1
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
2
|
Saengsen C, Sookbampen O, Wu S, Seetasang S, Rongwong W, Chuaboon L. The potency of HPLC-DAD and LC-MS/MS combined with ion chromatography for detection/purification of levulinic acid and bio-compounds from acid hydrolysis of OPEFB. RSC Adv 2022; 12:28638-28646. [PMID: 36320499 PMCID: PMC9539635 DOI: 10.1039/d2ra03563d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
This work reports a new strategy for the detection and purification of levulinic acid (LA) and bio-compounds from the acid hydrolysis and enzymatic treatment of oil palm empty fruit bunch (OPEFB) through high-performance liquid chromatography (HPLC) techniques combined with ion/ligand chromatography. The detections of LA, biomass-saccharides, hydroxymethylfurfural (HMF), and furfural were successfully elucidated by optimizing the multiple reaction monitoring mode (MRM) and liquid chromatography conditions using a Pb2+ ligand exchange column in the liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach. High-performance liquid chromatography with diode-array detection (HPLC-DAD) combined with an H+ ion exchange column also showed potency for detecting chromophoric compounds such as LA, HMF, furfural, and acid (by-products) but not biomass-saccharides. Both techniques showed acceptable validation in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision, and stability in both quantitative and qualitative analysis. However, the LC-MS/MS approach showed higher sensitivity for detecting LA and HMF compared with HPLC-DAD. Samples comprised of cellobiose, glucose, HMF, and LA from the acid hydrolysis of cellulose to LA with a mineral acid, and the biocatalysis of cellulase and β-glucosidase catalyzed cellulose (from OPEFB) to glucose were successfully monitored through the LC-MS/MS approach. In addition, using the optimal HPLC conditions obtained from LC-MS/MS, the purification of LA from other substances obtained from the hydrolysis reaction of cellulose (5 g) was successfully demonstrated by HPLC-DAD equipped with a fraction collector combined with an H+ ion exchange column at gram-scale of 1 g LA with a purification rate of 0.63 g ml−1 min−1. The analytical approach for detection and purification levulinic acid from and bio-compound in hydrolysis biomass.![]()
Collapse
Affiliation(s)
- Chatcha Saengsen
- Biomass and Oil Palm Center of Excellent, Walailak UniversityNakhon Si Thammarat80160Thailand
| | - Orawan Sookbampen
- Biomass and Oil Palm Center of Excellent, Walailak UniversityNakhon Si Thammarat80160Thailand
| | - Shuke Wu
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhan430070China
| | - Sasikarn Seetasang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development AgencyKhlong LuangPathum Thani 12120Thailand
| | - Wichitpan Rongwong
- Biomass and Oil Palm Center of Excellent, Walailak UniversityNakhon Si Thammarat80160Thailand,School of Engineering and Technology, Walailak UniversityNakhon Si Thammarat80160Thailand
| | - Litavadee Chuaboon
- Biomass and Oil Palm Center of Excellent, Walailak UniversityNakhon Si Thammarat80160Thailand,School of Pharmacy, Walailak UniversityNakhon Si Thammarat80160Thailand
| |
Collapse
|
3
|
Optimization of OPEFB lignocellulose transformation process through ionic liquid [TEA][HSO 4] based pretreatment. Sci Rep 2021; 11:11338. [PMID: 34059755 PMCID: PMC8167171 DOI: 10.1038/s41598-021-90891-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/18/2021] [Indexed: 02/04/2023] Open
Abstract
Research on the transformation of Oil Palm Empty Fruit Bunches (OPEFB) through pretreatment process using ionic liquid triethylammonium hydrogen sulphate (IL [TEA][HSO4]) was completed. The stages of the transformation process carried out were the synthesis of IL with the one-spot method, optimization of IL composition and pretreatment temperature, and IL recovery. The success of the IL synthesis stage was analyzed by FTIR, H-NMR and TGA. Based on the results obtained, it showed that IL [TEA][HSO4] was successfully synthesized. This was indicated by the presence of IR absorption at 1/λ = 2814.97 cm-1, 1401.07 cm-1, 1233.30 cm-1 and 847.92 cm-1 which were functional groups for NH, CH3, CN and SO2, respectively. These results were supported by H-NMR data at δ (ppm) = 1.217-1.236 (N-CH2-CH3), 3.005-3.023 (-H), 3.427-3.445 (N-H+) and 3.867 (N+H3). The TGA results showed that the melting point and decomposition temperature of the IL were 49 °C and 274.3 °C, respectively. Based on pretreatment optimization, it showed that the best IL composition for cellulose production was 85 wt%. Meanwhile, temperature optimization showed that the best temperature was 120 °C. In these two optimum conditions, the cellulose content was obtained at 45.84 wt%. Testing of IL [TEA][HSO4] recovery performance for reuse has shown promising results. During the pretreatment process, IL [TEA][HSO4] recovery effectively increased the cellulose content of OPEFB to 29.13 wt% and decreased the lignin content to 32.57%. The success of the recovery process is indicated by the increasing density properties of IL [TEA][HSO4]. This increase occurs when using a temperature of 80-100 °C. The overall conditions obtained from this work suggest that IL [TEA][HSO4] was effective during the transformation process of OPEFB into cellulose. This shows the potential of IL [TEA][HSO4] in the future in the renewable energy sector.
Collapse
|
4
|
Wang H, Zhai L, Geng A. Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. J Biosci Bioeng 2019; 129:242-249. [PMID: 31561850 DOI: 10.1016/j.jbiosc.2019.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
Trichoderma harzianum EU2-77 was a mutant strain of the wild-type strain T. harzianum NP13a isolated in Singapore. A multi-mutagenesis one-screening (MMOS) method was developed to further improve strain EU2-77 and a new mutant EUA20 was obtained. It exhibited filter paper cellulase (FPase) activity up to 14.79 IU/mL within 6 days shake flask cultivation. Activities of FPase, endoglucanase, β-glucosidase, and xylanase, and protein content by EUA20 were respectively increased to 5.73, 4.35, 7.34, 1.80 and 2.70 folds. Using pretreated oil palm empty fruit bunch (OPEFB) and corncob powder as the substrates, strain EUA20 presented approximate 6.52 and 8.80 IU/ml FPase activity. Reducing sugar yield of 615.8 and 636.8 mg/g biomass were respectively obtained for OPEFB and corncob powder using cellulolytic enzymes of strain EUA20. Our results demonstrated that mutant strain EUA20 had great potential in on-site cellulase production for effective biomass bioconversion.
Collapse
Affiliation(s)
- Hengwei Wang
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore.
| | - Lili Zhai
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore.
| | - Anli Geng
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore.
| |
Collapse
|
5
|
Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Bioprocess Biosyst Eng 2019; 42:883-896. [PMID: 30820665 DOI: 10.1007/s00449-019-02090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Industrial production of lignocellulosic ethanol requires a microorganism utilizing both hexose and pentose, and tolerating inhibitors. In this study, a hydrolysate-cofermenting Saccharomyces cerevisiae strain was obtained through one step in vivo DNA assembly of pentose-metabolizing pathway genes, followed by consecutive adaptive evolution in pentose media containing acetic acid, and direct screening in biomass hydrolysate media. The strain was able to coferment glucose and xylose in synthetic media with the respective maximal specific rates of glucose and xylose consumption, and ethanol production of 3.47, 0.38 and 1.62 g/g DW/h, with an ethanol titre of 41.07 g/L and yield of 0.42 g/g. Industrial wheat straw hydrolysate fermentation resulted in maximal specific rates of glucose and xylose consumption, and ethanol production of 2.61, 0.54 and 1.38 g/g DW/h, respectively, with an ethanol titre of 54.11 g/L and yield of 0.44 g/g. These are among the best for wheat straw hydrolysate fermentation through separate hydrolysis and cofermentation.
Collapse
|
6
|
Li YX, Yi P, Liu J, Yan QJ, Jiang ZQ. High-level expression of an engineered β-mannanase (mRmMan5A) in Pichia pastoris for manno-oligosaccharide production using steam explosion pretreated palm kernel cake. BIORESOURCE TECHNOLOGY 2018; 256:30-37. [PMID: 29428611 DOI: 10.1016/j.biortech.2018.01.138] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
An engineered β-mannanase (mRmMan5A) from Rhizomucor miehei was successfully expressed in Pichia pastoris. Through high cell density fermentation, the expression level of mRmMan5A reached 79,680 U mL-1. The mRmMan5A showed maximum activity at pH 4.5 and 65 °C, and exhibited high specific activities towards mannans. To produce manno-oligosaccharides, palm kernel cake (PKC) was pretreated by steam explosion at 200 °C for 7.5 min, and then hydrolyzed by mRmMan5A. As a result, the total manno-oligosaccharide yield reached 34.8 g/100 g dry PKC, indicating that 80.6% of total mannan in PKC was hydrolyzed. Moreover, the kilo-scale production of manno-oligosaccharides was carried out to verify the feasibility of mass production. A total of 261.3 g manno-oligosaccharides were produced from 1.0 kg of dry PKC. An effective β-mannanase for the bioconversion of mannan-rich biomasses and an efficient method for the production of manno-oligosaccharides from PKC are provided in this paper.
Collapse
Affiliation(s)
- Yan-Xiao Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Ping Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Qiao-Juan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China.
| | - Zheng-Qiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China.
| |
Collapse
|