1
|
Barragán-Trinidad M, Buitrón G. Pretreatment of agave bagasse with ruminal fluid to improve methane recovery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:52-61. [PMID: 38159368 DOI: 10.1016/j.wasman.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Agave bagasse, a lignocellulosic waste that results from the milling and juice extraction of Agave tequilana var azul pineapples, is a suitable substrate for the production of methane through anaerobic digestion. However, it is necessary to apply a pretreatment to convert the bagasse into energy. In this context, this paper proposes using ruminal microorganisms to hydrolyze agave bagasse. This study evaluated the effect of the initial agave bagasse to ruminal fluid (S0/X0) ratio (0.33, 0.5, 1, and 2) on the hydrolysis efficiency. Subsequently, the supernatant was used for methane production. The hydrolysis efficiency increased as the S0/X0 ratio decreased. A hydrolysis efficiency of 60 % was achieved using an S0/X0 ratio of 0.33. The S0/X0 ratio of 0.33 optimally improved the specific methane production and energy recovery (155 ± 2 mL CH4/g TS and 6.1 ± 0.1 kJ/g TS) compared to raw biomass. The most abundant hydrolytic bacteria were Prevotella, Ruminococcus and Fibrobacter, and Engyodontium was the most abundant proteolytic fungus.
Collapse
Affiliation(s)
- Martín Barragán-Trinidad
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
2
|
Fakih I, Got J, Robles-Rodriguez CE, Siegel A, Forano E, Muñoz-Tamayo R. Dynamic genome-based metabolic modeling of the predominant cellulolytic rumen bacterium Fibrobacter succinogenes S85. mSystems 2023; 8:e0102722. [PMID: 37289026 PMCID: PMC10308913 DOI: 10.1128/msystems.01027-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/14/2023] [Indexed: 06/09/2023] Open
Abstract
Fibrobacter succinogenes is a cellulolytic bacterium that plays an essential role in the degradation of plant fibers in the rumen ecosystem. It converts cellulose polymers into intracellular glycogen and the fermentation metabolites succinate, acetate, and formate. We developed dynamic models of F. succinogenes S85 metabolism on glucose, cellobiose, and cellulose on the basis of a network reconstruction done with the automatic reconstruction of metabolic model workspace. The reconstruction was based on genome annotation, five template-based orthology methods, gap filling, and manual curation. The metabolic network of F. succinogenes S85 comprises 1,565 reactions with 77% linked to 1,317 genes, 1,586 unique metabolites, and 931 pathways. The network was reduced using the NetRed algorithm and analyzed for the computation of elementary flux modes. A yield analysis was further performed to select a minimal set of macroscopic reactions for each substrate. The accuracy of the models was acceptable in simulating F. succinogenes carbohydrate metabolism with an average coefficient of variation of the root mean squared error of 19%. The resulting models are useful resources for investigating the metabolic capabilities of F. succinogenes S85, including the dynamics of metabolite production. Such an approach is a key step toward the integration of omics microbial information into predictive models of rumen metabolism. IMPORTANCE F. succinogenes S85 is a cellulose-degrading and succinate-producing bacterium. Such functions are central for the rumen ecosystem and are of special interest for several industrial applications. This work illustrates how information of the genome of F. succinogenes can be translated to develop predictive dynamic models of rumen fermentation processes. We expect this approach can be applied to other rumen microbes for producing a model of rumen microbiome that can be used for studying microbial manipulation strategies aimed at enhancing feed utilization and mitigating enteric emissions.
Collapse
Affiliation(s)
- Ibrahim Fakih
- Université Clermont Auvergne, INRAE, UMR454 Microbiologie Environnement Digestif et Santé, 63000 Clermont-Ferrand, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| | - Jeanne Got
- Université Rennes, Inria, CNRS, IRISA, Dyliss team, 35042 Rennes, France
| | | | - Anne Siegel
- Université Rennes, Inria, CNRS, IRISA, Dyliss team, 35042 Rennes, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR454 Microbiologie Environnement Digestif et Santé, 63000 Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| |
Collapse
|
3
|
Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation. Microorganisms 2022; 10:microorganisms10040761. [PMID: 35456811 PMCID: PMC9024811 DOI: 10.3390/microorganisms10040761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.
Collapse
|
4
|
Bhujbal SK, Ghosh P, Vijay VK, Rathour R, Kumar M, Singh L, Kapley A. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152773. [PMID: 34979222 DOI: 10.1016/j.scitotenv.2021.152773] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is an abundant resource with untapped potential for biofuel, enzymes, and chemical production. Its complex recalcitrant structure obstructs its bioconversion into biofuels and other value-added products. For improving its bioconversion efficiency, it is important to deconstruct its complex structure. In natural systems like rumen, diverse microbial communities carry out hydrolysis, acidogenesis, acetogenesis, and methanogenesis of lignocellulosic biomass through physical penetration, synergistic and enzymatic actions enhancing lignocellulose degradation activity. This review article aims to discuss comprehensively the rumen microbial ecosystem, their interactions, enzyme production, and applications for efficient bioconversion of lignocellulosic waste to biofuels. Furthermore, meta 'omics' approaches to elucidate the structure and functions of rumen microorganisms, fermentation mechanisms, microbe-microbe interactions, and host-microbe interactions have been discussed thoroughly. Additionally, feed additives' role in improving ruminal fermentation efficiency and reducing environmental nitrogen losses has been discussed. Finally, the current status of rumen microbiota applications and future perspectives for the development of rumen mimic bioreactors for efficient bioconversion of lignocellulosic wastes to biofuels and chemicals have been highlighted.
Collapse
Affiliation(s)
- Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashmi Rathour
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Manish Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Lal Singh
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Atya Kapley
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| |
Collapse
|
5
|
Screening and Application of Ligninolytic Microbial Consortia to Enhance Aerobic Degradation of Solid Digestate. Microorganisms 2022; 10:microorganisms10020277. [PMID: 35208731 PMCID: PMC8878073 DOI: 10.3390/microorganisms10020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Recirculation of solid digestate through digesters has been demonstrated to be a potential simple strategy to increase continuous stirred-tank reactor biogas plant efficiency. This study extended this earlier work and investigated solid digestate post-treatment using liquid isolated ligninolytic aerobic consortia in order to increase methane recovery during the recirculation. Based on sampling in several natural environments, an enrichment and selection method was implemented using a Lab-scale Automated and Multiplexed (an)Aerobic Chemostat system to generate ligninolytic aerobic consortia. Then, obtained consortia were further cultivated under liquid form in bottles. Chitinophagia bacteria and Sordariomycetes fungi were the two dominant classes of microorganisms enriched through these steps. Finally, these consortia where mixed with the solid digestate before a short-term aerobic post-treatment. However, consortia addition did not increase the efficiency of aerobic post-treatment of solid digestate and lower methane yields were obtained in comparison to the untreated control. The main reason identified is the respiration of easily degradable fractions (e.g., sugars, proteins, amorphous cellulose) by the selected consortia. Thus, this paper highlights the difficulties of constraining microbial consortia to sole ligninolytic activities on complex feedstock, such as solid digestate, that does not only contain lignocellulosic structures.
Collapse
|
6
|
Krause JL, Engelmann B, Nunes da Rocha U, Pierzchalski A, Chang HD, Zenclussen AC, von Bergen M, Rolle-Kampczyk U, Herberth G. MAIT cell activation is reduced by direct and microbiota-mediated exposure to bisphenols. ENVIRONMENT INTERNATIONAL 2022; 158:106985. [PMID: 34991247 DOI: 10.1016/j.envint.2021.106985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Oral uptake is the primary route of human bisphenol exposure, resulting in an exposure of the intestinal microbiota and intestine-associated immune cells. Therefore, we compared the impact of bisphenol A (BPA), bisphenol F (BPF) and bisphenol S (BPS) on (i) intestinal microbiota, (ii) microbiota-mediated immunomodulatory effects and (iii) direct effects on mucosal-associated invariant T (MAIT) cells in vitro. We acutely exposed human fecal microbiota, Bacteroides thetaiotaomicron and Escherichia coli to BPA and its analogues BPF and BPS referring to the European tolerable daily intake (TDI), i.e. 2.3 µg/mL, 28.3 µg/mL and 354.0 µg/mL. Growth and viability of E. coli was most susceptible to BPF, whereas B.thetaiotaomicron and fecal microbiota were affected by BPA > BPF > BPS. At 354.0 µg/mL bisphenols altered microbial diversity in compound-specific manner and modulated microbial metabolism, with BPA already acting on metabolism at 28.3 µg/mL. Microbiota-mediated effects on MAIT cells were observed for the individual bacteria at 354.0 µg/mL only. However, BPA and BPF directly modulated MAIT cell responses at low concentrations, whereby bisphenols at concentrations equivalent for the current TDI had no modulatory effects for microbiota or for MAIT cells. Our findings indicate that acute bisphenol exposure may alter microbial metabolism and impact directly on immune cells.
Collapse
Affiliation(s)
- J L Krause
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; present address: German Rheumatism Research Center Berlin, a Leibniz Institute - DRFZ, Schwiete laboratory for microbiota and inflammation, Berlin, Germany
| | - B Engelmann
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - U Nunes da Rocha
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, Germany
| | - A Pierzchalski
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - H D Chang
- present address: German Rheumatism Research Center Berlin, a Leibniz Institute - DRFZ, Schwiete laboratory for microbiota and inflammation, Berlin, Germany; Chair of Cytometry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - A C Zenclussen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - M von Bergen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Germany
| | - U Rolle-Kampczyk
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - G Herberth
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany.
| |
Collapse
|
7
|
Rajeswari G, Jacob S, Chandel AK, Kumar V. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Microb Cell Fact 2021; 20:107. [PMID: 34044834 PMCID: PMC8161579 DOI: 10.1186/s12934-021-01597-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Uprising fossil fuel depletion and deterioration of ecological reserves supply have led to the search for alternative renewable and sustainable energy sources and chemicals. Although first generation biorefinery is quite successful commercially in generating bulk of biofuels globally, the food versus fuel debate has necessitated the use of non-edible feedstocks, majorly waste biomass, for second generation production of biofuels and chemicals. A diverse class of microbes and enzymes are being exploited for biofuels production for a series of treatment process, however, the conversion efficiency of wide range of lignocellulosic biomass (LCB) and consolidated way of processing remains challenging. There were lot of research efforts in the past decade to scour for potential microbial candidate. In this context, evolution has developed the gut microbiota of several insects and ruminants that are potential LCB degraders host eco-system to overcome its host nutritional constraints, where LCB processed by microbiomes pretends to be a promising candidate. Synergistic microbial symbionts could make a significant contribution towards recycling the renewable carbon from distinctly abundant recalcitrant LCB. Several studies have assessed the bioprospection of innumerable gut symbionts and their lignocellulolytic enzymes for LCB degradation. Though, some reviews exist on molecular characterization of gut microbes, but none of them has enlightened the microbial community design coupled with various LCB valorization which intensifies the microbial diversity in biofuels application. This review provides a deep insight into the significant breakthroughs attained in enrichment strategy of gut microbial community and its molecular characterization techniques which aids in understanding the holistic microbial community dynamics. Special emphasis is placed on gut microbial role in LCB depolymerization strategies to lignocellulolytic enzymes production and its functional metagenomic data mining eventually generating the sugar platform for biofuels and renewable chemicals production.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India.
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, 12.602.810, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
8
|
Liang J, Zheng W, Zhang H, Zhang P, Cai Y, Wang Q, Zhou Z, Ding Y. Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116130. [PMID: 33261966 DOI: 10.1016/j.envpol.2020.116130] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Rumen liquid can effectively degrade lignocellulosic biomass, in which rumen microorganisms play an important role. In this study, transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw was explored. Results showed that rice straw was efficiently hydrolyzed and acidified, and the degradation efficiency of cellulose, hemicellulose and lignin reached 46.2%, 60.4%, and 12.9%, respectively. The concentration of soluble chemical oxygen demand (SCOD) and total volatile fatty acid (VFA) reached 12.9 and 8.04 g L-1. The high-throughput sequencing results showed that structure of rumen bacterial community significantly changed in anaerobic digestion. The Shannon diversity index showed that rumen bacterial diversity decreased by 32.8% on the 5th day of anaerobic digestion. The relative abundance of Prevotella and Fibrobacter significantly increased, while Ruminococcus significantly decreased at the genus level. The Spearman correlation heatmap showed that pH and VFA were the critical factors affecting the rumen bacterial community structure. The function prediction found that rumen bacteria mainly functioned in carbohydrate transport and metabolism, which might contain a large number of lignocellulose degrading enzyme genes. These studies are conducive to the better application of rumen microorganisms in the degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenge Zheng
- Beijing General Working Station of Soil and Water Conservation, Beijing, 100036, China
| | - Haibo Zhang
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, 030801, China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zeyan Zhou
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yiran Ding
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
9
|
Nguyen AQ, Nguyen LN, Johir MAH, Ngo HH, Chaves AV, Nghiem LD. Derivation of volatile fatty acid from crop residues digestion using a rumen membrane bioreactor: A feasibility study. BIORESOURCE TECHNOLOGY 2020; 312:123571. [PMID: 32502890 DOI: 10.1016/j.biortech.2020.123571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
This study evaluates the feasibility of a novel rumen membrane bioreactor (rumen MBR) to produce volatile fatty acids (VFA) from crop residues (i.e. lignocellulosic biomass). Rumen MBR can provide a sustainable route for VFA production by mimicking the digestive system of ruminant animals. Rumen fluid was inoculated in a reactor coupled with ultrafiltration (UF) membrane and fed with maize silage and concentrate feed at 60:40% (w/w). Continuous VFA production was achieved at an average daily yield of 438 mg VFA/g substrate. The most abundant VFA were acetic (40-80%) and propionic (10-40%) acids. The majority (73 ± 15%) of produced VFA was transferred through the UF membrane. Shifts in dominant rumen microbes were observed upon the transition from in vivo to in vitro environment and during reactor operation, however, stable VFA yield was maintained for 35 days, providing the first proof-of-concept of a viable rumen MBR.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
10
|
Zhao Y, Xu C, Ai S, Wang H, Gao Y, Yan L, Mei Z, Wang W. Biological pretreatment enhances the activity of functional microorganisms and the ability of methanogenesis during anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 290:121660. [PMID: 31326651 DOI: 10.1016/j.biortech.2019.121660] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Biological pretreatment can increase the methane production of anaerobic digestion. In this study, stover was pretreated via microbial consortium prior to anaerobic digestion; through 16S rRNA gene and 16S rRNA amplicon sequencing and metatranscriptomic analysis, and the effects of the pretreatment on the microbial community and critical factors of the increased methane production were studied. Microbial community structure was less affected by the pretreatment, which ensures the stable performance of anaerobic digestion. The methane production increased by 62.85% at the peak phase compared to the untreated stover. The activity of Methanosaeta increased from 2.0% to 10.1%, significantly enhancing the ability of the community to capture acetic acid and reduce CO2 to methane. The main contribution to the increase in methane production was a unique acetyl-CoA synthetase, which showed significant up-regulation (121.8%). This research demonstrated the importance of Methanosaeta and its unique metabolic pathways in anaerobic digestion utilizing a biological pretreatment.
Collapse
Affiliation(s)
- Yiquan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Congfeng Xu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shiqi Ai
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Haipeng Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yamei Gao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Zili Mei
- Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041 Chengdu, PR China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| |
Collapse
|
11
|
Lazuka A, Auer L, O’Donohue M, Hernandez-Raquet G. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:284. [PMID: 30356893 PMCID: PMC6191919 DOI: 10.1186/s13068-018-1282-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/06/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Lignocellulose is the most abundant renewable carbon resource that can be used for biofuels and commodity chemicals production. The ability of complex microbial communities present in natural environments that are specialized in biomass deconstruction can be exploited to develop lignocellulose bioconversion processes. Termites are among the most abundant insects on earth and play an important role in lignocellulose decomposition. Although their digestive microbiome is recognized as a potential reservoir of microorganisms producing lignocellulolytic enzymes, the potential to enrich and maintain the lignocellulolytic activity of microbial consortia derived from termite gut useful for lignocellulose biorefinery has not been assessed. Here, we assessed the possibility of enriching a microbial consortium from termite gut and maintaining its lignocellulose degradation ability in controlled anaerobic bioreactors. RESULTS We enriched a termite gut-derived consortium able to transform lignocellulose into carboxylates under anaerobic conditions. To assess the impact of substrate natural microbiome on the enrichment and the maintenance of termite gut microbiome, the enrichment process was performed using both sterilized and non-sterilized straw. The enrichment process was carried out in bioreactors operating under industrially relevant aseptic conditions. Two termite gut-derived microbial consortia were obtained from Nasutitermes ephratae by sequential batch culture on raw wheat straw as the sole carbon source. Analysis of substrate loss, carboxylate production and microbial diversity showed that regardless of the substrate sterility, the diversity of communities selected by the enrichment process strongly changed compared to that observed in the termite gut. Nevertheless, the community obtained on sterile straw displayed higher lignocellulose degradation capacity; it showed a high xylanase activity and an initial preference for hemicellulose. CONCLUSIONS This study demonstrates that it is possible to enrich and maintain a microbial consortium derived from termite gut microbiome in controlled anaerobic bioreactors, producing useful carboxylates from raw biomass. Our results suggest that the microbial community is shaped both by the substrate and the conditions that prevail during enrichment. However, when aseptic conditions are applied, it is also affected by the biotic pressure exerted by microorganisms naturally present in the substrate and in the surrounding environment. Besides the efficient lignocellulolytic consortium enriched in this study, our results revealed high levels of xylanase activity that can now be further explored for enzyme identification and overexpression for biorefinery purposes.
Collapse
Affiliation(s)
- Adèle Lazuka
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés - LISBP, UMR5504, UMR792, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex 04, France
| | - Lucas Auer
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés - LISBP, UMR5504, UMR792, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex 04, France
| | - Michael O’Donohue
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés - LISBP, UMR5504, UMR792, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex 04, France
| | - Guillermina Hernandez-Raquet
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés - LISBP, UMR5504, UMR792, CNRS, INRA, INSA, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse Cedex 04, France
| |
Collapse
|
12
|
Gales A, Chatellard L, Abadie M, Bonnafous A, Auer L, Carrère H, Godon JJ, Hernandez-Raquet G, Dumas C. Screening of Phytophagous and Xylophagous Insects Guts Microbiota Abilities to Degrade Lignocellulose in Bioreactor. Front Microbiol 2018; 9:2222. [PMID: 30337907 PMCID: PMC6178917 DOI: 10.3389/fmicb.2018.02222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/31/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial consortia producing specific enzymatic cocktails are present in the gut of phytophagous and xylophagous insects; they are known to be the most efficient ecosystems to degrade lignocellulose. Here, the ability of these consortia to degrade ex vivo lignocellulosic biomass in anaerobic bioreactors was characterized in term of bioprocess performances, enzymatic activities and bacterial community structure. In a preliminary screening, guts of Ergates faber (beetle), Potosia cuprea (chafer), Gromphadorrhina portentosa (cockroach), Locusta migratoria (locust), and Gryllus bimaculatus (cricket) were inoculated in anaerobic batch reactors, in presence of grounded wheat straw at neutral pH. A short duration fermentation of less than 8 days was observed and was related to a drop of pH from 7 to below 4.5, leading to an interruption of gas and metabolites production. Consistently, a maximum of 180 mgeq.COD of metabolites accumulated in the medium, which was related to a low degradation of the lignocellulosic biomass, with a maximum of 5 and 2.2% observed for chafer and locust gut consortia. The initial cell-bound and extracellular enzyme activities, i.e., xylanase and β-endoglucanase, were similar to values observed in the literature. Wheat straw fermentation in bioreactors leads to an increase of cell-bounded enzyme activities, with an increase of 145% for cockroach xylanase activity. Bacterial community structures were insect dependent and mainly composed of Clostridia, Bacteroidia and Gammaproteobacteria. Improvement of lignocellulose biodegradation was operated in successive batch mode at pH 8 using the most interesting consortia, i.e., locust, cockroaches and chafer gut consortia. In these conditions, lignocellulose degradation increased significantly: 8.4, 10.5, and 21.0% of the initial COD were degraded for chafer, cockroaches and locusts, respectively in 15 days. Consistently, xylanase activity tripled for the three consortia, attesting the improvement of the process. Bacteroidia was the major bacterial class represented in the bacterial community for all consortia, followed by Clostridia and Gammaproteobacteria classes. This work demonstrates the possibility to maintain apart of insect gut biological activity ex vivo and shows that lignocellulose biodegradation can be improved by using a biomimetic approach. These results bring new insights for the optimization of lignocellulose degradation in bioreactors.
Collapse
Affiliation(s)
| | | | - Maider Abadie
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | | | - Lucas Auer
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | | | | | - Guillermina Hernandez-Raquet
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Claire Dumas
- LBE, University of Montpellier, INRA, Narbonne, France.,Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| |
Collapse
|
13
|
Salfer IJ, Staley C, Johnson HE, Sadowsky MJ, Stern MD. Comparisons of bacterial and archaeal communities in the rumen and a dual-flow continuous culture fermentation system using amplicon sequencing. J Anim Sci 2018. [PMID: 29529208 DOI: 10.1093/jas/skx056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dual-flow continuous culture (CC) fermenters are commonly used to study rumen fermentation in vitro. Research using culture-based and oligonucleotide techniques has shown that certain microbial populations within fermenters may be maintained at abundances similar to those observed in vivo. In this study, bacterial and archaeal communities in the rumen of dairy cattle and in a dual-flow CC fermentation system were compared using high-throughput amplicon sequencing targeting the V4 hypervariable region of 16S rRNA. We hypothesized that the in vitro system harbored a comparable bacterial and archaeal community to that observed in the rumen. Members of the Bacteroidetes and Firmicutes made up the 2 most abundant phyla in the rumen, inoculum, and fermenters and did not differ among sample types (P > 0.10). Similarly, Prevotellaceae, the most abundant family in all 3 sample types, did not differ based on source (P = 0.80). However, beta diversity analyses revealed that bacterial and archaeal communities differed between fermenters and rumen samples (P ≤ 0.001), but fermenter bacterial and archaeal communities stabilized by day 4 of each period. While the overall bacterial and archaeal community differs between natural rumens and those detected in in vitro fermenter systems, several prominent taxa were maintained at similar relative abundances suggesting that fermenters may provide a suitable environment in which to study shifts among the predominant members of the microbial community.
Collapse
Affiliation(s)
- I J Salfer
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - C Staley
- BioTechnology Institute, Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - H E Johnson
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - M J Sadowsky
- BioTechnology Institute, Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - M D Stern
- Department of Animal Science, University of Minnesota, St. Paul, MN
| |
Collapse
|
14
|
Kong X, Du J, Ye X, Xi Y, Jin H, Zhang M, Guo D. Enhanced methane production from wheat straw with the assistance of lignocellulolytic microbial consortium TC-5. BIORESOURCE TECHNOLOGY 2018; 263:33-39. [PMID: 29729539 DOI: 10.1016/j.biortech.2018.04.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
The major obstacle of methane production from lignocellulose lies in the inefficient deconstruction of biomass. In this study, an anaerobic microbial consortium TC-5 was enriched with high lignocellulose-degradation capacity to enhance methane production from wheat straw. High degradation ratio of 45.7% of un-pretreated wheat straw was achieved due to a multi-species lignocellulolytic enzyme presented in the crude culture supernatant. The specific activity of xylanase, xylan esterase and β-xylosidase reached the highest level of 4.23, 0.15 and 0.48 U/mg, while cellobiohydrolase, endoglucanase and β-glucosidase showed the highest specific activity of 0.36, 0.22 and 0.41 U/mg during 9 days' degradation. Inoculation of TC-5 in digestion sludge during anaerobic digestion of wheat straw resulted in remarkable enhancement of 22.2% and 36.6% in methane yield under mesophilic and thermophilic conditions, respectively. This work demonstrates the potential of TC-5 for enhancing the production of biogas and other chemicals through biomass based biorefinery.
Collapse
Affiliation(s)
- Xiangping Kong
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Jing Du
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Xiaomei Ye
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China.
| | - Yonglan Xi
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Hongmei Jin
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Min Zhang
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Dong Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing 211816, People's Republic of China
| |
Collapse
|
15
|
Camarasa C, Chiron H, Daboussi F, Della Valle G, Dumas C, Farines V, Floury J, Gagnaire V, Gorret N, Leonil J, Mouret JR, O'Donohue MJ, Sablayrolles JM, Salmon JM, Saulnier L, Truan G. INRA's research in industrial biotechnology: For food, chemicals, materials and fuels. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Enriching ruminal polysaccharide-degrading consortia via co-inoculation with methanogenic sludge and microbial mechanisms of acidification across lignocellulose loading gradients. Appl Microbiol Biotechnol 2018; 102:3819-3830. [DOI: 10.1007/s00253-018-8877-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/25/2022]
|
17
|
Auer L, Lazuka A, Sillam-Dussès D, Miambi E, O'Donohue M, Hernandez-Raquet G. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Front Microbiol 2017; 8:2623. [PMID: 29312279 PMCID: PMC5744482 DOI: 10.3389/fmicb.2017.02623] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022] Open
Abstract
Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules.
Collapse
Affiliation(s)
- Lucas Auer
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - Adèle Lazuka
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - David Sillam-Dussès
- Laboratoire d'Éthologie Expérimentale et Comparée, Université Paris 13 - Sorbonne Paris Cité, Villetaneuse, France
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Institut de Recherche Pour le Développement – Sorbonne Universités, Bondy, France
| | - Edouard Miambi
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Université Paris-Est Créteil, Créteil, France
| | - Michael O'Donohue
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - Guillermina Hernandez-Raquet
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| |
Collapse
|
18
|
Shrestha S, Fonoll X, Khanal SK, Raskin L. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. BIORESOURCE TECHNOLOGY 2017; 245:1245-1257. [PMID: 28941664 DOI: 10.1016/j.biortech.2017.08.089] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 05/23/2023]
Abstract
Lignocellulosic biomass is the most abundant renewable bioresource on earth. In lignocellulosic biomass, the cellulose and hemicellulose are bound with lignin and other molecules to form a complex structure not easily accessible to microbial degradation. Anaerobic digestion (AD) of lignocellulosic biomass with a focus on improving hydrolysis, the rate limiting step in AD of lignocellulosic feedstocks, has received considerable attention. This review highlights challenges with AD of lignocellulosic biomass, factors contributing to its recalcitrance, and natural microbial ecosystems, such as the gastrointestinal tracts of herbivorous animals, capable of performing hydrolysis efficiently. Biological strategies that have been evaluated to enhance hydrolysis of lignocellulosic biomass include biological pretreatment, co-digestion, and inoculum selection. Strategies to further improve these approaches along with future research directions are outlined with a focus on linking studies of microbial communities involved in hydrolysis of lignocellulosics to process engineering.
Collapse
Affiliation(s)
- Shilva Shrestha
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA; Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | - Xavier Fonoll
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA.
| |
Collapse
|
19
|
Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments. Appl Microbiol Biotechnol 2017; 102:1035-1043. [DOI: 10.1007/s00253-017-8632-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/02/2017] [Accepted: 11/05/2017] [Indexed: 01/05/2023]
|
20
|
Barragán-Trinidad M, Carrillo-Reyes J, Buitrón G. Hydrolysis of microalgal biomass using ruminal microorganisms as a pretreatment to increase methane recovery. BIORESOURCE TECHNOLOGY 2017; 244:100-107. [PMID: 28779660 DOI: 10.1016/j.biortech.2017.07.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 05/16/2023]
Abstract
The use of ruminal fluid as a source of hydrolytic microorganisms for the pretreatment of a native consortium of microalgae (essentially Senedesmus) was investigated. The hydrolytic enzyme activity of the ruminal culture was first enriched in a bioreactor. Then, using the enriched culture, the effect of the microalgae to the ruminal fluid ratio (S/X) on the hydrolysis and subsequent production of methane was investigated. An S/X ratio of 0.5 showed the best hydrolysis efficiency (29%) reaching in a second stage process a methane yield of 193mL CH4g COD-1. The processing time (pretreatment plus methanization) was only 7days. The predominant ruminal hydrolytic bacteria selected in the enrichment were principally Clostridium, Proteocatella and Pseudomonas.
Collapse
Affiliation(s)
- Martín Barragán-Trinidad
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Queretaro 76230, Mexico
| | - Julián Carrillo-Reyes
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Queretaro 76230, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Queretaro 76230, Mexico.
| |
Collapse
|
21
|
Hernández-Galán L, Cattenoz T, Le Feunteun S, Canette A, Briandet R, Le-Guin S, Guedon E, Castellote J, Delettre J, Dugat Bony E, Bonnarme P, Spinnler HE, Martín del Campo ST, Picque D. Effect of dairy matrices on the survival of Streptococcus thermophilus , Brevibacterium aurantiacum and Hafnia alvei during digestion. Food Res Int 2017; 100:477-488. [DOI: 10.1016/j.foodres.2017.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
|
22
|
Bozan M, Akyol Ç, Ince O, Aydin S, Ince B. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass. Appl Microbiol Biotechnol 2017; 101:6849-6864. [PMID: 28779289 DOI: 10.1007/s00253-017-8438-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.
Collapse
Affiliation(s)
- Mahir Bozan
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sevcan Aydin
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, 34469, Istanbul, Turkey.
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|
23
|
Auer L, Mariadassou M, O'Donohue M, Klopp C, Hernandez-Raquet G. Analysis of large 16S rRNA Illumina data sets: Impact of singleton read filtering on microbial community description. Mol Ecol Resour 2017; 17:e122-e132. [PMID: 28695665 DOI: 10.1111/1755-0998.12700] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/01/2022]
Abstract
Next-generation sequencing technologies give access to large sets of data, which are extremely useful in the study of microbial diversity based on 16S rRNA gene. However, the production of such large data sets is not only marred by technical biases and sequencing noise but also increases computation time and disc space use. To improve the accuracy of OTU predictions and overcome both computations, storage and noise issues, recent studies and tools suggested removing all single reads and low abundant OTUs, considering them as noise. Although the effect of applying an OTU abundance threshold on α- and β-diversity has been well documented, the consequences of removing single reads have been poorly studied. Here, we test the effect of singleton read filtering (SRF) on microbial community composition using in silico simulated data sets as well as sequencing data from synthetic and real communities displaying different levels of diversity and abundance profiles. Scalability to large data sets is also assessed using a complete MiSeq run. We show that SRF drastically reduces the chimera content and computational time, enabling the analysis of a complete MiSeq run in just a few minutes. Moreover, SRF accurately determines the actual community diversity: the differences in α- and β-community diversity obtained with SRF and standard procedures are much smaller than the intrinsic variability of technical and biological replicates.
Collapse
Affiliation(s)
- Lucas Auer
- INSA, UPS, LISBP, Université de Toulouse, Toulouse Cedex 4, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | | | - Michael O'Donohue
- INSA, UPS, LISBP, Université de Toulouse, Toulouse Cedex 4, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| | | | - Guillermina Hernandez-Raquet
- INSA, UPS, LISBP, Université de Toulouse, Toulouse Cedex 4, France.,INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France.,CNRS, UMR5504, Toulouse, France
| |
Collapse
|
24
|
Lazuka A, Roland C, Barakat A, Guillon F, O'Donohue M, Hernandez-Raquet G. Ecofriendly lignocellulose pretreatment to enhance the carboxylate production of a rumen-derived microbial consortium. BIORESOURCE TECHNOLOGY 2017; 236:225-233. [PMID: 28412647 DOI: 10.1016/j.biortech.2017.03.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 05/15/2023]
Abstract
Innovative dry chemo- and chemo-mechanical pretreatments form an interesting approach for modifying the native physico-chemical composition of lignocellulose facilitating its microbial conversion to carboxylates. Here, the impact of four dry-pretreatment conditions on the microbial transformation of wheat straw was assessed: milling to 2mm and 100µm, and NaOH chemical impregnation at high substrate concentrations combined with milling at 2mm and 100µm. Pretreatment effect was assessed in the light of substrate structure and composition, its impact on the acidogenic potential and the major enzyme activities of a rumen-derived microbial consortium RWS. Chemo-mechanical pretreatment strongly modified the substrate macroporosity. The highest carboxylate production rate was reached after dry chemo-mechanical treatment with NaOH at 100µm. A positive impact of the dry chemo-mechanical treatment on xylanase activity was observed also. These results underline that increasing substrate macroporosity by dry chemo-mechanical pretreatment had a positive impact on the microbial acidogenic potential.
Collapse
Affiliation(s)
- Adèle Lazuka
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Cécile Roland
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Abdellatif Barakat
- UMR IATE, CIRAD, Montpellier SupAgro, INRA, Université de Montpelier, 34060 Montpellier, France
| | - Fabienne Guillon
- Centre de Recherche Agro-alimentaire de Nantes, INRA, Rue de la Géraudière, 71627, 44316 Nantes-03, France
| | - Michael O'Donohue
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Guillermina Hernandez-Raquet
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.
| |
Collapse
|
25
|
Jiménez DJ, Dini-Andreote F, DeAngelis KM, Singer SW, Salles JF, van Elsas JD. Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia. Trends Microbiol 2017. [PMID: 28648267 DOI: 10.1016/j.tim.2017.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plant biomass (PB) is an important resource for biofuel production. However, the frequent lack of efficiency of PB saccharification is still an industrial bottleneck. The use of enzyme cocktails produced from PB-degrading microbial consortia (PB-dmc) is a promising approach to optimize this process. Nevertheless, the proper use and manipulation of PB-dmc depends on a sound understanding of the ecological processes and mechanisms that exist in these communities. This Opinion article provides an overview of arguments as to how spatiotemporal nutritional fluxes influence the successional dynamics and ecological interactions (synergism versus competition) between populations in PB-dmc. The themes of niche occupancy, 'sugar cheaters', minimal effective consortium, and the Black Queen Hypothesis are raised as key subjects that foster our appraisal of such systems. Here we provide a conceptual framework that describes the critical topics underpinning the ecological basis of PB-dmc, giving a solid foundation upon which further prospective experimentation can be developed.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Francisco Dini-Andreote
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Kristen M DeAngelis
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA 01003-9298, USA
| | - Steven W Singer
- Joint BioEnergy Institute,5885 Hollis Street, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Joana Falcão Salles
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| |
Collapse
|
26
|
Ozbayram EG, Kleinsteuber S, Nikolausz M, Ince B, Ince O. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Anaerobe 2017; 46:122-130. [PMID: 28323135 DOI: 10.1016/j.anaerobe.2017.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mLN CH4 gVS-1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock.
Collapse
Affiliation(s)
- E Gozde Ozbayram
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, Istanbul, Turkey.
| | - Orhan Ince
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.
| |
Collapse
|
27
|
Dugat-Bony E, Garnier L, Denonfoux J, Ferreira S, Sarthou AS, Bonnarme P, Irlinger F. Highlighting the microbial diversity of 12 French cheese varieties. Int J Food Microbiol 2016; 238:265-273. [DOI: 10.1016/j.ijfoodmicro.2016.09.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
|
28
|
CAZyChip: dynamic assessment of exploration of glycoside hydrolases in microbial ecosystems. BMC Genomics 2016; 17:671. [PMID: 27552843 PMCID: PMC4994258 DOI: 10.1186/s12864-016-2988-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and degradation of plant polysaccharides through their production of a vast variety of Glycoside Hydrolases (GH). The CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify enzymes acting on hydrolysis of polysaccharides or glycans. RESULTS This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes were designed using two softwares, and microarrays were directly synthesized using the in situ ink-jet technology. CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from recombinant E. coli strains, which were previously identified by a functional metagenomic approach. The GHs arsenal was also studied in bioprocess conditions using rumen derived microbiota. CONCLUSIONS The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs. It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new efficient candidates for enzymatic conversions from various ecosystems.
Collapse
|
29
|
Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches. Appl Microbiol Biotechnol 2016; 100:10463-10477. [PMID: 27418359 PMCID: PMC5119850 DOI: 10.1007/s00253-016-7713-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 02/01/2023]
Abstract
The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation of protein-encoding sequences, members of the Bacteroidetes (e.g. Chryseobacterium, Weeksella, Flavobacterium and Sphingobacterium) were preferentially selected on WS1-M, whereas SG-M and CS-M favoured members of the Proteobacteria (e.g. Caulobacter, Brevundimonas, Stenotrophomonas and Xanthomonas). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29, GH28, GH16, GH4 and GH92). In addition, proteins of families AA6, AA10 and AA2 were detected. Analysis of secreted protein fractions (metasecretome) for each selected microbial consortium mainly showed the presence of enzymes able to degrade arabinan, arabinoxylan, xylan, β-glucan, galactomannan and rhamnogalacturonan. Notably, these metasecretomes contain enzymes that enable us to produce oligosaccharides directly from wheat straw, sugarcane bagasse and willow. Thus, the underlying microbial consortia constitute valuable resources for the production of enzyme cocktails for the efficient saccharification of plant biomass.
Collapse
|
30
|
Cavaillé L, Albuquerque M, Grousseau E, Lepeuple AS, Uribelarrea JL, Hernandez-Raquet G, Paul E. Understanding of polyhydroxybutyrate production under carbon and phosphorus-limited growth conditions in non-axenic continuous culture. BIORESOURCE TECHNOLOGY 2016; 201:65-73. [PMID: 26638135 DOI: 10.1016/j.biortech.2015.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 05/20/2023]
Abstract
In a waste into resource strategy, a selection of polyhydroxybutyrate (PHB)-accumulating organisms from activated sludge was achieved in an open continuous culture under acetic acid and phosphorus limitation. Once the microbial population was selected at a dilution rate (D), an increase in phosphorus limitation degree was applied in order to study the intracellular phosphorus plasticity of selected bacteria and the resulting capacity to produce PHB. Whatever D, all selected populations were able to produce PHB. At a D, the phosphorus availability determined the phosphorus-cell content which in turn fixed the amount of cell. All the remaining carbon was thus directed toward PHB. By decreasing D, microorganisms adapted more easily to higher phosphorus limitation leading to higher PHB content. A one-stage continuous reactor operated at D=0.023h(-)(1) gave reliable high PHB productivity with PHB content up to 80%. A two-stage reactor could ensure better productivity while allowing tuning product quality.
Collapse
Affiliation(s)
- Laëtitia Cavaillé
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France; VEOLIA Environnement, Centre de Recherche sur l'Eau, Chemin de la Digue, BP 76, 78603 Maisons-Laffite Cedex, France
| | - Maria Albuquerque
- VEOLIA Environnement, Centre de Recherche sur l'Eau, Chemin de la Digue, BP 76, 78603 Maisons-Laffite Cedex, France
| | - Estelle Grousseau
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Anne-Sophie Lepeuple
- VEOLIA Environnement, Centre de Recherche sur l'Eau, Chemin de la Digue, BP 76, 78603 Maisons-Laffite Cedex, France
| | - Jean-Louis Uribelarrea
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Guillermina Hernandez-Raquet
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Etienne Paul
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.
| |
Collapse
|