1
|
He Y, Li H, Chen L, Zheng L, Ye C, Hou J, Bao X, Liu W, Shen Y. Production of xylitol by Saccharomyces cerevisiae using waste xylose mother liquor and corncob residues. Microb Biotechnol 2021; 14:2059-2071. [PMID: 34255428 PMCID: PMC8449662 DOI: 10.1111/1751-7915.13881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022] Open
Abstract
Exorbitant outputs of waste xylose mother liquor (WXML) and corncob residue from commercial-scale production of xylitol create environmental problems. To reduce the wastes, a Saccharomyces cerevisiae strain tolerant to WXML was conferred with abilities to express the genes of xylose reductase, a xylose-specific transporter and enzymes of the pentose phosphate pathway. This strain showed a high capacity to produce xylitol from xylose in WXML with glucose as a co-substrate. Additionally, a simultaneous saccharification and fermentation (SSF) process was designed to use corncob residues and cellulase instead of directly adding glucose as a co-substrate. Xylitol titer and the productivity were, respectively, 91.0 g l-1 and 1.26 ± 0.01 g l-1 h-1 using 20% WXML, 55 g DCW l-1 delignified corncob residues and 11.8 FPU gcellulose -1 cellulase at 35° during fermentation. This work demonstrates the promising strategy of SSF to exploit waste products to xylitol fermentation process.
Collapse
Affiliation(s)
- Yao He
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Hongxing Li
- State Key Laboratory of Biobased Material and Green PapermakingSchool of BioengineeringQi Lu University of TechnologyJinan250353China
| | - Liyuan Chen
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Liyuan Zheng
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Chunhui Ye
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Jin Hou
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Xiaoming Bao
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
- State Key Laboratory of Biobased Material and Green PapermakingSchool of BioengineeringQi Lu University of TechnologyJinan250353China
| | - Weifeng Liu
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Yu Shen
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
2
|
Recent insights, applications and prospects of xylose reductase: a futuristic enzyme for xylitol production. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03674-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Gou M, Tang YQ. Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. FEMS Yeast Res 2020; 20:5986616. [PMID: 33201998 DOI: 10.1093/femsyr/foaa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023] Open
Abstract
Engineered Saccharomyces cerevisiae can reduce xylose to xylitol. However, in S.cerevisiae, there are several endogenous enzymes including xylitol dehydrogenase encoded by XYL2, sorbitol dehydrogenases encoded by SOR1/SOR2 and xylulokinase encoded by XKS1 may lead to the assimilation of xylitol. In this study, to increase xylitol accumulation, these genes were separately deleted through CRISPR/Cas9 system. Their effects on xylitol yield of an industrial S. cerevisiae CK17 overexpressing Candida tropicalis XYL1 (encoding xylose reductase) were investigated. Deletion of SOR1/SOR2 or XKS1 increased the xylitol yield in both batch and fed-batch fermentation with different concentrations of glucose and xylose. The analysis of the transcription level of key genes in the mutants during fed-batch fermentation suggests that SOR1/SOR2 are more crucially responsible for xylitol oxidation than XYL2 under the genetic background of S.cerevisiae CK17. The deletion of XKS1 gene could also weaken SOR1/SOR2 expression, thereby increasing the xylitol accumulation. The XKS1-deleted strain CK17ΔXKS1 produced 46.17 g/L of xylitol and reached a xylitol yield of 0.92 g/g during simultaneous saccharification and fermentation (SSF) of pretreated corn stover slurry. Therefore, the deletion of XKS1 gene provides a promising strategy to meet the industrial demands for xylitol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Ya-Jing Wu
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
4
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Li B, Tang YQ. The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Reshamwala SMS, Lali AM. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae. Biotechnol Prog 2020; 36:e2972. [PMID: 31990139 DOI: 10.1002/btpr.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/29/2019] [Accepted: 01/22/2020] [Indexed: 01/28/2023]
Abstract
Xylitol is a five-carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H-dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH-dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH-preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH-generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.
Collapse
Affiliation(s)
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.,Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
6
|
Zhang D, Chang Z, Li N, Lei M, Wang Z, Niu H, Gao N, Liu D, Chen Y. pH-Neutralization, Redox-Balanced Process with Coupled Formate Dehydrogenase and Glucose Dehydrogenase Supports Efficient Xylitol Production in Pure Water. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:235-241. [PMID: 31822063 DOI: 10.1021/acs.jafc.9b05626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enzymatic production of xylitol is a promising alternative to the chemical hydrogenation process. However, it encounters problems that are largely due to protein susceptibility to environmental factors. In this study, to develop a robust, practical enzymatic process for xylitol production, a coupled enzyme system consisting of formate dehydrogenase (FDH), glucose dehydrogenase (GDH), and xylose reductase (XR) was constructed, wherein the alkaline product produced by FDH and the acidic product produced by GDH could neutralize each other during cofactor regeneration. After optimization of conditions, a pH-neutralization, redox-balanced process was developed that could be carried out in pure water requiring no pH regulation. As a result, a xylitol production of 273.6 g/L that is much higher than those yet reported was obtained from 2 M xylose in 24 h, with a relatively high productivity of 11.4 g/(L h). The strategy demonstrated here can be adapted for the production of other NADH-consuming products.
Collapse
|
7
|
Hou Y, Gao B, Cui J, Tan Z, Qiao C, Jia S. Combination of multi-enzyme expression fine-tuning and co-substrates addition improves phenyllactic acid production with an Escherichia coli whole-cell biocatalyst. BIORESOURCE TECHNOLOGY 2019; 287:121423. [PMID: 31103936 DOI: 10.1016/j.biortech.2019.121423] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to develop an environmentally safe and efficient method for phenyllactic acid (PLA) production using whole-cell cascade catalysis with l-amino acid deaminase (l-AAD), lactate dehydrogenase (LDH), and formate dehydrogenase (FDH). The PPA titer was low due to relatively low expression of LDH, intermediate accumulation, and lack of cofactors. To address this issue, ribosome binding site regulation, gene duplication, and induction optimization were performed to increased the PLA titer to 43.8 g/L. Then co-substrates (glucose, yeast extract, and glycerol) were used to increase NADH concentration and cell stability, resulting that the PLA titer was increased to 54.0 g/L, which is the highest reported production by biocatalyst. Finally, glucose was replaced with wheat straw hydrolysate as co-substrate to decrease the cost. Notably, the strategies reported herein may be generally applicable to other whole-cell cascade biocatalysts.
Collapse
Affiliation(s)
- Ying Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China.
| | - Bo Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China
| | - Zhilei Tan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China
| | - Changsheng Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Peiyang Biotrans Co., Ltd, Tianjin 300457, China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, 300457 Tianjin, China.
| |
Collapse
|
8
|
Zhang M, Puri AK, Wang Z, Singh S, Permaul K. A unique xylose reductase from Thermomyces lanuginosus: Effect of lignocellulosic substrates and inhibitors and applicability in lignocellulosic bioconversion. BIORESOURCE TECHNOLOGY 2019; 281:374-381. [PMID: 30831517 DOI: 10.1016/j.biortech.2019.02.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
In this study, the xylose reductase gene (XRTL) from Thermomyces lanuginosus SSBP was expressed in Pichia pastoris GS115 and Saccharomyces cerevisiae Y294. The purified 39.2 kDa monomeric enzyme was optimally active at pH 6.5 and 50 °C and showed activity over a wide range of temperatures (30-70 °C) and pH (4.0-9.0), with a half-life of 1386 min at 50 °C. The enzyme preferred NADPH as cofactor and showed broad substrate specificity. The enzyme was inhibited by Cu2+, Fe2+ and Zn2+, while ferulic acid was found to be the most potent lignocellulosic inhibitor. Recombinant S. cerevisiae with the XRTL gene showed 34% higher xylitol production than the control strain. XRTL can therefore be used in a cell-free xylitol production process or as part of a pathway for utilization of xylose from lignocellulosic waste.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Adarsh Kumar Puri
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa.
| | - Zhengxiang Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Suren Singh
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
9
|
Efficient Biosynthesis of Xylitol from Xylose by Coexpression of Xylose Reductase and Glucose Dehydrogenase in Escherichia coli. Appl Biochem Biotechnol 2018; 187:1143-1157. [DOI: 10.1007/s12010-018-2878-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023]
|