaction (HTL) of fungal biomass in fermentation broth was assessed in this study. Following pretreatment, the effect of residual pretreatment hydrolysate (containing glycerol) on enzymatic hydrolysis was firstly studied. The residual pretreatment hydrolysate (corresponding to 2.0–7.5% glycerol) improved glucan enzymatic digestibilities by 10–11% compared to the enzymatic hydrolysis in water (no buffer). Although residual pretreatment hydrolysate at 2.0–5.0% glycerol slightly inhibited the consumption of glucose in enzymatic hydrolysate by M. isabellina NRRL 1757, it did not affect microbial oil production due to the consumption of similar amounts of total carbon sources including glycerol. When the cultivation was scaled-up to a 1 L bioreactor, glucose was consumed more rapidly but glycerol assimilation was inhibited. Finally, HTL of fungal biomass in fermentation broth without any catalyst at 340 °C for 60 min efficiently recovered microbial oils from fungal biomass and achieved a bio-oil yield of 78.7% with fatty acids being the dominant oil components (∼89%). HTL also led to the hydrogenation of less saturated fatty acids (C18:2 and C18:3) to more saturated forms (C18:0 and C18:1). A microbial oil production process consisting of acidified glycerol pretreatment of sugarcane bagasse, enzymatic hydrolysis, microbial oil production by M. isabellina NRRL 1757 and oil recovery by hydrothermal liquefaction of fungal biomass in fermentation broth was assessed.![]()
Collapse
Affiliation(s)
- Guiqin Cai
- Centre for Tropical Crops and Biocommodities
- Queensland University of Technology
- Brisbane
- Australia
| | - Lalehvash Moghaddam
- Centre for Tropical Crops and Biocommodities
- Queensland University of Technology
- Brisbane
- Australia
| | - Ian M. O'Hara
- Centre for Tropical Crops and Biocommodities
- Queensland University of Technology
- Brisbane
- Australia
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
12
|
Anwar Saeed M, Ma H, Yue S, Wang Q, Tu M. Concise review on ethanol production from food waste: development and sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28851-28863. [PMID: 30159834 DOI: 10.1007/s11356-018-2972-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The development of sustainable bioethanol fuel production from food waste has increasingly become an attractive topic. Food waste is recognized as the most available and costless feedstock. Therefore, ethanol production has been adopted as cost-efficient and an ecological way for FW disposal. This paper reviewed the microorganisms utilized for ethanol fermentation, the effect of enzymatic hydrolysis on ethanol concentration, optimization of accurate process parameters, and recycling of huge volumes of stillage for ethanol production towards reducing any incurred environmental burdens and minimizing the cost. The statistical tools which may enhance the process efficiency had been presented. Also, the perspective and the future development were introduced. All these aimed to fully utilize the food waste and also reduce the cost for side-product in this process; proper operation conditions and the control methods for stillage recycling were considered as the methods to improve ethanol fermentation from food waste.
Collapse
Affiliation(s)
- Mashair Anwar Saeed
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hongzhi Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Siyuan Yue
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Maobing Tu
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH, 45221, USA
| |
Collapse
|
13
|
Chen Z, Reznicek WD, Wan C. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. BIORESOURCE TECHNOLOGY 2018; 263:40-48. [PMID: 29729540 DOI: 10.1016/j.biortech.2018.04.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, an acidified, aqueous DES comprising choline chloride: glycerol (ChCl:Gly) was used to fractionate switchgrass into three major streams under a relatively mild condition: cellulose-rich pulp, lignin, and xylose-rich liquor. The pulp showed good digestibility with about 89% glucose yield. The solvent can be recycled successfully and reused for at least four more pretreatment cycles while maintaining its pretreatment capability. The solvent recycling also improved the lignin recovery from the pretreatment liquor. Lignin recovered from different pretreatment cycles had the β-O-4 bonds preserved, and shared similar structures with native lignin. Using the pretreatment liquor as a substrate, the oleaginous yeast Rhodotorula toruloides produced 18.7 g/L biomass with lipid and carotenoid titers of 8.1 g/L and 15.0 mg/L, respectively. Overall, this study demonstrated a green process integrating chemical and biological methods toward full utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Wesley D Reznicek
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Caixia Wan
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
14
|
Hu M, Yu H, Li Y, Li A, Cai Q, Liu P, Tu Y, Wang Y, Hu R, Hao B, Peng L, Xia T. Distinct polymer extraction and cellulose DP reduction for complete cellulose hydrolysis under mild chemical pretreatments in sugarcane. Carbohydr Polym 2018; 202:434-443. [PMID: 30287020 DOI: 10.1016/j.carbpol.2018.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
In this study, liquid hot water (LHW) and chemical (H2SO4, NaOH, CaO) pretreatments were performed in Saccharum species including sugarcane bagasse. In comparison, the LHW and CaO pretreatments significantly enhanced biomass enzymatic hydrolysis, leading to much high bioethanol yield obtained at 19% (% dry matter) with an almost complete hexoses-ethanol conversion in the desirable So5 bagasse sample. Despite the LHW and CaO are distinctive for extracting hemicellulose and lignin, both pretreatments largely reduced cellulose degree of polymerization for enhanced lignocellulose enzymatic saccharification. Further chemical analysis indicated that the pretreated So5 sample had much lower cellulose crystalline index, hemicellulosic Xyl/Ara and lignin S/H ratio than those of other biomass samples, which explained that the So5 had the highest bioethanol yield among Saccharum species. Therefore, a mechanism model was proposed to elucidate how mild pretreatments could enhance biomass enzymatic saccharification for a high bioethanol production in the desirable sugarcane bagasse.
Collapse
Affiliation(s)
- Meng Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hua Yu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China.
| | - Ao Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiuming Cai
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Peng Liu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruofei Hu
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang City, Hubei Province 441053, China.
| | - Bo Hao
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
You Y, Li P, Lei F, Xing Y, Jiang J. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:92. [PMID: 28413447 PMCID: PMC5390481 DOI: 10.1186/s13068-017-0771-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/22/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. RESULTS Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). CONCLUSIONS GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an effective conversion process for ethanol production at high solid loading.
Collapse
Affiliation(s)
- Yanzhi You
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083 China
| | - Pengfei Li
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006 China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006 China
| | - Yang Xing
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083 China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
16
|
|
17
|
Terán Hilares R, Swerts MP, Ahmed MA, Ramos L, da Silva SS, Santos JC. Organosolv Pretreatment of Sugar Cane Bagasse for Bioethanol Production. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruly Terán Hilares
- Department
of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo CEP 12602-810, Brazil
| | - Mateus Pereira Swerts
- Department
of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo CEP 12602-810, Brazil
| | - Muhammad Ajaz Ahmed
- Department
of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Lucas Ramos
- Department
of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo CEP 12602-810, Brazil
| | - Silvio Silvério da Silva
- Department
of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo CEP 12602-810, Brazil
| | - Júlio César Santos
- Department
of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo CEP 12602-810, Brazil
| |
Collapse
|
18
|
Zheng Y, Shi J, Tu M, Cheng YS. Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Forde GM, Rainey TJ, Speight R, Batchelor W, Pattenden LK. Matching the biomass to the bioproduct. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
You Y, Yang S, Bu L, Jiang J, Sun D. Comparative study of simultaneous saccharification and fermentation byproducts from sugarcane bagasse using steam explosion, alkaline hydrogen peroxide and organosolv pretreatments. RSC Adv 2016. [DOI: 10.1039/c5ra26356e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most of the hemicelluloses were removed and more acetyl groups were generated after steam pretreatment, and a high acetic acid concentration was observed during SSF.
Collapse
Affiliation(s)
- Yanzhi You
- Department of Chemistry and Chemical Engineering
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
| | - Shujuan Yang
- Department of Chemistry and Chemical Engineering
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
| | - Lingxi Bu
- State Grid Energy Conservation Service Ltd
- Beijing Biomass Energy Technology Center
- Beijing
- China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Forestry University
- Beijing
- China
| | - Dafeng Sun
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing
- China
| |
Collapse
|