1
|
Gupta KM, Aitipamula S, Chin X, Chow PS. Synergistic Computational and Experimental Investigation of Covalent Organic Frameworks for Efficient Alcohol Dehydration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26551-26564. [PMID: 40273888 DOI: 10.1021/acsami.5c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Covalent organic frameworks (COFs), a promising class of nanoporous materials, have received significant attention for membrane separation. Currently, several COFs are reported for alcohol dehydration, but they are not efficient owing to the pervasive challenge to separate small-sized molecular mixture. Herein, first we have computationally explored a series of COFs with different functionality and aperture size as pervaporation (PV) membrane and identified a novel COF for efficient dehydration of water/alcohol mixtures (90 wt % IPA, 90 wt % n-butanol and 90 wt % t-butanol). Subsequently, the best-performing COF was experimentally synthesized and characterized, and its sorption properties were correlated with computational results. Molecular dynamics (MD) simulations revealed that solvent permeation fluxes are predominantly influenced by the pore aperture of COFs, and larger pore aperture exhibits higher flux. Conversely, the separation factor is primarily determined by the polarity of the pore functional groups. Among the tested COF membranes, TpPa-1-OC3H6OCH3 demonstrated superior performance, surpassing the current state-of-the-art membranes. The activation energy (Ea) for water permeation in alcohol mixtures through TpPa-1-OC3H6OCH3 is mostly governed by water-alcohol interactions. Furthermore, experimental evaluation of the COFs indicated a plate-like morphology for TpPa-1-OC3H6OCH3 which ascertained a 2D-sheet-like structure. TpPa-1 showed greater sorption than TpPa-1-OC3H6OCH3 with all of the solvents tested owing to the inability of the solvent molecules to enter the relatively small pores in the later COF. This is in accordance with the MD simulation predictions, which indicated that the solvent molecules cannot penetrate the small pores of TpPa-1-OC3H6OCH3. This work synergistically integrates computational and experimental approaches to develop novel COFs with superior performance compared to previously reported PV membranes, paving the way for advanced membranes for sustainable solvent recovery.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Chemical Engineering, Indian Institute of Technology, Jammu 181221, J&K, India
| | - Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xavier Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
2
|
Gan G, Fan S, Li X, Zhang Z, Hao Z. Adsorption and membrane separation for removal and recovery of volatile organic compounds. J Environ Sci (China) 2023; 123:96-115. [PMID: 36522017 DOI: 10.1016/j.jes.2022.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity, high volatility, and poor degradability. It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations. In China, clear directions and requirements for reduction of VOCs have been given in the "national plan on environmental improvement for the 13th Five-Year Plan period". Therefore, the development of efficient technologies for removal and recovery of VOCs is of great significance. Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions. Among them, adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects. This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs. Firstly, adsorption and membrane separation were found to be the research hotspots through bibliometric analysis. Then, a comprehensive understanding of their mechanisms, factors, and current application statuses was discussed. Finally, the challenges and perspectives in this emerging field were briefly highlighted.
Collapse
Affiliation(s)
- Guoqiang Gan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Pérez-Botella E, Valencia S, Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem Rev 2022; 122:17647-17695. [PMID: 36260918 PMCID: PMC9801387 DOI: 10.1021/acs.chemrev.2c00140] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zeolites have been widely used as catalysts, ion exchangers, and adsorbents since their industrial breakthrough in the 1950s and continue to be state-of the-art adsorbents in many separation processes. Furthermore, their properties make them materials of choice for developing and emerging separation applications. The aim of this review is to put into context the relevance of zeolites and their use and prospects in adsorption technology. It has been divided into three different sections, i.e., zeolites, adsorption on nanoporous materials, and chemical separations by zeolites. In the first section, zeolites are explained in terms of their structure, composition, preparation, and properties, and a brief review of their applications is given. In the second section, the fundamentals of adsorption science are presented, with special attention to its industrial application and our case of interest, which is adsorption on zeolites. Finally, the state-of-the-art relevant separations related to chemical and energy production, in which zeolites have a practical or potential applicability, are presented. The replacement of some of the current separation methods by optimized adsorption processes using zeolites could mean an improvement in terms of sustainability and energy savings. Different separation mechanisms and the underlying adsorption properties that make zeolites interesting for these applications are discussed.
Collapse
Affiliation(s)
| | | | - Fernando Rey
- . Phone: +34 96 387 78 00.
Fax: +34 96 387 94
44
| |
Collapse
|
4
|
Beckwée EJ, Wittevrongel GR, Claessens B. Comparing column dynamics in the liquid and vapor phase adsorption of biobutanol on an activated carbon monolith. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Rajabi H, Mosleh MH, Mandal P, Lea-Langton A, Sedighi M. Sorption behaviour of xylene isomers on biochar from a range of feedstock. CHEMOSPHERE 2021; 268:129310. [PMID: 33359840 DOI: 10.1016/j.chemosphere.2020.129310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Inland oil spillage is one of the widespread sources of crude oil volatile organic compound emissions (CVEs) for which the long-term remedial solutions are often complex and expensive. This paper investigates the potential of a low-cost containment solution for contaminated solids by volatile organic compounds (VOCs) using biochar. The results of an extensive experimental investigation are presented on the sorption kinetics of xylene isomers (one type of the most frequently detected CVEs) on commercial biochar produced by prevalent feedstocks (wheat, corn, rice and rape straw as well as hardwood) at affordable temperatures (300-500°C). Chemical and physical properties of biochar were analysed in terms of elemental composition, scanning electron microscopy, specific surface area, ATR-FTIR spectra and Raman spectrometry. We show that for high-temperature biochar with similar surface chemistry, the sorption efficiency is mainly controlled by porous structure and pore size distribution. Biochar samples with higher specific surface area and higher volume of mesopores showed the highest sorption capacity (45.37-50.88 mg/g) since the sorbate molecules have more access to active sites under a greater intra-particle diffusion and elevated pore-filling. P-xylene showed a slightly higher sorption affinity to biochar compared to other isomers, especially in mesoporous biochar, which can be related to its lower kinetic diameter and simpler molecular shape. The sorption capacity of biochar produced at higher pyrolysis temperatures was found to be more sensitive to changes in ambient temperature due to dominant physical adsorption. Elovich kinetic model was found to be the best model to describe xylenes' sorption on biochar which indirectly indicates π-π stacking and hydrogen bonding as the main mechanism of xylene sorption on these types of biochar.
Collapse
Affiliation(s)
- Hamid Rajabi
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Mojgan Hadi Mosleh
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| | - Parthasarathi Mandal
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Amanda Lea-Langton
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Majid Sedighi
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
6
|
Ang TN, Young BR, Burrell R, Taylor M, Aroua MK, Baroutian S. Oxidative hydrothermal surface modification of activated carbon for sevoflurane removal. CHEMOSPHERE 2021; 264:128535. [PMID: 33045509 DOI: 10.1016/j.chemosphere.2020.128535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The emission of waste anaesthetic gas is a growing contributor to global warming and remains a factor in atmospheric ozone depletion. Volatile anaesthetics in medical waste gases could be removed via adsorption using suitable activated carbon materials possessing an enhanced affinity to anaesthetic molecules. In this work, the effects of surface physical and chemical properties on sevoflurane adsorption were investigated by oxidative hydrothermal surface modification of a commercial activated carbon using only distilled water. The hydrothermal surface modification was carried out at different treatment temperatures (150-300 °C) for varying durations (10-30 min), and adsorption was conducted under fixed conditions (bed depth = 10 cm, inlet concentration = 528 mg/L, and flow rate = 3 L/min). The hydrothermal treatment generally increased the BET surface area of the activated carbons. At oxidation temperatures above 200 °C, the micropore volume of the samples diminished. The relative amount of surface oxygen was enriched as the treatment temperature increased. Treatment duration did not significantly affect the introduction of relative amount of surface oxygen, except at higher temperatures. There were no new types of functional groups introduced. However, disappearance and re-formation of oxygen functional groups containing C-O structures (as in hydroxyl and ether groups) occurred when treatment temperature was increased from 150 to 200 °C, and when treatments were conducted above 200 °C, respectively. The ester/acetal groups were enriched under the temperature range studied. The findings suggested that the re-formation of surface oxygen functionalities might lead to the development of functional groups that improve sevoflurane adsorption.
Collapse
Affiliation(s)
- Teck Nam Ang
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Brent R Young
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Rob Burrell
- Department of Anaesthesia, Middlemore Hospital, Counties Manukau Health, Private Bag, 93311, Otahuhu, Auckland, New Zealand
| | - Matthew Taylor
- Department of Anaesthesia, Middlemore Hospital, Counties Manukau Health, Private Bag, 93311, Otahuhu, Auckland, New Zealand
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilization, School of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia; Department of Engineering, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| | - Saeid Baroutian
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
7
|
Liu H, Xu B, Wei K, Yu Y, Long C. Adsorption of low-concentration VOCs on various adsorbents: Correlating partition coefficient with surface energy of adsorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139376. [PMID: 32446088 DOI: 10.1016/j.scitotenv.2020.139376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Accurately evaluating the adsorption properties of various adsorbents by some parameter is of great significance to select an appropriate adsorbent and remove volatile organic compounds (VOCs) efficiently. In this study, we successfully found a new parameter as a common standard in selecting adsorbents. Six classical adsorbents containing three carbon materials and three porous polymeric resins were used, and their surface energy (γst) and corresponding gas-solid partition coefficients (K) of eleven VOCs were measured by inverse gas chromatography (IGC) at three different column temperatures of 343 K(or 353 K), 373 K and 403 K. Then, these values at 303 K were calculated according to the linear relationship between lnK and 1/T. It was found that surface energy was significantly correlated with K values for a specific VOC, and could be used as a common standard to well evaluate the adsorption properties of various adsorbents. Furthermore, we employed it to develop a model for predicting the adsorption properties of low-concentration VOCs on various adsorbents at 303 K. The developed model exhibited an excellent predictive ability by external validation. Moreover, the model showed wide applicability and predicted the lnK values of VOCs at 373 K and 403 K in R2 of 0.910 and 0.889.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bowen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Keyan Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yansong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Yu X, Liu S, Lin G, Yang Y, Zhang S, Zhao H, Zheng C, Gao X. KOH-activated hydrochar with engineered porosity as sustainable adsorbent for volatile organic compounds. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124372] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Liu H, Wei K, Yu Y, Long C. Predicting adsorption coefficients of VOCs using polyparameter linear free energy relationship based on the evaluation of dispersive and specific interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113224. [PMID: 31541807 DOI: 10.1016/j.envpol.2019.113224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Predicting adsorption of volatile organic compounds (VOCs) on activated carbons is of major importance to understand activated carbons' adsorption properties and explore their potential applications. In this study, adsorption of 38 VOCs on a commercial granular activated carbon (GAC) was examined using inverse gas chromatography (IGC) at infinite dilution, and the adsorption coefficients (K), dispersive and specific components of adsorption free energy were calculated. We found that the dispersive interaction was well described by adsorbate's molar polarizability (P), and the specific interactions well by dipolarity/polarizability (S), hydrogen-bond acidity (A) and hydrogen-bond basicity (B). Based on the result, a polyparameter linear free energy relationship (PP-LFER) was established: logK = (0.96 ± 0.23) S + (2.23 ± 0.34) A + (0.84 ± 0.25) B + (0.69 ± 0.050) P + (0.13 ± 0.35); (n = 38, R2 = 0.859, root mean square error (RMSE) = 0.25), which exhibited a more accurate prediction compared to the classical PP-LFER (E, S, A, B and L as descriptors, R2 = 0.765, RMSE = 0.33). Moreover, it overcame the drawbacks of indistinguishable dispersive interaction and unavailable relative contribution of each interaction for classical PP-LFER in explaining adsorption mechanism. As suggested by the developed model, the dispersive interaction was the dominant contribution to the adsorption of VOCs on GAC (42-100%), following by dipole-type interactions (0-30%) and hydrogen bonding (hydrogen-bond acidity 0-32%, hydrogen-bond basicity 0-11%). Additionally, it also accurately predicted the K values of VOCs on other three activated carbons.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Keyan Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yansong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Li S, Yang Y, Shan H, Zhao J, Wang Z, Cai D, Qin P, Baeyens J, Tan T. Ultrafast and ultrahigh adsorption of furfural from aqueous solution via covalent organic framework-300. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Tang N, Niu CG, Li XT, Liang C, Guo H, Lin LS, Zheng CW, Zeng GM. Efficient removal of Cd 2+ and Pb 2+ from aqueous solution with amino- and thiol-functionalized activated carbon: Isotherm and kinetics modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1331-1344. [PMID: 29710586 DOI: 10.1016/j.scitotenv.2018.04.236] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
In order to address the increasingly severe pollution issue caused by heavy metals, activated carbon-based absorbents have gained considerable attention. Herein, two novel adsorbents, amino-functionalized activated carbon (N-AC) and thiol-functionalized activated carbon (S-AC), were successfully synthesized by stepwise modification with tetraethylenepentamine (TEPA), cyanuric chloride (CC) and sodium sulfide. The pristine and synthesized materials were characterized by BET analysis, SEM, FTIR spectroscopy, elemental analysis and zeta-potential analyzer. Meanwhile, their adsorption properties for Cd2+ and Pb2+ and the effects of various variables on the adsorption processes were systematically investigated. The findings confirmed that amino-groups and thiol-groups endowed the AC with a strong affinity for metal ions and that the pH of solution affected the uptake efficiencies of the adsorbents by influencing their surface charges. Furthermore, six isotherm models (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Sips and Redlich-Peterson) and four kinetic models (pseudo-first-order, pseudo-second-order, Intra-particle diffusion and Elovich) were applied to interpret the adsorption process at three different temperatures (288 K, 298 K and 308 K). The results indicated that temperature played an important role and that the rate-limiting step was chemosorption. A better fit for all adsorption systems was obtained with Langmuir model, with the maximum adsorption capacities at 298 K of 79.20 mg Cd2+/g and 142.03 mg Pb2+/g for N-AC, 130.05 mg Cd2+/g and 232.02 mg Pb2+/g for S-AC, respectively. Subsequently, the thermodynamic parameters revealed the nature of the adsorption was endothermic and spontaneous under the experimental condition. The possible adsorption procedures and the underlying mechanisms comprising physical and chemical interactions were proposed. Moreover, the as-synthesized adsorbents exhibited excellent regeneration performance after five adsorption/desorption cycles. The overall results demonstrated that both N-AC and S-AC could be the promising efficient candidates for removing Cd2+ and Pb2+ from contaminated water.
Collapse
Affiliation(s)
- Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Cheng-Gang Niu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Xue-Ting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chao Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hai Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Li-Shen Lin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chao-Wen Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
12
|
Martin-Calvo A, Van der Perre S, Claessens B, Calero S, Denayer JFM. Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8. Phys Chem Chem Phys 2018; 20:9957-9964. [DOI: 10.1039/c8cp01034j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The presence of CO2during the vapor phase adsorption of butanol from ABE fermentation at the head space of the fermenter has an important roll on the efficient recovery of biobutanol.
Collapse
Affiliation(s)
- Ana Martin-Calvo
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 – Brussels
- Belgium
| | - Stijn Van der Perre
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 – Brussels
- Belgium
| | - Benjamin Claessens
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 – Brussels
- Belgium
| | - Sofia Calero
- Department of Physical
- Chemical, and Natural Systems
- University Pablo de Olavide
- 41013 Seville
- Spain
| | - Joeri F. M. Denayer
- Department of Chemical Engineering
- Vrije Universiteit Brussel
- 1050 – Brussels
- Belgium
| |
Collapse
|
13
|
Zhang X, Gao B, Creamer AE, Cao C, Li Y. Adsorption of VOCs onto engineered carbon materials: A review. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:102-123. [PMID: 28535479 DOI: 10.1016/j.jhazmat.2017.05.013] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 05/21/2023]
Abstract
Volatile organic compounds (VOCs) severely threaten human health and the ecological environment because most of them are toxic, mutagenic, and carcinogenic. The persistent increase of VOCs together with the stringent regulations make the reduction of VOC emissions more imperative. Up to now, numerous VOC treatment technologies have emerged, such as incineration, condensation, biological degradation, absorption, adsorption, and catalysis oxidation et al. Among them, the adsorption technology has been recognized as an efficient and economical control strategy because it has the potential to recover and reuse both adsorbent and adsorbate. Due to their large specific surface area, rich porous structure, and high adsorption capacity, carbonaceous adsorbents are widely used in gas purification, especially with respect to VOC treatment and recovery. This review discusses recent research developments of VOC adsorption onto a variety of engineered carbonaceous adsorbents, including activated carbon, biochar, activated carbon fiber, carbon nanotube, graphene and its derivatives, carbon-silica composites, ordered mesoporous carbon, etc. The key factors influence the VOC adsorption are analyzed with focuses on the physiochemical characters of adsorbents, properties of adsorbates as well as the adsorption conditions. In addition, the sources, health effect, and abatement methods of VOCs are also described.
Collapse
Affiliation(s)
- Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221000, PR China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Shanghai, 200433, PR China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Anne Elise Creamer
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Chengcheng Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221000, PR China
| | - Yuncong Li
- Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| |
Collapse
|
14
|
Van der Perre S, Gelin P, Claessens B, Martin-Calvo A, Cousin Saint Remi J, Duerinck T, Baron GV, Palomino M, Sánchez LY, Valencia S, Shang J, Singh R, Webley PA, Rey F, Denayer JFM. Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. CHEMSUSCHEM 2017; 10:2968-2977. [PMID: 28585778 DOI: 10.1002/cssc.201700667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 06/07/2023]
Abstract
A vapor-phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone-butanol-ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase, on the adsorption of the organics could be minimized by using hydrophobic zeolites. Shape-selective all-silica zeolites CHA and LTA were prepared and evaluated with single-component isotherms and breakthrough experiments. These zeolites show opposite selectivities; adsorption of ethanol is favorable on all-silica CHA, whereas the LTA topology has a clear preference for butanol. The molecular sieving properties of both zeolites allow easy elimination of acetone from the mixture. The molecular interaction mechanisms are studied by density functional theory (DFT) simulations. The effects of mixture composition, humidity and total pressure of the vapor stream on the selectivity and separation behavior are investigated. Desorption profiles are studied to maximize butanol purity and recovery. The combination of LTA with CHA-type zeolites (Si-CHA or SAPO-34) in sequential adsorption columns with alternating adsorption and desorption steps allows butanol to be recovered in unpreceded purity and yield. A butanol purity of 99.7 mol % could be obtained at nearly complete butanol recovery, demonstrating the effectiveness of this technique for biobutanol separation processes.
Collapse
Affiliation(s)
- Stijn Van der Perre
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Pierre Gelin
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Benjamin Claessens
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Ana Martin-Calvo
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Julien Cousin Saint Remi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Tim Duerinck
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Miguel Palomino
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Ledys Y Sánchez
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Susana Valencia
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, P.R. China
| | - Ranjeet Singh
- Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, 3010, Australia
| | - Paul A Webley
- Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, 3010, Australia
| | - Fernando Rey
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
15
|
Jahandideh A, Johnson TJ, Esmaeili N, Johnson MD, Richardson JW, Muthukumarappan K, Anderson GA, Halfmann C, Zhou R, Gibbons WR. Life cycle analysis of a large-scale limonene production facility utilizing filamentous N2-fixing cyanobacteria. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Johnson TJ, Jahandideh A, Johnson MD, Fields KH, Richardson JW, Muthukumarappan K, Cao Y, Gu Z, Halfmann C, Zhou R, Gibbons WR. Producing next-generation biofuels from filamentous cyanobacteria: An economic feasibility analysis. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Cao Y, Gu Y, Wang K, Wang X, Gu Z, Ambrico T, Castro MA, Lee J, Gibbons W, Rice JA. Adsorption of creatinine on active carbons with nitric acid hydrothermal modification. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Cao Y, Wang K, Wang X, Gu Z, Fan Q, Gibbons W, Hoefelmeyer JD, Kharel PR, Shrestha M. Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.069] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|