1
|
Nhim S, Baramee S, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Uke A, Ceballos RM, Kosugi A, Waeonukul R. Effective semi-fed-batch saccharification with high lignocellulose loading using co-culture of Clostridium thermocellum and Thermobrachium celere strain A9. Front Microbiol 2025; 15:1519060. [PMID: 39839112 PMCID: PMC11747163 DOI: 10.3389/fmicb.2024.1519060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Maximizing saccharification efficiency of lignocellulose and minimizing the production costs associated with enzyme requirements are crucial for sustainable biofuel production. This study presents a novel semi-fed-batch saccharification method that uses a co-culture of Clostridium thermocellum and Thermobrachium celere strain A9 to efficiently break down high solid-loading lignocellulosic biomass without the need for any external enzymes. This method optimizes saccharification efficiency and enhances glucose production from alkaline-treated rice straw, a representative lignocellulosic biomass. Initially, a co-culture of C. thermocellum and T. celere strain A9 was established with a treated rice straw loading of 150 g/l, supplemented with Tween 20, which enhanced enzymes stability and prevented unproductive binding to lignin, achieving a remarkable glucose concentration of up to 90.8 g/l. Subsequently, an additional 100 g/l of treated rice straw was introduced, resulting in a total glucose concentration of up to 140 g/l, representing 70.1% of the theoretical glucose yield from the 250 g/l treated rice straw load. In contrast, batch saccharification using an initial substrate concentration of 250 g/l of alkaline-treated rice straw without Tween 20 resulted in a glucose concentration of 55.5 g/l, with a theoretical glucose yield of only 27.7%. These results suggest that the semi-fed-batch saccharification method using co-cultivation of C. thermocellum and T. celere strain A9, supplemented with Tween 20 is an efficient microbial method for saccharifying high-concentration biomass. Moreover, this approach effectively manages high solids loading, optimizes efficiency, and reduces the need for external enzymes, thus lowering production costs and simplifying the process for industrial applications.
Collapse
Affiliation(s)
- Sreyneang Nhim
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Sirilak Baramee
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Chakrit Tachaapaikoon
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Patthra Pason
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Khanok Ratanakhanokchai
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Ayaka Uke
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Ruben Michael Ceballos
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Rattiya Waeonukul
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Shirai T. Design and construction of artificial metabolic pathways for the bioproduction of useful compounds. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:261-266. [PMID: 40115772 PMCID: PMC11921127 DOI: 10.5511/plantbiotechnology.24.0721c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/21/2024] [Indexed: 03/23/2025]
Abstract
To efficiently produce useful compounds using biological cells, it is essential to optimally design all metabolic reactions and pathways, including not only the flow of carbon within the cell but also the production and consumption of energy and the balance of oxidation-reduction. Computational scientific methods are effective for the rational design of metabolic pathways and the optimization of metabolic fluxes. Based on this blueprint, it is crucial to accurately construct the cell, test and analyze whether it conforms to the design, and learn from the results to redesign the system in an effective cycle. This review introduces essential metabolic design techniques in synthetic biology and discusses the potential of using plant cells or plant genes effectively in synthetic biology for the production of useful compounds.
Collapse
Affiliation(s)
- Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, Cell Factory Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
3
|
Kumar N, Yadav A, Singh G, Singh A, Kumar P, Aggarwal NK. Comparative study of ethanol production from sodium hydroxide pretreated rice straw residue using Saccharomyces cerevisiae and Zymomonas mobilis. Arch Microbiol 2023; 205:146. [PMID: 36971832 DOI: 10.1007/s00203-023-03468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Rice straw is a suitable alternative to a cheaper carbohydrate source for the production of ethanol. For pretreatment efficiency, different sodium hydroxide concentrations (0.5-2.5% w/v) were tested. When compared to other concentrations, rice straw processed with 2% NaOH (w/v) yielded more sugar (8.17 ± 0.01 mg/ml). An alkali treatment induces effective delignification and swelling of biomass. The pretreatment of rice straw with 2% sodium hydroxide (w/v) is able to achieve 55.34% delignification with 53.30% cellulose enrichment. The current study shows the effectiveness of crude cellulolytic preparation from Aspergillus niger resulting in 80.51 ± 0.4% cellulose hydrolysis. Rice straw hydrolysate was fermented using ethanologenic Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria). Overall, superior efficiency of sugar conversion to ethanol 70.34 ± 0.3% was obtained with the yeast compared to bacterial strain 39.18 ± 0.5%. The current study showed that pretreatment with sodium hydroxide is an effective method for producing ethanol from rice straw and yeast strain S. cerevisiae having greater fermentative potential for bioethanol production than bacterial strain Z. mobilis.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Fermentation Technology, Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gulab Singh
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Himachal Pradesh, 174103, India
| | - Ajay Singh
- Department of Food Technology, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Pankaj Kumar
- Department of Microbiology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun, Uttarakhand, 248007, India.
| | - Neeraj K Aggarwal
- Laboratory of Fermentation Technology, Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
4
|
Climent Barba F, Rodríguez-Jasso RM, Sukumaran RK, Ruiz HA. High-solids loading processing for an integrated lignocellulosic biorefinery: Effects of transport phenomena and rheology - A review. BIORESOURCE TECHNOLOGY 2022; 351:127044. [PMID: 35337992 DOI: 10.1016/j.biortech.2022.127044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
This review aims to present an analysis and discussion on the processing of lignocellulosic biomass in terms of biorefinery concept and circular bioeconomy operating at high solids lignocellulosic (above 15% [w/w]) at the pretreatment, enzymatic hydrolysis stage, and fermentation strategy for an integrated lignocellulosic bioprocessing. Studies suggest high solids concentration enzymatic hydrolysis for improved sugars yields and methods to overcome mass transport constraints. Rheological and computational fluid dynamics models of high solids operation through evaluation of mass and momentum transfer limitations are presented. Also, the review paper explores operational feeding strategies to obtain high ethanol concentration and conversion yield, from the hydrothermal pretreatment and investigates the impact of mass load over the operational techniques. Finally, this review contains a brief overview of some of the operations that have successfully scaled up and implemented high-solids enzymatic hydrolysis in terms of the biorefinery concept.
Collapse
Affiliation(s)
- Fernando Climent Barba
- Centre for Doctoral Training in Bioenergy, School of Chemical and Process Engineering, University of Leeds, LS2 9JT, United Kingdom; Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, LS2 9JT, United Kingdom
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
5
|
Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hardest obstacle to make use of lignocellulosic biomass by using green technology is the existence of lignin. It can hinder enzyme reactions with cellulose or hemicellulose as a substrate. Oil palm empty fruit bunches (OPEFBs) consist of hemicellulose with xylan as the main component. Xylitol production via fermentation could use this xylan since it can be converted into xylose. Several pretreatment processes were explored to increase sugar recovery from lignocellulosic biomass. Considering that hemicellulose is more susceptible to heat than cellulose, the hydrothermal process was applied to OPEFB before it was hydrolyzed enzymatically. The purpose of this study was to investigate the effect of temperature, solid loading, and pretreatment time on the OPEFB hydrothermal process. The xylose concentration in OPEFB hydrolysate was analyzed using high-performance liquid chromatography (HPLC). The results indicated that temperature was more important than pretreatment time and solid loading for OPEFB sugar recovery. The optimum temperature, solid loading, and pretreatment time for maximum xylose recovery from pretreated OPEFB were 165 °C, 7%, and 60 min, respectively, giving a xylose recovery of 0.061 g/g of pretreated OPEFB (35% of OPEFB xylan was recovered).
Collapse
|
6
|
Rojas-Chamorro JA, Romero-García JM, Cara C, Romero I, Castro E. Improved ethanol production from the slurry of pretreated brewers' spent grain through different co-fermentation strategies. BIORESOURCE TECHNOLOGY 2020; 296:122367. [PMID: 31727558 DOI: 10.1016/j.biortech.2019.122367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to bioconvert all sugars in BSG into ethanol using a process scheme that includes the enzymatic hydrolysis of the whole slurry resulting from the pretreatment of BSG with phosphoric and sulfuric acid using previously optimised conditions, followed by the co-fermentation of the mixed sugars. More than 90% of the sugars in raw BSG were recovered in the pretreatment and the subsequent enzymatic hydrolysis of the whole slurry. The co-fermentation of the enzymatic hydrolysates with Escherichia coli was then compared with that the co-culture of Scheffersomyces stipitis and Saccharomyces cerevisiae, which resulted in lower ethanol production. The co-fermentation strategy with a single microorganism (E. coli) when BSG was pretreated with phosphoric acid resulted into the highest ethanol concentration, 39 g/L, which means that 222 L of ethanol can be obtained from a ton of BSG without detoxification requirements.
Collapse
Affiliation(s)
- J A Rojas-Chamorro
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain
| | - J M Romero-García
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| | - C Cara
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| | - I Romero
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain.
| | - E Castro
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
7
|
Kim DH, Park HM, Jung YH, Sukyai P, Kim KH. Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. BIORESOURCE TECHNOLOGY 2019; 284:391-397. [PMID: 30959376 DOI: 10.1016/j.biortech.2019.03.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/28/2023]
Abstract
Production of high-titer sugar from lignocellulose is important in terms of process economics of bio-based product industry. In this study, to obtain high titers and yields of sugars, we combined pretreatment and saccharification steps, both at high solids loadings. First, pretreatment of oak was optimized at a 30% (w/w) solids loading. The whole slurry of the pretreated oak was subjected to a fed-batch saccharification step at the final solids loading of 30%, to minimize loss of fermentable sugars and simplify the processes. As a result, high-titer sugars (157.5 g/L) consisting of 120.2 g/L of glucose and 37.3 g/L of xylose were obtained at 75.9% and 58.6%, respectively, of theoretical maximum yields, based on the initial glucan and xylan contents. Thus, through proper optimization processes of oak, the combination of pretreatment and saccharification at high solids loadings was effective in obtaining both high titers and high yields of sugars from lignocellulose.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Hyun Min Park
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Prakit Sukyai
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
8
|
Martínez-Patiño JC, Ruiz E, Cara C, Romero I, Castro E. Advanced bioethanol production from olive tree biomass using different bioconversion schemes. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose. Appl Biochem Biotechnol 2017; 182:1108-1120. [DOI: 10.1007/s12010-016-2385-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
11
|
Barisik G, Isci A, Kutlu N, Bagder Elmaci S, Akay B. Optimization of organic acid pretreatment of wheat straw. Biotechnol Prog 2016; 32:1487-1493. [DOI: 10.1002/btpr.2347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/25/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Gizem Barisik
- Faculty of Engineering, Food Engineering Dept.; Ankara University; Diskapi Ankara Turkey
| | - Asli Isci
- Faculty of Engineering, Food Engineering Dept.; Ankara University; Diskapi Ankara Turkey
| | - Naciye Kutlu
- Faculty of Engineering, Food Engineering Dept.; Ankara University; Diskapi Ankara Turkey
| | - Simel Bagder Elmaci
- Faculty of Engineering, Food Engineering Dept.; Ankara University; Diskapi Ankara Turkey
| | - Bulent Akay
- Faculty of Engineering, Chemical Engineering Dept.; Ankara University; Tandogan Ankara Turkey
| |
Collapse
|