1
|
Li L, Wang N, Wang L, Yang F, Wang W, Han Y, Yu D. Characteristics, immobilization of linoleic acid isomerase from Bifidobacterium breve and its application in rice bran oil. Food Res Int 2025; 212:116518. [PMID: 40382061 DOI: 10.1016/j.foodres.2025.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
The purpose of this paper is to reduce the acid value of rice bran crude oil and make a new rice bran oil (RBO) with conjugated linoleic acid (CLA). Linoleic acid isomerase from Bifidobacterium breve was immobilized on a magnetic nanoflower carrier of Fe3O4-SiO2-NFs. Molecular docking simulations were performed to investigate the interaction and binding mode conformation between isomerase and linoleic acid (LA) molecules by using computer software. This isomerase was used in isomerization reaction of high acid value RBO. Under the optimal enzymatic isomerization conditions, the conversion rate of LA was 62.13 %. The content of c9-CLA and t11-CLA in the product of enzymatic isomerization reaction was 23.50 ± 0.25 %. After six repeated uses, the relative activity of the immobilized enzyme remained above 70 %. Esterification reaction was performed from monoacylglycerol and RBO with CLA under the catalysis of magnetic immobilized lipase. The CLA glyceride content was 14.09 ± 0.53 % in new RBO product. The acid value of RBO decreased to 0.31 ± 0.15 mgKOH/g, and the peroxide value was 1.03 ± 0.14 mmol/kg. It may provide a sustainable pathway for RBO refining that combines deacidification with CLA-functionalization.
Collapse
Affiliation(s)
- Lin Li
- College of Food Engineering, Harbin University of Commerce, Harbin 150090, China
| | - Ning Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150090, China
| | - Liqi Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150090, China.
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Weining Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yike Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Wu L, Li D, Bi F, Yu C, Zhang Y, Zheng M. Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions. Food Chem 2025; 470:142683. [PMID: 39742604 DOI: 10.1016/j.foodchem.2024.142683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 01/03/2025]
Abstract
A novel Pickering interfacial biocatalysis (PIB) system has been, for the first time, successfully applied for the enzymatic selective hydrolysis of algae oils and fish oils to enrich n-3 PUFAs glycerides. Lipase AY 400SD was identified and adsorbed on hydrophobic hollow core-shell silica nanoparticles, resulting in the formation of the immobilized enzyme AY 400SD@HMSS-C18. The biocatalyst was employed as an emulsifier to stabilize the water-in-oil Pickering emulsion, resulting in the successful construction of the PIB system. The newly developed PIB system resulted in a notable enhancement of the n-3 PUFAs content of the six oils, with a mean increase ranging from 9.17 % to 23.09 %, and with the recovery rate of n-3 PUFAs exceeded 90 %. The platform demonstrated to be stable and recyclable. The present research illustrated that the PIB has the potential to be a viable alternative for the purpose of enhancing the content of n-3 PUFAs in glycerides.
Collapse
Affiliation(s)
- Liumei Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dongming Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fuyang Bi
- Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China
| | - Chao Yu
- CABIO Biotech (Wuhan) Co., Ltd. Wuhan East Lake High-tech Development Zone, Wuhan 430073, China
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China.
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China.
| |
Collapse
|
3
|
Yan S, Yuan Z, Qian H, Dai Y, Sun B, Jiang P, Guo Y, Fang W. Advanced magnetic nanospheres for oil pollutant management: Dual roles in emulsification and demulsification. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136026. [PMID: 39368361 DOI: 10.1016/j.jhazmat.2024.136026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Environmental contamination from oil spills and industrial oily wastewater poses significant ecological risks due to the persistence of harmful organic compounds. To address these challenges, magnetic composite nanospheres (CMNP@CHPEI) are systematically developed, with carboxylated Fe3O4 nanoparticles (CMNP) as the core and amphiphilic hyperbranched polyethyleneimine (CHPEI) as the decorated shell. These novel nanospheres combine the controllable size and magnetic responsiveness of "hard" magnetic nanomaterials with the structural complexity and functional diversity of "soft" hyperbranched polymers. This design allows for switching between emulsification and demulsification behaviors by regulating the size of the nanospheres and the amphiphilicity of CHPEI. Specifically, the nanospheres can form Pickering emulsions with oil droplet sizes smaller than 1 µm, maintaining stability for up to 75 days, and achieve rapid oil-water separation with demulsification efficiencies up to 99.8 %. Even after seven recycling experiments, they still retain significant interfacial activity and applicability. Interfacial characteristic experiments and molecular dynamics simulations reveal that particle size directly affects the film structures formed at oil-water interface, while the amphiphilic functional molecules determine the interaction mode of nanospheres with oil-water phases. These achievements introduce a versatile, environmentally friendly material for removing hazardous oil-based pollutants, with promising applications in oil spill remediation and industrial wastewater treatment.
Collapse
Affiliation(s)
- Shu Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Zhiyuan Yuan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hehe Qian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yitong Dai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| | - Bin Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Jiang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China.
| | - Yongsheng Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China.
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China; Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
5
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
6
|
Tang X, Liu CL, Chen YY, Wei Y, Zhuang XY, Xiao Q, Chen J, Chen FQ, Yang QM, Weng HF, Fang BS, Zhang YH, Xiao AF. Combination of simultaneous extraction–hydrolysis and intermittent feeding of tara pod for efficient production of gallic acid. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Cavalcanti RMF, Maestrello CC, Guimarães LHS. Immobilization of the Tannase From Aspergillus fumigatus CAS21: Screening the Best Derivative for the Treatment of Tannery Effluent Using a Packed Bed Reactor. Front Bioeng Biotechnol 2021; 9:754061. [PMID: 34805112 PMCID: PMC8595215 DOI: 10.3389/fbioe.2021.754061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Enzyme immobilization is an important alternative to stabilize enzyme properties favoring the efficiency of derivatives (enzyme + support/matrix) for different purposes. According to this, the current study aimed to immobilize the Aspergillus fumigatus CAS21 tannase and the use of the derivatives in the treatment of the effluent produced by the tannery industry. The tannase was immobilized on sodium alginate, DEAE-Sephadex, amberlite, and glass pearls as supports. Calcium alginate was the most adequate support for tannase immobilization with 100% yield and 94.3% for both efficiency and activity. The best tannase activity for the calcium alginate derivative was obtained at 50°C–60°C and pH 5.0. Thermal and pH stabilities evaluated for 24 h at 30°C–60°C and pH 4–7, respectively, were improved if compared to the stability of the free enzyme. Considering the reuse of the calcium alginate derivative, 78% of the initial activity was preserved after 10 catalytic cycles, and after the 9-month storage at 4°C, the activity was maintained in 70%. This derivative was applied in a packed bed reactor (PBR) for the treatment of tannin-rich effluents from the tannery industry. The reduction of the tannin content was effective reaching degradation of 74–78% after 48 h of PBR operation. The concentration of total phenolic compounds was also reduced, and the color and clarity of the effluent improved. In conclusion, the calcium alginate derivative is an attractive alternative as biocatalyst for large-scale treatment of the effluents from the tannery industry.
Collapse
|
8
|
Yang C, Jiang J, Wu Y, Fu Y, Sun Y, Chen F, Yan G, Hu J. High removal rate and selectivity of Hg(II) ions using the magnetic composite adsorbent based on starch/polyethyleneimine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Dutta N, Miraz SM, Khan MU, Karekar SC, Usman M, Khan SM, Amin U, Rebezov M, Shariati MA, Thiruvengadam M. Heterologous expression and biophysical characterization of a mesophilic tannase following manganese nanoparticle immobilization. Colloids Surf B Biointerfaces 2021; 207:112011. [PMID: 34339969 DOI: 10.1016/j.colsurfb.2021.112011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
In the current study, we analyzed the efficacy of manganese oxide nanoparticle (MnNP)-water dispersion as an immobilization matrix for bacterial tannase. The tannase-secreting Bacillus subtilis strain NJKL.tan.2 obtained from tannery effluent soil was subsequently purified and cloned in pET20b vector. The activity of MnNP-tan (tannase activated by manganese nanoparticles) was 1.51- and 3.5-fold higher at 20 °C and 80 °C, respectively, compared with the free enzyme. MnNP-tan decreased Km by 41.66 % and 3-fold, whereas free tannase showed two-fold and six-fold improvement in Kcat at 37 °C and 80 °C, respectively. MnNP-tan showed an increase in (half-life)t1/2and Ed by 13-fold and 50.05 units, respectively, at 80 °C, in contrast to the native enzyme. MnNP-tan retained its residual activity by 78.2 % at 37 °C and 34.24 % at 80 °C after 180 min of incubation when compared with untreated set. MnNP-tan retained 51 % of its activity after 120 days with the native enzyme losing ∼50 % functionality following 40 days of incubation. The MnNP-mediated tannase immobilization technique is being reported for the first time. The technique has numerous advantages due to the use of MnNP as a potential matrix for biomolecule immobilization, which can be further extended to immobilize other biocatalysts used in agro-industrial and lab-based applications.
Collapse
Affiliation(s)
- Nalok Dutta
- Bioproducts Science & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University Tri-Cities Campus, 2710 Crimson Way East 229, Richland, WA 99354, United States.
| | - Shahriar Md Miraz
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Supriya Charuhas Karekar
- Bioproducts Science & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University Tri-Cities Campus, 2710 Crimson Way East 229, Richland, WA 99354, United States
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University Tri-Cities Campus, 2710 Crimson Way East 229, Richland, WA 99354, United States
| | - Shahbaz Manzoor Khan
- Department of Pathobiology, University of Illinois, 2522 Veterinary Medicine Basic Sciences Bldg. 2001 South Lincoln Avenue, Urbana, IL 61802, United States
| | - Usman Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow, 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova Str., Moscow, 119991, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, 109004, Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Chitosan Activated with Genipin: A Nontoxic Natural Carrier for Tannase Immobilization and Its Application in Enhancing Biological Activities of Tea Extract. Mar Drugs 2021; 19:md19030166. [PMID: 33808933 PMCID: PMC8003703 DOI: 10.3390/md19030166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
In this work, a non-toxic chitosan-based carrier was constructed via genipin activation and applied for the immobilization of tannase. The immobilization carriers and immobilized tannase were characterized using Fourier transform infrared spectroscopy and thermogravimetric analysis. Activation conditions (genipin concentration, activation temperature, activation pH and activation time) and immobilizations conditions (enzyme amount, immobilization time, immobilization temperature, immobilization pH, and shaking speed) were optimized. The activity and activity recovery rate of the immobilized tannase prepared using optimal activation and immobilization conditions reached 29.2 U/g and 53.6%, respectively. The immobilized tannase exhibited better environmental adaptability and stability. The immobilized tannase retained 20.1% of the initial activity after 12 cycles and retained 81.12% of residual activity after 30 days storage. The catechins composition analysis of tea extract indicated that the concentration of non-ester-type catechins, EGC and EC, were increased by 1758% and 807% after enzymatic treatment. Biological activity studies of tea extract revealed that tea extract treated with the immobilized tannase possessed higher antioxidant activity, higher inhibitory effect on α-amylase, and lower inhibitory effect on α-glucosidase. Our results demonstrate that chitosan activated with genipin could be an effective non-toxic carrier for tannase immobilization and enhancing biological activities of tea extract.
Collapse
|
11
|
Suresh A, Shravan Ramgopal D, Panchamoorthy Gopinath K, Arun J, SundarRajan P, Bhatnagar A. Recent advancements in the synthesis of novel thermostable biocatalysts and their applications in commercially important chemoenzymatic conversion processes. BIORESOURCE TECHNOLOGY 2021; 323:124558. [PMID: 33383359 DOI: 10.1016/j.biortech.2020.124558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Thermostable enzymes are a field of growing interest in bioremediation, pharmaceuticals, food industry etc., due to their ability to catalyze bio reactions at high temperatures. This review aims to provide an overview on extremophiles with a special focus on thermophiles and enzymes produced from extremophilic bacteria. Novel thermostable catalysts, used in producing commercially important chemicals, are discussed in this review. Various classes of enzymes produced by microbes, synthesis of thermozymes and comparison with enzymes produced at optimal conditions are critically discussed. A detailed discussion on immobilized enzymes in comparisons with free enzymes, produced by extremozymes, is included. Different parameters which affect enzyme production are also discussed. The current industrial trends along with the future of biocatalysts in the production of chemicals using efficient methods are also discussed.
Collapse
Affiliation(s)
- Aravind Suresh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Dhakshin Shravan Ramgopal
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Panneerselvam SundarRajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| |
Collapse
|
12
|
Tang Y, Wu J, Zhang Y, Ju L, Qu X, Jiang D. Magnetic transfection with superparamagnetic chitosan-loaded IGFBP 5 nanoparticles and their in vitro biosafety. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201331. [PMID: 33614075 PMCID: PMC7890493 DOI: 10.1098/rsos.201331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
We prepared the superparamagnetic chitosan nanoparticles (SPCIONPs) to study the application of them as gene vectors using a magnetic transfection system for the targeted treatment of lung metastasis of osteosarcoma. The SPCIONPs were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, superconducting quantum interference device and atomic force microscopy. Their biosafety was determined by cell counting kit-8 (CCK8) and live-dead staining assays. The transfection in vitro was detected by laser confocal microscopy. SPCIONPs, which can bind closely to plasmids and protect them from DNA enzyme degradation, were prepared with an average particle size of approximately 22 nm and zeta potential of 11.3 mV. The results of the CCK8 and live-dead staining assays showed that superparamagnetic chitosan nanoparticles loaded with insulin-like growth factor-binding protein 5 (SPCIONPs/pIGFBP5) induced no significant cytotoxicity compared to the control group. The result of transfection in vitro suggested that pIGFBP5 emitted a greater amount of red fluorescence in the SPCIONPs/pIGFBP5 group than that in the chitosan-loaded IGFBP5 (CS/pIGFBP5) group. In conclusion, the prepared SPCIONPs had good biosafety and could be effectively used to transfer pIGFBP5 into 143B cells, and they thus have good application prospects for the treatment of lung metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Yue Tang
- Department of Traumatic Joint Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), No 1 Shuanghu Road, Yubei District, Chongqing 401120, People's Republic of China
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Jun Wu
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
| | - Yuan Zhang
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
| | - Lingpeng Ju
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
| | - Xiangyang Qu
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
| | - Dianming Jiang
- Department of Traumatic Joint Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), No 1 Shuanghu Road, Yubei District, Chongqing 401120, People's Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing 400016, People's Republic of China
| |
Collapse
|
13
|
Duman YA, Tekin N. Kinetic and thermodynamic properties of purified alkaline protease from Bacillus pumilus Y7 and non-covalent immobilization to poly(vinylimidazole)/clay hydrogel. Eng Life Sci 2019; 20:36-49. [PMID: 32625045 PMCID: PMC6999066 DOI: 10.1002/elsc.201900119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022] Open
Abstract
The characterization of the hydrogel was performed using Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Purified Bacillus pumilus Y7‐derived alkaline protease was immobilized in Poly (vinylimidazole)/clay (PVI/SEP) hydrogel with 95% yield of immobilization. Immobilization decreased the pH optimum from 9 to 6 for free and immobilized enzyme, respectively. Temperature optimum 3°C decreased for immobilized enzyme. The Km, Vm, and kcat of immobilized enzyme were 4.4, 1.7, and 7.5‐fold increased over its free counterpart. Immobilized protease retained about 65% residual activity for 16th reuse. The immobilized protease endured its 35% residual activity in the material after six cycle's batch applications. The results of thermodynamic analysis for casein hydrolysis showed that the ΔG≠ (activation free energy) and ΔG≠E‐T (activation free energy of transition state formation) obtained for the immobilized enzyme decreased in comparison to those obtained for the free enzyme. On the other hand, the value of ΔG≠ES (free energy of substrate binding) was observed to have increased. These results indicate an increase in the spontaneity of the biochemical reaction post immobilization. Enthalpy value of immobilized enzyme that was 2.2‐fold increased over the free enzyme indicated lower energy for the formation of the transition state, and increased ΔS≠ value implied that the immobilized form of the enzyme was more ordered than its free form.
Collapse
Affiliation(s)
- Yonca Avcı Duman
- Faculty of Arts and Sciences Department of Chemistry Kocaeli University İzmit-Kocaeli Turkey
| | - Nalan Tekin
- Faculty of Arts and Sciences Department of Chemistry Kocaeli University İzmit-Kocaeli Turkey
| |
Collapse
|
14
|
Sharma KP. Tannin degradation by phytopathogen's tannase: A Plant's defense perspective. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Mohammadi M, Rezaei Mokarram R, Ghorbani M, Hamishehkar H. Inulinase immobilized gold-magnetic nanoparticles as a magnetically recyclable biocatalyst for facial and efficient inulin biotransformation to high fructose syrup. Int J Biol Macromol 2019; 123:846-855. [DOI: 10.1016/j.ijbiomac.2018.11.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/31/2023]
|
16
|
Ladole MR, Nair RR, Bhutada YD, Amritkar VD, Pandit AB. Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. ULTRASONICS SONOCHEMISTRY 2018; 48:453-462. [PMID: 30080572 DOI: 10.1016/j.ultsonch.2018.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
In the present work, tomato peels were pre-treated using combination of ultrasound and enzyme co-immobilized amino-functionalized magnetic nanoparticles (AMNPs) for the efficient release of lycopene. To achieve maximum activity of enzymes in the co-immobilized form, optimization of several parameters were carried out. Moreover, the influence of ultrasound and enzyme co-immobilized magnetic nanoparticles on lycopene release was studied. Maximum lycopene release was obtained at 3% (w/w) enzyme co-immobilized AMNPs, pH 5.0, temperature of 50 °C, at 10 W ultrasound power and 20 min incubation time. After enzymatic pre-treatment, lycopene from the pre-treated mixture was extracted and separated using tri-solvent extraction method. Maximum recovery of lycopene using solvent extraction was obtained at 50 °C, 90 min of incubation time and agitation speed of 150 rpm. The presence of lycopene in the extract was confirmed by FT-IR, UV-vis spectroscopy and HPLC analysis. The co-immobilized bio-catalyst showed excellent reusability giving more than 50% lycopene yield even after 6th cycles of reuse.
Collapse
Affiliation(s)
- Mayur R Ladole
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Rajiv R Nair
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | | | | | - Aniruddha B Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India..
| |
Collapse
|
17
|
Dhiman S, Mukherjee G, Singh AK. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review. Int Microbiol 2018; 21:175-195. [DOI: 10.1007/s10123-018-0027-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
18
|
Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol 2018; 114:1134-1143. [DOI: 10.1016/j.ijbiomac.2018.03.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 11/17/2022]
|
19
|
|
20
|
Improvement of Trehalose Production by Immobilized Trehalose Synthase from Thermus thermophilus HB27. Molecules 2018; 23:molecules23051087. [PMID: 29734676 PMCID: PMC6100327 DOI: 10.3390/molecules23051087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/16/2023] Open
Abstract
Trehalose is a non-reducing disaccharide with a wide range of applications in the fields of food, cosmetics, and pharmaceuticals. In this study, trehalose synthase derived from Thermus thermophilus HB27 (TtTreS) was immobilized on silicalite-1-based material for trehalose production. The activity and the stability of TtTreS against pH and temperature were significantly improved by immobilization. Enzyme immobilization also led to a lower concentration of byproduct glucose, which reduces byproduct inhibition of TtTreS. The immobilized TtTreS still retained 81% of its initial trehalose yield after 22 cycles of enzymatic reactions. The immobilized TtTreS exhibited high operational stability and remarkable reusability, indicating that it is promising for industrial applications.
Collapse
|
21
|
de Lima JS, Cabrera MP, de Souza Motta CM, Converti A, Carvalho LB. Hydrolysis of tannins by tannase immobilized onto magnetic diatomaceous earth nanoparticles coated with polyaniline. Food Res Int 2018; 107:470-476. [DOI: 10.1016/j.foodres.2018.02.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
|
22
|
de Sena AR, Campos Leite TC, Evaristo da Silva Nascimento TC, Silva ACD, Souza CS, Vaz AFDM, Moreira KA, de Assis SA. Kinetic, thermodynamic parameters and in vitro digestion of tannase from Aspergillus tamarii URM 7115. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1452201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amanda Reges de Sena
- Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco, Barreiros, Pernambuco, Brazil
| | - Tonny Cley Campos Leite
- Microbiology Laboratory, Federal Institute of Education, Science and Technology of Pernambuco, Barreiros, Pernambuco, Brazil
| | | | - Anna Carolina da Silva
- Central Laboratory of Garanhuns, Laboratory of Biotechnology, Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Catiane S. Souza
- Laboratory of Enzymology, Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - Keila Aparecida Moreira
- Central Laboratory of Garanhuns, Laboratory of Biotechnology, Academic Unit of Garanhuns, Federal Rural University of Pernambuco, Garanhuns, Pernambuco, Brazil
| | - Sandra Aparecida de Assis
- Laboratory of Enzymology, Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
23
|
Ong CB, Annuar MSM. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior. Prep Biochem Biotechnol 2018; 48:181-187. [DOI: 10.1080/10826068.2018.1425707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chong-Boon Ong
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamad S. M. Annuar
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Shojaei F, Homaei A, Taherizadeh MR, Kamrani E. Characterization of biosynthesized chitosan nanoparticles fromPenaeus vannameifor the immobilization ofP. vannameiprotease: An eco-friendly nanobiocatalyst. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1345935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fozieh Shojaei
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandarabbas, Iran
| | | | - Ehsan Kamrani
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
26
|
Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis. Talanta 2017; 167:470-485. [PMID: 28340747 DOI: 10.1016/j.talanta.2017.02.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022]
Abstract
Since the introduction of the molecularly imprinting technology (MIT) in the 1970s, it becomes an emerging technology with the potential for wide-ranging applications in drug determination. With the rise of green chemistry, many researchers began to focus on the application and development of green materials which led to the breakthrough of molecularly imprinted polymers (MIPs) in the green chemistry. Because of the low concentration levels in the human matrices, almost adequate analytical methods should be used for quantification of drugs at the trace levels. In recent years there have been reported benefits of combining MIPs with additional features, e.g. magnetic properties, through the build-up of this type of material on magnetite particles. Magnetic molecularly imprinted polymer (MMIP) is a new material which is composed of magnetic material and non-magnetic polymer material and shares the characteristics of high adsorption capacity to template molecule, special selective recognition ability, and the magnetic adsorption property. These materials have been widely used in the different fields such as chemical, biological and medical science. This review describes the novel configurations and progressive applications of magnetic molecularly imprinted polymers to the drug analysis. Also, the advantages and drawbacks of each methodology, as well as the future expected trends, are evaluated.
Collapse
|
27
|
Liu TPSL, Brandão Costa RMP, de Vasconcelos Freitas DJ, Oliveira Nacimento C, de Souza Motta CM, Bezerra RP, Nunes Herculano P, Porto ALF. Tannase fromAspergillus melleusimproves the antioxidant activity of green tea: purification and biochemical characterisation. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tatiana Pereira Shiu Lin Liu
- Department of Animal Morphology and Physiology; Rural Federal University of Pernambuco - UFRPE; Dom Manoel de Medeiros Street, s/n, Dois Irmãos CEP: 52171-900 Recife PE Brazil
| | - Romero Marcos Pedrosa Brandão Costa
- Department of Animal Morphology and Physiology; Rural Federal University of Pernambuco - UFRPE; Dom Manoel de Medeiros Street, s/n, Dois Irmãos CEP: 52171-900 Recife PE Brazil
| | - Dante Jordão de Vasconcelos Freitas
- Department of Animal Morphology and Physiology; Rural Federal University of Pernambuco - UFRPE; Dom Manoel de Medeiros Street, s/n, Dois Irmãos CEP: 52171-900 Recife PE Brazil
| | - Cynthia Oliveira Nacimento
- Department of Animal Morphology and Physiology; Rural Federal University of Pernambuco - UFRPE; Dom Manoel de Medeiros Street, s/n, Dois Irmãos CEP: 52171-900 Recife PE Brazil
| | | | - Raquel Pedrosa Bezerra
- Department of Animal Morphology and Physiology; Rural Federal University of Pernambuco - UFRPE; Dom Manoel de Medeiros Street, s/n, Dois Irmãos CEP: 52171-900 Recife PE Brazil
| | - Polyanna Nunes Herculano
- Department of Animal Morphology and Physiology; Rural Federal University of Pernambuco - UFRPE; Dom Manoel de Medeiros Street, s/n, Dois Irmãos CEP: 52171-900 Recife PE Brazil
| | - Ana Lucia Figueiredo Porto
- Department of Animal Morphology and Physiology; Rural Federal University of Pernambuco - UFRPE; Dom Manoel de Medeiros Street, s/n, Dois Irmãos CEP: 52171-900 Recife PE Brazil
| |
Collapse
|
28
|
Liu Y, Wang Y, Dai Q, Zhou Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal Chim Acta 2016; 936:168-78. [DOI: 10.1016/j.aca.2016.07.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/07/2016] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
|