1
|
Liu Y, Ben Y, Wang L, Huang X, Zhou Q. Amplified growth and heavy metal toxicity of Chlorococcum sp. from exposure to low-dose lanthanum(III). JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136949. [PMID: 39721471 DOI: 10.1016/j.jhazmat.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Rare earth elements (REEs) are extensively utilized in industry, agriculture, advanced materials and other fields, leading to their dispersion in water bodies as emerging contaminants. Meanwhile, the coexistence of REEs and heavy metals (HMs) has become a novel form of water contamination (REE-HM co-contamination), though scientists have limited understanding of its hazards. Here, Chlorococcum sp. cultured in Taihu Lake water was selected to examine the effects of low-dose lanthanum(III) [La(III)] on its growth and HM accumulation. Low-dose La(III) (0.5-30 μg/L) promoted algal growth and increased the contents of Cd (136.7 %), Pb (92.0 %), and Cr (84.3 %), along with the bioconcentration factor of Cd (135.5 %), Pb (91.7 %), and Cr (84.0 %) in Chlorococcum sp. These changes were attributed to La(III)-induced adaptive physiological regulations, including essential element uptake, photosynthesis, and antioxidant enzyme activities, achieved through La(III)-enhanced clathrin-mediated endocytosis. In summary, low-dose La(III) increased the growth and HM accumulation of Chlorococcum sp. in REE-HM co-contaminated water. This phenomenon amplified the toxicity of Chlorococcum sp., causing the HM accumulation in predators in the grazing food chain and posing a new threat to aquatic ecosystems.
Collapse
Affiliation(s)
- Yongqiang Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yue Ben
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Lihong Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| | - Qing Zhou
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
2
|
Zuorro A, Lavecchia R, Contreras-Ropero JE, Martínez JBG, Barajas-Ferreira C, Barajas-Solano AF. Natural Antimicrobial Agents from Algae: Current Advances and Future Directions. Int J Mol Sci 2024; 25:11826. [PMID: 39519377 PMCID: PMC11545849 DOI: 10.3390/ijms252111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Infectious diseases have significantly shaped human history, leading to significant advancements in medical science. The discovery and development of antibiotics represented a critical breakthrough, but the rise of antibiotic-resistant pathogens now presents a serious global health threat. Due to the limitations of current synthetic antimicrobials, such as toxicity and environmental concerns, it is essential to explore alternative solutions. Algae, particularly microalgae and cyanobacteria, have emerged as promising sources of bioactive antimicrobial compounds. This review provides a comprehensive analysis of the antimicrobial properties of algal-derived compounds, including polysaccharides, fatty acids, and phenols, which have shown effectiveness against multi-drug-resistant bacteria. A co-occurrence bibliometric analysis using VOSviewer highlighted five key research clusters: antibiotic resistance, algal extracts, biosynthesis, water treatment, and novel pharmacological compounds. Furthermore, the primary mechanisms of action of these bioactive compounds, such as the inhibition of protein synthesis and cell membrane disruption, were identified, demonstrating their potential against both common and multi-resistant pathogens. Future research should prioritize optimizing algal biomass production, utilizing genetic and metabolic engineering, and creating innovative delivery systems to enhance the efficient production of bioactive compounds.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Jefferson E. Contreras-Ropero
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| | - Janet B. García Martínez
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| | - Crisóstomo Barajas-Ferreira
- School of Chemical Engineering, Universidad Industrial de Santander, Cra 27, Calle 9, Bucaramanga 680006, Colombia;
| | - Andrés F. Barajas-Solano
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| |
Collapse
|
3
|
Chelladurai C, Muthiah P, Sultan MA. Influence of multi-stress factors on the growth of Chlorella pyrenoidosa and Scenedesmus abundans using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35261-y. [PMID: 39417936 DOI: 10.1007/s11356-024-35261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
This study evaluated the biofuel production potential of two algal species, Chlorella pyrenoidosa and Scenedesmus abundans, under stress conditions induced by nutrient supplementation or starvation at varying light intensities. Central composite face-centered design response surface methodology (CCFD-RSM) was employed to optimize stress conditions by varying the sodium nitrate (NaNO3), potassium dihydrogen phosphate (KH2PO4), dipotassium hydrogen phosphate (K2HPO4), cultivation time, and light intensity. The study included both C. pyrenoidosa and S. abundans, which presented increased biomass yields when subjected to nutrient starvation. Under the optimized conditions, the dry biomass yield was 98.26 mg/L for C. pyrenoidosa and 110 mg/L for S. abundans. Lipid yields were approximately 22.47% for C. pyrenoidosa and 29.06% for S. abundans under these optimized growth conditions. The optimized parameters for maximum biomass and lipid production were identified as C. pyrenoidosa, and the optimized conditions required 0.805 g/L NaNO3, 0.052 g/L K2HPO4, 0.099 g/L KH2PO4, 17 days of culture, and 5168.39 lx of light intensity. For S. abundans, the optimal conditions were 1.065 g/L NaNO3, 0.071 g/L K2HPO4, 0.058 g/L KH2PO4, 22 days of cultivation, and 2897 lx of light intensity. Overall, both C. pyrenoidosa and S. abundans have emerged as promising candidates for sustainable biodiesel production, highlighting their potential under stress conditions induced by nutrient modulation and variable light intensities.
Collapse
Affiliation(s)
- Chellamboli Chelladurai
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India.
| | - Perumalsamy Muthiah
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| | - Mohamed Arshath Sultan
- Department of Chemical Engineering, St. Josesph College of Engineering, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
4
|
Yadav I, Rautela A, Gangwar A, Wagadre L, Rawat S, Kumar S. Enhancement of isoprene production in engineered Synechococcus elongatus UTEX 2973 by metabolic pathway inhibition and machine learning-based optimization strategy. BIORESOURCE TECHNOLOGY 2023; 387:129677. [PMID: 37579861 DOI: 10.1016/j.biortech.2023.129677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
An engineered Synechococcus elongatus UTEX 2973-IspS.IDI is used to enhance isoprene production through geranyl diphosphate synthase (CrtE) inhibition and process parameters (light intensity, NaHCO3 and growth temperature) optimization approach. A cumulative isoprene production of 1.21 mg/gDCW was achieved with productivity of 12.6 μg/gDCW/h in culture supplemented with 20 μg/mL alendronate. This inhibition strategy improvises the cumulative isoprene production 5.76-fold in presence of alendronate. The maximum cumulative production of isoprene is observed to be 5.22 and 6.20 mg/gDCW (54.4 and 64.6 μg/gDCW/h) at statistical and artificial neural network genetic algorithm (ANN-GA) optimized conditions, respectively. The overall increase of isoprene production is found to be 29.52-fold using an integrated approach of inhibition and ANN-GA optimization in comparison to unoptimized cultures without alendronate. This study reveals that alendronate use as a potential inhibitor and machine learning based optimization is a better approach in comparison to statistical optimization to enhance the isoprene production.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Agendra Gangwar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Lokesh Wagadre
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Shweta Rawat
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
5
|
Cosenza Z, Block DE, Baar K, Chen X. Multi-objective Bayesian algorithm automatically discovers low-cost high-growth serum-free media for cellular agriculture application. Eng Life Sci 2023; 23:e2300005. [PMID: 37533728 PMCID: PMC10390662 DOI: 10.1002/elsc.202300005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 08/04/2023] Open
Abstract
In this work, we applied a multi-information source modeling technique to solve a multi-objective Bayesian optimization problem involving the simultaneous minimization of cost and maximization of growth for serum-free C2C12 cells using a hyper-volume improvement acquisition function. In sequential batches of custom media experiments designed using our Bayesian criteria, collected using multiple assays targeting different cellular growth dynamics, the algorithm learned to identify the trade-off relationship between long-term growth and cost. We were able to identify several media with > 100 % more growth of C2C12 cells than the control, as well as a medium with 23% more growth at only 62.5% of the cost of the control. These algorithmically generated media also maintained growth far past the study period, indicating the modeling approach approximates the cell growth well from an extremely limited data set.
Collapse
Affiliation(s)
- Zachary Cosenza
- Department of Chemical EngineeringUniversity of CaliforniaDavisUSA
| | - David E. Block
- Department of Chemical EngineeringUniversity of CaliforniaDavisUSA
- Department of Viticulture and EnologyUniversity of CaliforniaDavisUSA
| | - Keith Baar
- Department of Neurobiology, Physiology, and Behavior and Physiology and Membrane BiologyUniversity of CaliforniaDavisUSA
| | - Xingyu Chen
- Department of Chemical EngineeringUniversity of CaliforniaDavisUSA
| |
Collapse
|
6
|
Lavania S, Choudhury B. Improvement of amidase production with high specific acyltransferase activity using Bacillus smithii IITR6B2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Agarwal A, Singh A, Banerjee BD, Rai MP, Mukherjee M. Exotic Hydrogel Matrix as an Efficient Platform for Sustainable Production of Biomass and Lipid from Chlorella sorokiniana. ACS APPLIED BIO MATERIALS 2021; 4:6304-6315. [PMID: 35006875 DOI: 10.1021/acsabm.1c00570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Concerning the climate crisis, energy disaster, and greenhouse effects, microalgae have paved the way for consideration as a biofuel feed material. The advent of polymeric materials with unique architecture at nanoscale, in combination with microalgae, has given direction for the bioeconomic yield of highly valued compounds, essentially lipid. Herein, we discuss the paramount significance of exotic hydrogel matrix (HM) with efficient violet light absorption, far-red emission, CO2-adsorbing capability and catalyst-free condition that could increase the photosynthesis activity, alleviating the microalgal growth for the effective augmentation of lipid, protein, and chlorophyll. The intrinsic morphological and structural features of HM were revealed by a suite of characterizations that confirm its hollow tubular architecture. Fluorescence intensity measurement confirmed the electron transfer from HM to Chlorella sorokiniana, accelerating the photosynthetic rate for the improved production of lipids (98%), proteins (60%), and chlorophyll a (121%), compared to untreated C. sorokiniana control cells. Moreover, by visualizing the Nile red (NR) fluorescence response from C. sorokiniana/HM cells, a high lipid content was observed with a larger cell size (14.6 μm) compared to control cells (8.7 μm). Fatty acid methyl esters (FAMEs), obtained from C. sorokiniana/HM, were noted with a large-scale volume of C16:C18 fatty acids (>80%). We, therefore, envisage that HM plays a significant role in enhancing the generation of lipids and proteins from C. sorokiniana. These outcomes assure a qualitative transit in the bioenergy domain.
Collapse
Affiliation(s)
- Aakanksha Agarwal
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201301, India
| | - Aarti Singh
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201301, India
| | - Basu Dev Banerjee
- Environmental Biochemistry & Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences & GTB Hospital, University of Delhi, Delhi 110095, India
| | - Monika Prakash Rai
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201301, India
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida 201301, India.,Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201301, India
| |
Collapse
|
8
|
Nutrient deficiency and an algicidal bacterium improved the lipid profiles of a novel promising oleaginous dinoflagellate, Prorocentrum donghaiense, for biodiesel production. Appl Environ Microbiol 2021; 87:e0115921. [PMID: 34319787 PMCID: PMC8436737 DOI: 10.1128/aem.01159-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid production potential of 8 microalgae species was investigated. Among these eight species, the best strain was a dominant bloom-causing dinoflagellate, Prorocentrum donghaiense; this species had a lipid content of 49.32±1.99% and exhibited a lipid productivity of 95.47±0.99 mg L-1 d-1, which was 2-fold higher than the corresponding values obtained for the oleaginous microalgae Nannochloropsis gaditana and Phaeodactylum tricornutum. P. donghaiense, which is enriched in C16:0 and C22:6, is appropriate for commercial DHA production. Nitrogen or phosphorus stress markedly induced lipid accumulation to levels surpassing 75% of the dry weight, increased the C18:0 and C17:1 contents, and decreased the C18:5 and C22:6 contents, and these effects resulted in decreases in the unsaturated fatty-acid levels and changes in the lipid properties of P. donghaiense such that the species met the biodiesel specification standards. Compared with the results obtained under N-deficient conditions, the enhancement in the activity of alkaline phosphatase of P. donghaiense observed under P-deficient conditions could partly alleviate the adverse effects on the photosynthetic system exerted by P deficiency to induce the production of more carbohydrates for lipogenesis. The supernatant of the algicidal bacterium Paracoccus sp. Y42 culture lysed P. donghaiense without decreasing its lipid content, which resulted in facilitation of the downstream oil extraction process and energy savings through the lysis of algal cells. The Y42 supernatant treatment improved the lipid profiles of algal cells by increasing their C16:0, C18:0 and C18:1 contents and decreasing their C18:5 and C22:6 contents, which is favourable for biodiesel production. IMPORTANCE This study demonstrates the high potential of P. donghaiense, a dominant bloom-causing dinoflagellate, for lipid production. Compared with previously studied oleaginous microalgae, P. donghaiense exhibit greater potential for practical application due to its higher biomass and lipid contents. Nutrient deficiency and the algicidal bacterium Paracoccus sp. Y42 could improve the suitability of the lipid profile of P. donghaiense for biodiesel production. Furthermore, Paracoccus sp. Y42 effectively lyse algal cells, which facilitates the downstream oil extraction process for biodiesel production and results in energy savings through the lysing of algal cells. This study provides a more promising candidate for the production of DHA for human nutritional products and of microalgal biofuel, as well as a more cost-effective method for breaking algal cells. The high lipid productivity of P. donghaiense and algal cell lysis by algicidal bacteria contribute to reductions in the production cost of microalgal oil.
Collapse
|
9
|
Pandey A, Srivastava S, Kumar S. Development and cost-benefit analysis of a novel process for biofuel production from microalgae using pre-treated high-strength fresh cheese whey wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23963-23980. [PMID: 32304062 DOI: 10.1007/s11356-020-08535-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel two-step integrated process is proposed to facilitate the microalgae biofuel production as well as fresh cheese whey wastewater (FCWW) treatment simultaneously. The pre- and post-treatment of high-strength FCWW were performed by means of coagulation and algal cultivation, respectively. The pre-treatment of FCWW for maximum removal of chemical oxygen demand (COD), turbidity (TUR) and total solids (TS) as responses was obtained by statistical optimization of coagulation parameters. The maximum removal of COD, TUR and TS at the optimum level of variables was obtained as 68.09%, 47.80% and 73.63%, respectively. The pre-treated FCWW was further treated by Chlorella pyrenoidosa and observed a significant reduction in the above-mentioned responses (87-94%). The maximum algal biomass yield and lipid productivity were observed as 2.44 g L-1 and 77.41 mg L-1 day-1, respectively. Based on promising results of FCWW treatment and its use as a third-generation biodiesel feedstock, a cost-benefit analysis of the developed process was assessed for microalgal oil production. The total profit earned by the integrated process model was $9.59 million year-1. Accordingly, the estimated production cost of algal oil (TAG) from the developed system was estimated to be $79.03 per barrel.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
10
|
Sureshkumar P, Thomas J. Exploring the distinctiveness of biomass and biomolecules from limnic microalgae of unexplored waters of Noyyal River, Western Ghats, for exploitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23309-23322. [PMID: 32337670 DOI: 10.1007/s11356-020-08921-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microalgae with high biomass productivity, lipid content, and lipid productivity are desirable for sustainable biofuel production. Rapid and accurate quantification of lipid content facilitates the identification of promising microalgae candidates. In the present study, 23 freshwater microalgae species from river Noyyal were isolated and identified based on their morphological and molecular (18S rRNA) features and recorded as Karunya Algae Culture Collection (KACC). Their biomass and lipid content were characterized and screened using FT-IR, Nile red staining, and gravimetric method. Results generated from FT-IR spectra differentiated KACC microalgae based on their biochemical contents with Scenedesmus rubescens KACC 2 and Chlorococcum sp. KACC 13 possessed high total protein and lipid content, respectively. Nile red fluorescence at 530/575 nm showed the yellow fluorescence under a fluorescent microscope giving the evidence of high neutral lipids in 10 KACC microalgae isolates. Total lipid content showed prominent variation between the KACC isolates and found in the range of 4 to 32% of DW. Lipid productivity and biomass productivity showed a similar pattern among KACC strains. Thus, our findings serve as a baseline data on the bioprospecting potential of KACC isolates from river Noyyal, an unexplored area of Western Ghats.
Collapse
Affiliation(s)
- Pandian Sureshkumar
- Algae Biomass Research Laboratory, Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641 114, India
| | - Jibu Thomas
- Algae Biomass Research Laboratory, Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641 114, India.
| |
Collapse
|
11
|
Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa. Folia Microbiol (Praha) 2020; 65:901-908. [PMID: 32415567 DOI: 10.1007/s12223-020-00800-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
The aim of the study was to identify the optimum cultivation conditions for the microalgal growth and lipid production of the oleaginous microalga Chlorella pyrenoidosa Chick (IPPAS C2). Moreover, an appropriate NO3- concentration in the cultivation medium for maximized lipid accumulation was determined. The experimental design involved a biphasic cultivation strategy with an initial biomass accumulating phase under optimized light (400 μmol/m2 per s), temperature (25 °C), and elevated CO2 concentration in the air mixture (3%), followed by a mid-elevated CO2 concentration (0.5%) for lipid induction. The highest lipid yields of 172.47 ± 18.1 and 179.65 ± 25.4 mg/L per day were detected for NO3- concentrations of 100 and 150 mg/L. The optimization approach presented here led not only to the maximization of lipid yield but also to the development of a biphasic cultivation strategy easily applicable to the cultivation process without the necessity for algal cell harvesting between the first and second cultivation phases.
Collapse
|
12
|
Torres-Tiji Y, Fields FJ, Mayfield SP. Microalgae as a future food source. Biotechnol Adv 2020; 41:107536. [PMID: 32194145 DOI: 10.1016/j.biotechadv.2020.107536] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
One of the key challenges that we face in the 21st century is the need to feed an ever-increasing human population with increasingly limited natural resources. Even today it is estimated that roughly 1 out of 9 people in the world are undernourished, of which the most important factor is protein-energy malnutrition. By establishing microalgae as a new food and feed platform, we have the opportunity to increase the supply of these essential products to address global demands in a more efficient and environmentally sustainable way. Many types of algae are nutritionally complete foods, their yields outperform most plant crops, and there is a growing set of tools to develop improved strains of algae. Similar improvements were achieved in traditional crops through thousands of years of breeding and strain selection, whereas with the newest genetic engineering tools and advanced strain selection techniques, similar changes can be implemented in microalgae in just a few years. Here we describe different strategies that could be used to enhance the nutritional content, productivity, and organoleptic traits of algae to help drive development of this new crop. Clearly developing more efficient, sustainable, and nutritious foods and feed would be an enormous benefit for the planet, and algae represents an opportunity to develop a new crop that would complement traditional agriculture, and one that could potential result in a more efficient means to meet the world's food and feed supply.
Collapse
Affiliation(s)
- Yasin Torres-Tiji
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Francis J Fields
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Stephen P Mayfield
- The California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Sampathkumar SJ, Gothandam KM. Sodium bicarbonate augmentation enhances lutein biosynthesis in green microalgae Chlorella pyrenoidosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microb Pathog 2019; 135:103658. [PMID: 31398531 DOI: 10.1016/j.micpath.2019.103658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
The increasing resistance of Pseudomonas aeruginosa towards antimicrobial agents has been a major cause for the escalation of untreatable diabetic foot ulcer cases around the globe. This demands research towards alternative natural products that inhibit biofilm formation by P. aeruginosa. The study focuses on enhancing as well as understanding the anti-biofilm property of lutein from Chlorella pyrenoidosa against MTCC strain of P. aeruginosa PAO1. C. pyrenoidosa was subjected to nutrient starvation (N-, S- and P-) and their growth, biomass, chlorophyll pigments and total carotenoids were estimated. Lutein extracted from nutrient starved C. pyrenoidosa were quantified using High Performance Liquid Chromatography (HPLC) and also used for quantification of biofilm formation, cell surface hydrophobicity (CSH), extracellular polymeric substances (EPS) and pyocyanin degradation. The results showed 20 μg/mL concentration of lutein showed maximum inhibition and degradation of biofilm formation, pyocyanin production, Cell Surface Hydrophobicity Extracellular Polymeric Substances, when compared to other concentrations. Azithromycin was used as a standard drug to compare the efficiency of lutein as a potential antibiofilm compound. Docking studies confirmed the interaction of lutein with the four proteins - LasI, LasR, RhlI and RhlR, involved in the quorum sensing mechanism during biofilm formation. Among them, RhlI protein was found to strongly interact and LasI exhibiting the least interaction with lutein. Gene expression analyses of las and rhl genes in P. aeruginosa PAO1 revealed a significant down regulation of both the genes in the cultures treated with different concentrations of lutein. Therefore, it can be understood that lutein is an effective antibiofilm agent and can be used in combination with generic drugs that are used for treating diseases such as diabetic foot ulcers, which are ineffective due to high biofilm forming capability of P. aeruginosa and other bacterial species.
Collapse
|
15
|
Sukačová K, Búzová D, Trávníček P, Červený J, Vítězová M, Vítěz T. Optimization of microalgal growth and cultivation parameters for increasing bioenergy potential: Case study using the oleaginous microalga Chlorella pyrenoidosa Chick (IPPAS C2). ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Banerjee S, Singh H, Das D, Atta A. Process Optimization for Enhanced Biodiesel Production by Neochloris oleoabundans UTEX 1185 with Concomitant CO2 Sequestration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Biomass and lipid production of a novel freshwater thermo-tolerant mutant strain of Chlorella pyrenoidosa NCIM 2738 in seawater salinity recycled medium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Scheufele FB, Hinterholz CL, Zaharieva MM, Najdenski HM, Módenes AN, Trigueros DEG, Borba CE, Espinoza-Quiñones FR, Kroumov AD. Complex mathematical analysis of photobioreactor system. Eng Life Sci 2018; 19:844-859. [PMID: 32624977 DOI: 10.1002/elsc.201800044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/05/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022] Open
Abstract
Modeling as a tool solves extremely difficult tasks in life sciences. Recently, schemes of culturing of microalgae have received special attention because of its unique features and possible uses in many industrial applications for renewable energy production and high value products isolation. The goal of this review is to present the use of system analysis theory applied to microalgae culturing modeling and process development. The review mainly focuses on the modeling of the key steps of autotrophic growth under the integral biorefinery concept of the microalgae biomass. The system approach follows systematically a procedure showing the difficulties by modeling of sub-systems. The development of microalgae kinetics and computational fluid dynamics (CFD) studies were analyzed in details as sub-systems in advanced design of photobioreactor (PBR). This review logically follows the trends of the modeling procedure and clarifies how this approach may save time and money during the research efforts. The result of this work is a successful development of a complex PBR mathematical analysis in the frame of the integral biorefinery concept.
Collapse
Affiliation(s)
| | - Camila Larissa Hinterholz
- Department of Chemical Engineering - Postgraduate Program West Parana State University Toledo Brazil
| | - Maya M Zaharieva
- Department of Infectious Microbiology The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Sofia Bulgaria
| | - Hristo M Najdenski
- Department of Infectious Microbiology The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Sofia Bulgaria
| | - Aparecido Nivaldo Módenes
- Department of Chemical Engineering - Postgraduate Program West Parana State University Toledo Brazil
| | | | - Carlos Eduardo Borba
- Department of Chemical Engineering - Postgraduate Program West Parana State University Toledo Brazil
| | | | - Alexander Dimitrov Kroumov
- Department of Applied Microbiology Division "Microbial Synthesis and Ecology" The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Sofia Bulgaria
| |
Collapse
|
19
|
Sathish T, Kezia D, Bramhachari P, Prakasham RS. Multi-objective based superimposed optimization method for enhancement of l -glutaminase production by Bacillus subtilis RSP-GLU. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2018. [DOI: 10.1016/j.kijoms.2017.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Khandelwal A, Vijay A, Dixit A, Chhabra M. Microbial fuel cell powered by lipid extracted algae: A promising system for algal lipids and power generation. BIORESOURCE TECHNOLOGY 2018; 247:520-527. [PMID: 28972905 DOI: 10.1016/j.biortech.2017.09.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 05/11/2023]
Abstract
In this study, a promising microbial fuel cell (MFC) system has been developed, wherein algae is cultivated in the cathode chamber, algae biomass is harvested and lipids are extracted. The lipid extracted algal (LEA) biomass was then used asan electron donor substrate. The performance of MFCs fed with LEA biomass was compared with that of fruit waste fed MFCs (FP-MFCs), wherein LEA-fed MFC was superior in all aspects. Power density of 2.7Wm-3 was obtained by LEA-fed MFCs which is 145% and 260% higher than FP MFC and control MFC respectively. The volumetric algae productivity of 0.028kgm-3day-1 in cathode chamber was achieved. The system was able to generate 0.0136kWhKg-1CODday-1 of electric energy and 0.0782kWhm-3day-1 of algal oil energy. The proposed system is a net energy producer which does not rely heavily on the external supply of electron donor substrates.
Collapse
Affiliation(s)
- Amitap Khandelwal
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur, Rajasthan 342011, India
| | - Ankisha Vijay
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur, Rajasthan 342011, India
| | - Ambesh Dixit
- Department of Physics, Indian Institute of Technology Jodhpur (IIT J), Jodhpur, Rajasthan 342011, India
| | - Meenu Chhabra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IIT J), Jodhpur, Rajasthan 342011, India.
| |
Collapse
|
21
|
Jampala P, Tadikamalla S, Preethi M, Ramanujam S, Uppuluri KB. Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 2017; 7:14. [PMID: 28391478 PMCID: PMC5385180 DOI: 10.1007/s13205-017-0607-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/07/2017] [Indexed: 11/13/2022] Open
Abstract
Application of multiple response optimizations using desirability function in the production of microbial metabolites improves economy and efficiency. Concurrent production of cellulase and xylanase in Trichoderma reesei NCIM 1186 using an agricultural weed, Prosopis juliflora pods, was studied. The main aim of the study was to optimize significant medium nutrient parameters for maximization of cellulase and xylanase by multi-objective optimization strategy using biomass. Process parameters such as the nutrient concentrations (pods, sucrose, and yeast extract) and pH were investigated to improve cellulase and xylanase activities by one factor at a time approach, single response optimization and multi-objective optimization. At the corresponding optimized process parameters in single response optimization, the maximum cellulase activity observed was 3055.65 U/L where xylanase highest activity was 422.16 U/L. Similarly, the maximum xylanase activity, 444.94 U/L, was observed with the highest cellulase activity of 2804.40 U/L. The multi-objective optimization finds a tradeoff between the two objectives and optimal activity values in between the single-objective optima were achieved, 3033.74 and 439.13 U/L for cellulase and xylanase, respectively.
Collapse
|
22
|
Nogami R, Nishida H, Hong DD, Wakisaka M. Growth promotion of Spirulina by steelmaking slag: application of solubility diagram to understand its mechanism. AMB Express 2016; 6:96. [PMID: 27730571 PMCID: PMC5059226 DOI: 10.1186/s13568-016-0270-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
A solubility diagram was employed to understand growth promotion of Arthrospira (Spirulina) platensis by steelmaking slag (SMS). The growth promotion effect of 112 % of freshwater microalga A. platensis was obtained using 5 g/L SMS. However, metabolites, such as pigments, and protein content of A. platensis were not significantly affected. Several metals dissolved in Spirulina-Ogawa-Terui medium were detected by inductively coupled plasma atomic emission spectrometry just after the addition of SMS. The solubility diagram provides information on the chemical speciation of metal elements based on pH and concentration. It is a useful tool to understand the effect of metals on microalgal growth. The metal elements used to control microalgal growth are essential minerals but also act as a source of oxidative stress. Regarding the affecting mechanism of SMS, iron may be the primary element regulating microalgal growth via pathway involving reactive oxygen species, as revealed by superoxide dismutase assay.
Collapse
|