1
|
Sun H, Xie X, Ding J. Electrogenic performance and carbon sequestration potential of biophotovoltaics. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:50. [PMID: 39331084 DOI: 10.1007/s00114-024-01936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Biophotovoltaics (BPV) is a clean and sustainable solar energy generation technology that operates by utilizing photosynthetic autotrophic microorganisms to capture light energy and generate electricity. However, a major challenge faced by BPV systems is the relatively low electron transfer efficiency from the photosystem to the extracellular electrode, which limits its electrical output. Additionally, the transfer mechanisms of photosynthetic microorganism metabolites in the entire system are still not fully clear. In response to this, this article briefly introduces the basic BPV principles, reviews its development history, and summarizes measures to optimize its electrogenic efficiency. Furthermore, recent studies have found that constructing photosynthetic-electrogenic microbial consortia can achieve high power density and stability in BPV systems. Therefore, the article discusses the potential application of constructing photosynthetic-electrogenic microbial aggregates in BPV systems. Since photosynthetic-electrogenic microbial communities can also exist in natural ecosystems, their potential contribution to the carbon cycle is worth further attention.
Collapse
Affiliation(s)
- Haitang Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jing Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Zhu H, Wang H, Zhang Y, Li Y. Biophotovoltaics: Recent advances and perspectives. Biotechnol Adv 2023; 64:108101. [PMID: 36681132 DOI: 10.1016/j.biotechadv.2023.108101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Biophotovoltaics (BPV) is a clean power generation technology that uses self-renewing photosynthetic microorganisms to capture solar energy and generate electrical current. Although the internal quantum efficiency of charge separation in photosynthetic microorganisms is very high, the inefficient electron transfer from photosystems to the extracellular electrodes hampered the electrical outputs of BPV systems. This review summarizes the approaches that have been taken to increase the electrical outputs of BPV systems in recent years. These mainly include redirecting intracellular electron transfer, broadening available photosynthetic microorganisms, reinforcing interfacial electron transfer and design high-performance devices with different configurations. Furthermore, three strategies developed to extract photosynthetic electrons were discussed. Among them, the strategy of using synthetic microbial consortia could circumvent the weak exoelectrogenic activity of photosynthetic microorganisms and the cytotoxicity of exogenous electron mediators, thus show great potential in enhancing the power output and prolonging the lifetime of BPV systems. Lastly, we prospected how to facilitate electron extraction and further improve the performance of BPV systems.
Collapse
Affiliation(s)
- Huawei Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haowei Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Wey LT, Bombelli P, Chen X, Lawrence JM, Rabideau CM, Rowden SJL, Zhang JZ, Howe CJ. The Development of Biophotovoltaic Systems for Power Generation and Biological Analysis. ChemElectroChem 2019; 6:5375-5386. [PMID: 31867153 PMCID: PMC6899825 DOI: 10.1002/celc.201900997] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/29/2019] [Indexed: 11/05/2022]
Abstract
Biophotovoltaic systems (BPVs) resemble microbial fuel cells, but utilise oxygenic photosynthetic microorganisms associated with an anode to generate an extracellular electrical current, which is stimulated by illumination. Study and exploitation of BPVs have come a long way over the last few decades, having benefited from several generations of electrode development and improvements in wiring schemes. Power densities of up to 0.5 W m-2 and the powering of small electrical devices such as a digital clock have been reported. Improvements in standardisation have meant that this biophotoelectrochemical phenomenon can be further exploited to address biological questions relating to the organisms. Here, we aim to provide both biologists and electrochemists with a review of the progress of BPV development with a focus on biological materials, electrode design and interfacial wiring considerations, and propose steps for driving the field forward.
Collapse
Affiliation(s)
- Laura T. Wey
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Paolo Bombelli
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
- Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanItaly
| | - Xiaolong Chen
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB1 2EWUK
| | - Joshua M. Lawrence
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Clayton M. Rabideau
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
- Department of Chemical Engineering and BiotechnologyUniversity of Cambridge Philippa Fawcett DrCambridgeCB3 0ASUK
| | - Stephen J. L. Rowden
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Jenny Z. Zhang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB1 2EWUK
| | - Christopher J. Howe
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
4
|
Jiang Y, Zeng RJ. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application. BIORESOURCE TECHNOLOGY 2019; 271:439-448. [PMID: 30292689 DOI: 10.1016/j.biortech.2018.09.133] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The extracellular electron transfer (EET) between microorganisms and electrodes forms the basis for microbial electrochemical technology (MET), which recently have advanced as a flexible platform for applications in energy and environmental science. This review, for the first time, focuses on the electrode-biofilm capable of bidirectional EET, where the electrochemically active bacteria (EAB) can conduct both the outward EET (from EAB to electrodes) and the inward EET (from electrodes to EAB). Only few microorganisms are tested in pure culture with the capability of bidirectional EET, however, the mixed culture based bidirectional EET offers great prospects for biocathode enrichment, pollutant complete mineralization, biotemplated material development, pH stabilization, and bioelectronic device design. Future efforts are necessary to identify more EAB capable of the bidirectional EET, to balance the current density, to evaluate the effectiveness of polarity reversal for biocathode enrichment, and to boost the future research endeavors of such a novel function.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Photosynthetic Microbial Fuel Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:159-175. [PMID: 28070595 DOI: 10.1007/10_2016_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
This chapter presents the current state of research on bioelectrochemical systems that include phototrophic organisms. First, we describe what is known of how phototrophs transfer electrons from internal metabolism to external substrates. This includes efforts to understand both the source of electrons and transfer pathways within cells. Second, we consider technological progress toward producing bio-photovoltaic devices with phototrophs. Efforts to improve these devices by changing the species included, the electrode surfaces, and chemical mediators are described. Finally, we consider future directions for this research field.
Collapse
|
6
|
Halan B, Tschörtner J, Schmid A. Generating Electric Current by Bioartificial Photosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 167:361-393. [PMID: 29224082 DOI: 10.1007/10_2017_44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abundant solar energy can be a sustainable source of energy. This chapter highlights recent advancements, challenges, and future scenarios in bioartificial photosynthesis, which is a new subset of bioelectrochemical systems (BESs) and technologies. BES technologies exploit the catalytic interactions between biological moieties and electrodes. At the nexus of BES and photovoltaics, this review focuses on light-harvesting technologies based on bioartificial photosynthesis. Such technologies are promising because electrical energy is generated from sunlight and water without the need for additional organic feedstock. This review focuses on photosynthetic electron generation and transfer and compares the current status of bioartificial photosynthesis with other artificial systems that mimic the chemistry of photosynthetic energy transformation.The fundamental principles and the operation of functional units of bioartificial photosynthesis are addressed. Selected photobioelectrochemical systems employed to obtain light-driven electric currents from photosynthetic organisms are presented. The achievable current output and theoretical maxima are revisited by conceptualizing operational and process window techniques. Factors affecting overall photocurrent efficiency, performance limitations, and scaleup bottlenecks are highlighted in view of enhancing the energy conversion efficiency of photobioelectrochemical systems. To finish, the challenges associated with bioartificial photosynthetic technologies are outlined. Graphical Abstract Operational window for (bio-)artificial photosynthesis. Green circle in the upper right corner: development objective for research and engineering efforts.
Collapse
Affiliation(s)
- Babu Halan
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Jenny Tschörtner
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany.
| |
Collapse
|
7
|
Darus L, Ledezma P, Keller J, Freguia S. Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. PHOTOSYNTHESIS RESEARCH 2016; 127:347-354. [PMID: 26407568 DOI: 10.1007/s11120-015-0193-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
This work studies how extracellular electron transfer (EET) from cyanobacteria-dominated marine microbial biofilms to solid electrodes is affected by the availability of inorganic carbon (Ci). The EET was recorded chronoamperometrically in the form of electrical current by a potentiostat in two identical photo-electrochemical cells using carbon electrodes poised at a potential of +0.6 V versus standard hydrogen electrode under 12/12 h illumination/dark cycles. The Ci was supplied by the addition of NaHCO3 to the medium and/or by sparging CO2 gas. At high Ci conditions, EET from the microbial biofilm to the electrodes was observed only during the dark phase, indicating the occurrence of a form of night-time respiration that can use insoluble electrodes as the terminal electron acceptor. At low or no Ci conditions, however, EET also occurred during illumination suggesting that, in the absence of their natural electron acceptor, some cyanobacteria are able to utilise solid electrodes as an electron sink. This may be a natural survival mechanism for cyanobacteria to maintain redox balance in environments with limiting CO2 and/or high light intensity.
Collapse
Affiliation(s)
- Libertus Darus
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jürg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|