1
|
Jayapal M, Jagadeesan H, Krishnasamy V, Shanmugam G, Muniyappan V, Chidambaram D, Krishnamurthy S. Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119009. [PMID: 35182656 DOI: 10.1016/j.envpol.2022.119009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Collapse
Affiliation(s)
| | - Hema Jagadeesan
- PSG College of Technology, Coimbatore, Tamil Nadu, 641 004, India.
| | | | | | | | - Dinesh Chidambaram
- M/s.Dinesh Process, (Soft Flow Unit, Dyers of Knitted Fabrics), College Road, Analpalayam, Sirupuluvapatti, Tirupur, TamilNadu, 641603, India
| | - Satheesh Krishnamurthy
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| |
Collapse
|
2
|
Bioaugmentation Treatment of a PAH-Polluted Soil in a Slurry Bioreactor. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A bioslurry reactor was designed and used to treat loamy clay soil polluted with polycyclic aromatic hydrocarbons (PAHs). To this end, biostimulation alone, or combined with bioaugmentation with two bacterial strains (Rhodocccus erythropolis and Pseudomonas stuzeri) previously isolated from the polluted site, was applied. The PAH concentrations decreased notably after 15 days in all of the treatments. The concentrations of the two- and three-ring compounds fell by >80%, and, remarkably, the four- to six-ring PAHs also showed a marked decrease (>70%). These results thus indicate the capacity of bioslurry treatments to improve, notably, the degradation yields obtained in a previous real-scale remediation carried out using biopiles. In this sense, the remarkable results for recalcitrant PAHs can be attributed to the increase pollutants’ bioavailability achieves in the slurry bioreactors. Regarding bioaugmentation, although treatment with R. erythropolis led to a somewhat greater reduction of lighter PAHs at 15 days, the most time-effective treatment was achieved using P. stutzeri, which led to an 84% depletion of total PAHs in only three days. The effects of microbial degradation of other organic compounds were also monitored by means of combined qualitative and quantitative gas chromatography mass spectrometry (GC–MS) tools, as was the evolution of microbial populations, which was analyzed by culture and molecular fingerprinting experiments. On the basis of our findings, bioslurry technology emerges as a rapid and operative option for the remediation of polluted sites, especially for fine soil fractions with a high load of recalcitrant pollutants.
Collapse
|
3
|
Sonwani RK, Swain G, Giri BS, Singh RS, Rai BN. Biodegradation of Congo red dye in a moving bed biofilm reactor: Performance evaluation and kinetic modeling. BIORESOURCE TECHNOLOGY 2020; 302:122811. [PMID: 32000130 DOI: 10.1016/j.biortech.2020.122811] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The biodegradation of Congo red dye was performed using polyurethane foam-polypropylene immobilized Bacillus sp. MH587030.1 in a moving bed biofilm reactor (MBBR). The central composite design (CCD) based response surface methodology (RSM) was used to optimize the process parameters; pH, Congo red concentration, and media filling ratio, and optimum conditions were observed to be 7.0, 50 mg/L, and 45%, respectively in batch MBBR. At optimum condition, MBBR was operated in continuous mode at different flow rates (25-100 mL/h) over a period of 564 h. The maximum removal efficiency (RE) and elimination capacity (EC) were obtained as 95.7% and 57.6 mg/L·day, respectively under steady-state. The kinetics of Congo red biodegradation at various flow rates were evaluated by a modified Stover-Kincannon model, and kinetic constants; KB and Umax were found to be 0.253 g/L·day and 0.263 g/L·day, respectively.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ganesh Swain
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Sonwani RK, Swain G, Giri BS, Singh RS, Rai BN. A novel comparative study of modified carriers in moving bed biofilm reactor for the treatment of wastewater: Process optimization and kinetic study. BIORESOURCE TECHNOLOGY 2019; 281:335-342. [PMID: 30831512 DOI: 10.1016/j.biortech.2019.02.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
In this work, modified plastic carriers; polypropylene (PP), low-density polyethylene- polypropylene (LDPE-PP), and polyurethane foam-polypropylene (PUF-PP) were developed and used in moving bed bioreactor (MBBR) for the wastewater treatment containing naphthalene. To optimized the process parameters using response surface methodology (RSM), two numerical variables; pH (5.0-9.0) and hydraulic retention time (HRT) (1.0-5.0 day) along with the type of carriers (PP, LDPE-PP, and PUF-PP) were selected as a categorical factor. At 7.0 pH and 5 days HRT, maximum removal efficiencies were observed to be 72.4, 84.4, and 90.2% for MBBR packed with PP, LDPE-PP, and PUF-PP carriers, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis reveals catechol and 2-naphthol were observed as intermediate metabolites for naphthalene degradation. Modified Stover-Kincannon model was applied for biodegradation kinetic and constants were observed as Umax: 0.476, 0.666, and 0.769 g/L.day and KB: 0.565, 0.755, and 0.874 g/L.day for PP, LDPE-PP, PUF-PP, respectively.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ganesh Swain
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Kaminski MA, Furmanczyk EM, Sobczak A, Dziembowski A, Lipinski L. Pseudomonas silesiensis sp. nov. strain A3 T isolated from a biological pesticide sewage treatment plant and analysis of the complete genome sequence. Syst Appl Microbiol 2018; 41:13-22. [DOI: 10.1016/j.syapm.2017.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/15/2022]
|
6
|
Sanches S, Martins M, Silva AF, Galinha CF, Santos MA, Pereira IAC, Crespo MTB. Bioremoval of priority polycyclic aromatic hydrocarbons by a microbial community with high sorption ability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3550-3561. [PMID: 27878775 DOI: 10.1007/s11356-016-8014-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
The treatment of large volumes of wastewater during oil refining is presently a challenge. Bioremediation has been considered an eco-friendly approach for the removal of polycyclic aromatic hydrocarbons (PAHs), which are one of the most hazardous groups of organic micropollutants. However, it is crucial to identify native PAH-removing microorganisms for the development of an effective bioremediation process. This study reports the high potential of an anaerobic microbial consortium enriched from a petrochemical refinery wastewater to remove two priority PAHs-acenaphthene and phenanthrene. Seventy-seven percent of acenaphthene was removed within 17 h, whereas phenanthrene was no longer detected after 15 h. Bioremoval rates were extremely high (0.086 and 0.156 h-1 for acenaphthene and phenanthrene, respectively). The characterization of the microbial communities by next-generation sequencing and fluorescence in situ hybridization showed that the PAH-removing consortium was mainly composed by bacteria affiliated to Diaphorobacter and Paracoccus genera, independently of the PAH tested. Moreover, besides biodegradation, biosorption was a relevant mechanism involved in the removal of both PAHs, which is an important finding since biosorption is less expensive than biodegradation and can be carried out with dead biomass. Although biodegradation is the most commonly reported biological mechanism for PAH removal, this study demonstrated that biosorption by this microbial community may be extremely efficient for their removal. Given the outstanding ability of this microbial consortium to quickly remove the compounds addressed, it could be further applied for the bioremediation of PAHs in refinery wastewaters and other contaminated environments.
Collapse
Affiliation(s)
- Sandra Sanches
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
| | - Mónica Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana F Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Claudia F Galinha
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (UNL), 2829-516, Caparica, Portugal
| | - Maria A Santos
- Sines Refinery, Petrogal S. A, 7520-952, Sines, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Maria Teresa Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
7
|
Forss J, Lindh MV, Pinhassi J, Welander U. Microbial Biotreatment of Actual Textile Wastewater in a Continuous Sequential Rice Husk Biofilter and the Microbial Community Involved. PLoS One 2017; 12:e0170562. [PMID: 28114377 PMCID: PMC5256951 DOI: 10.1371/journal.pone.0170562] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/08/2017] [Indexed: 11/18/2022] Open
Abstract
Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% decolorization at a hydraulic retention time of 67 h. Analysis of microbial community composition of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) gene fragments in the biofilters revealed a bacterial consortium known to carry azoreductase genes, such as Dysgonomonas, and Pseudomonas and the presence of fungal phylotypes such as Gibberella and Fusarium. Our findings emphasize that rice husk biofilters support a microbial community of both bacteria and fungi with key features for biodegradation of actual textile wastewater. These results suggest that microbial processes can substantially contribute to efficient and reliable degradation of actual textile wastewater. Thus, development of biodegradation systems holds promise for application of affordable wastewater treatment in polluted environments.
Collapse
Affiliation(s)
- Jörgen Forss
- Faculty of Technology, Linnæus University, Växjö, Sweden
- * E-mail:
| | - Markus V. Lindh
- Centre for Ecology and Evolution in Microbial model Systems, Linnæus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial model Systems, Linnæus University, Kalmar, Sweden
| | | |
Collapse
|