1
|
Satpati GG, Gupta S, Biswas RK, Choudhury AK, Kim JW, Davoodbasha M. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement and regulations. CHEMOSPHERE 2023; 344:140337. [PMID: 37797901 DOI: 10.1016/j.chemosphere.2023.140337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive in the atmosphere and are one of the emerging pollutants that cause harmful effects in living systems. There are some natural and anthropogenic sources that can produce PAHs in an uncontrolled way. Several health hazards associated with PAHs like abnormality in the reproductive system, endocrine system as well as immune system have been explained. The mutagenic or carcinogenic effects of hydrocarbons in living systems including algae, vertebrates and invertebrates have been discussed. For controlling PAHs, biodegradation has been suggested as an effective and eco-friendly process. Microalgae-based biosorption and biodegradation resulted in the removal of toxic contaminants. Microalgae both in unialgal form and in consortium (with bacteria or fungi) performed good results in bioaccumulation and biodegradation. In the present review, we highlighted the general information about the PAHs, conventional versus advanced technology for removal. In addition microalgae based removal and toxicity is discussed. Furthermore this work provides an idea on modern scientific applications like genetic and metabolic engineering, nanomaterials-based technologies, artificial neural network (ANN), machine learning (ML) etc. As rapid and effective methods for bioremediation of PAHs. With several pros and cons, biological treatments using microalgae are found to be better for PAH removal than any other conventional technologies.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata- 700009, West Bengal, India.
| | - Shalini Gupta
- University School of Environment and Management, Guru Gobind Singh Indraprastha University, Dwarka, Delhi- 110078, India
| | - Rohan Kr Biswas
- Phycology Lab, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India
| | - Avik Kumar Choudhury
- Phycology Lab, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India
| | - Jung-Wan Kim
- Research Centre for Bio Material and Process Development, Incheon National Univeristy, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| | - MubarakAli Davoodbasha
- Research Centre for Bio Material and Process Development, Incheon National Univeristy, Republic of Korea; Centre for Surface Technology and Applications, Korea Aerospace University, Goyang, 10540, Republic of Korea; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
2
|
Kumar L, Mohan L, Anand R, Joshi V, Chugh M, Bharadvaja N. A review on unit operations, challenges, opportunities, and strategies to improve algal based biodiesel and biorefinery. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.998289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Globally, the demand for energy is increasing with an emphasis on green fuels for a sustainable future. As the urge for alternative fuels is accelerating, microalgae have emerged as a promising source that can not only produce high lipid but many other platform chemicals. Moreover, it is a better alternative in comparison to conventional feedstock due to yearlong easy and mass cultivation, carbon fixation, and value-added products extraction. To date, numerous studies have been done to elucidate these organisms for large-scale fuel production. However, enhancing the lipid synthesis rate and reducing the production cost still remain a major bottleneck for its economic viability. Therefore, this study compiles information on algae-based biodiesel production with an emphasis on its unit operations from strain selection to biofuel production. Additionally, strategies to enhance lipid accumulation by incorporating genetic, and metabolic engineering and the use of leftover biomass for harnessing bio-products have been discussed. Besides, implementing a biorefinery for extracting oil followed by utilizing leftover biomass to generate value-added products such as nanoparticles, biofertilizers, biochar, and biopharmaceuticals has also been discussed.
Collapse
|
3
|
Popa DG, Lupu C, Constantinescu-Aruxandei D, Oancea F. Humic Substances as Microalgal Biostimulants—Implications for Microalgal Biotechnology. Mar Drugs 2022; 20:md20050327. [PMID: 35621978 PMCID: PMC9143693 DOI: 10.3390/md20050327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Humic substances (HS) act as biostimulants for terrestrial photosynthetic organisms. Their effects on plants are related to specific HS features: pH and redox buffering activities, (pseudo)emulsifying and surfactant characteristics, capacity to bind metallic ions and to encapsulate labile hydrophobic molecules, ability to adsorb to the wall structures of cells. The specific properties of HS result from the complexity of their supramolecular structure. This structure is more dynamic in aqueous solutions/suspensions than in soil, which enhances the specific characteristics of HS. Therefore, HS effects on microalgae are more pronounced than on terrestrial plants. The reported HS effects on microalgae include increased ionic nutrient availability, improved protection against abiotic stress, including against various chemical pollutants and ionic species of potentially toxic elements, higher accumulation of value-added ingredients, and enhanced bio-flocculation. These HS effects are similar to those on terrestrial plants and could be considered microalgal biostimulant effects. Such biostimulant effects are underutilized in current microalgal biotechnology. This review presents knowledge related to interactions between microalgae and humic substances and analyzes the potential of HS to enhance the productivity and profitability of microalgal biotechnology.
Collapse
Affiliation(s)
- Daria Gabriela Popa
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Carmen Lupu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| |
Collapse
|
4
|
Wang S, Mukhambet Y, Esakkimuthu S, Abomohra AELF. Integrated microalgal biorefinery – Routes, energy, economic and environmental perspectives. JOURNAL OF CLEANER PRODUCTION 2022; 348:131245. [DOI: 10.1016/j.jclepro.2022.131245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Maurya R, Zhu X, Valverde-Pérez B, Ravi Kiran B, General T, Sharma S, Kumar Sharma A, Thomsen M, Venkata Mohan S, Mohanty K, Angelidaki I. Advances in microalgal research for valorization of industrial wastewater. BIORESOURCE TECHNOLOGY 2022; 343:126128. [PMID: 34655786 DOI: 10.1016/j.biortech.2021.126128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This review article focuses on recent updates on remediation of industrial wastewater (IWW) through microalgae cultivation. These include how adding additional supplements of nutrient to some specific IWWs lacking adequate nutrients improving the microalgae growth and remediation simultaneously. Various pretreatments strategy recently employed for IWWs treatment other than dealing with microalgae was discussed. Various nutrient-rich IWW could be utilized directly with additional dilution, supplement of nutrients and without any pretreatment. Recent advances in various approaches and new tools used for cultivation of microalgae on IWW such as two-step cultivation, pre-acclimatization, novel microalgal-bioelectrical systems, integrated catalytic intense pulse-light process, sequencing batch reactor, use of old stabilized algal-bacterial consortium, immobilized microalgae cells, microalgal bacterial membrane photobioreactor, low-intensity magnetic field, BIO_ALGAE simulation tool, etc. are discussed. In addition, biorefinery of microalgal biomass grown on IWW and its end-use applications are reviewed.
Collapse
Affiliation(s)
- Rahulkumar Maurya
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Boda Ravi Kiran
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Thiyam General
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Suvigya Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Anil Kumar Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Marianne Thomsen
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Postbox 358 Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| |
Collapse
|
6
|
|
7
|
Biomass and Lipid Productivity by Two Algal Strains of Chlorella sorokiniana Grown in Hydrolysate of Water Hyacinth. ENERGIES 2021. [DOI: 10.3390/en14051411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrolysate prepared from the chemical hydrolysis of water hyacinth biomass contains a high amount of solubilised carbohydrate and nutrients. This hydrolysate was utilised as a medium for the cultivation of two strains of Chlorella sorokiniana, isolated from a municipal wastewater treatment plant using two different media, i.e., BG-11 and Knop’s medium. Different light intensities, light–dark cycles, and various concentrations of external carbon sources (monosaccharides and inorganic carbon) were used to optimise the microalgal growth. For the accumulation of lipids and carbohydrates, the microalgal strains were transferred to nutrient amended medium (N-amended and P-amended). It was observed that the combined effect of glucose, inorganic carbon, and a 12:12 h light–dark cycle proved to be the optimum parameters for high biomass productivity (~200 mg/L/day). For Chlorella sorokiniana 1 (isolated from BG-11 medium), the maximum carbohydrate content (22%) was found in P-amended medium (N = 0 mg/L, P: 3 mg/L), whereas, high lipid content (17.3%) was recorded in N-amended medium (N = 5 mg/L, P = 0 mg/L). However, for Chlorella sorokiniana 2 (isolated from the Knop’s medium), both lipid (17%) and carbohydrate accumulation (12.3%) were found to be maximum in the N-amended medium. Chlorella sorokiniana 2 showed a high saturated lipid accumulation compared to other strains. Kinetic modelling of the lipid profile revealed that the production rate of fatty acids and their various constituents were species dependent under identical conditions.
Collapse
|
8
|
Satpati GG, Pal R. Co-Cultivation of Leptolyngbya tenuis (Cyanobacteria) and Chlorella ellipsoidea (Green alga) for Biodiesel Production, Carbon Sequestration, and Cadmium Accumulation. Curr Microbiol 2021; 78:1466-1481. [PMID: 33661421 DOI: 10.1007/s00284-021-02426-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/11/2021] [Indexed: 01/20/2023]
Abstract
The co-cultivation approach using cyanobacteria-Leptolyngbya tenuis and green alga-Chlorella ellipsoidea demonstrated in the present study showed additive and synergistic effects on biomass yield, biomass productivity, lipid yield, lipid productivity, CO2 fixation, and cadmium bioremediation efficiency. The results of co-culture in batch mode revealed about 2-3 times increase in biomass and two times increase in total lipid, when compared to the pure culture batches. The results revealed that co-cultures exhibited significantly high CO2 fixation rate of 2.63 ± 0.09 g/L/d, which is 1.5-2 times better than monocultures (P < 0.05). To explore the bioaccumulation of cadmium by co-cultures and pure cultures, different concentrations of cadmium nitrate was used in flask trials. Cadmium accumulation was observed in the order: co-culture (74%, 0.37 mg/L) > Chlorella (58%, 0.29 mg/L) > Leptolyngbya (50%, 0.25 mg/L) (P < 0.05). In addition, fatty acid composition, CHNS analysis, biodiesel characterization, and biochemical compositions were also determined using co-culture method. The maximum biomass yield, productivity, lipid content, and CO2 fixation rate in cadmium induced co-culture were 3.95 ± 0.13 g/L, 258.88 ± 15.75 mg/L/d, 41.43 ± 0.71%, and 3.21 ± 0.20 g/L/d, respectively which is 1.2, 1.3, 2.3, and 1.2 times higher than the control (P < 0.05). Cadmium induced changes in growth and lipid yield using co-culture suggests cost-effective and eco-friendly production of biodiesel and carbon mitigation.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, 19 Rajkumar Chakraborty Sarani, Kolkata, 700009, West Bengal, India.
| | - Ruma Pal
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
9
|
Ma R, Wang B, Chua ET, Zhao X, Lu K, Ho SH, Shi X, Liu L, Xie Y, Lu Y, Chen J. Comprehensive Utilization of Marine Microalgae for Enhanced Co-Production of Multiple Compounds. Mar Drugs 2020; 18:md18090467. [PMID: 32948074 PMCID: PMC7551828 DOI: 10.3390/md18090467] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Marine microalgae are regarded as potential feedstock because of their multiple valuable compounds, including lipids, pigments, carbohydrates, and proteins. Some of these compounds exhibit attractive bioactivities, such as carotenoids, ω-3 polyunsaturated fatty acids, polysaccharides, and peptides. However, the production cost of bioactive compounds is quite high, due to the low contents in marine microalgae. Comprehensive utilization of marine microalgae for multiple compounds production instead of the sole product can be an efficient way to increase the economic feasibility of bioactive compounds production and improve the production efficiency. This paper discusses the metabolic network of marine microalgal compounds, and indicates their interaction in biosynthesis pathways. Furthermore, potential applications of co-production of multiple compounds under various cultivation conditions by shifting metabolic flux are discussed, and cultivation strategies based on environmental and/or nutrient conditions are proposed to improve the co-production. Moreover, biorefinery techniques for the integral use of microalgal biomass are summarized. These techniques include the co-extraction of multiple bioactive compounds from marine microalgae by conventional methods, super/subcritical fluids, and ionic liquids, as well as direct utilization and biochemical or thermochemical conversion of microalgal residues. Overall, this review sheds light on the potential of the comprehensive utilization of marine microalgae for improving bioeconomy in practical industrial application.
Collapse
Affiliation(s)
- Ruijuan Ma
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Baobei Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China;
| | - Elvis T. Chua
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xurui Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (X.Z.); (Y.L.)
| | - Kongyong Lu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Shih-Hsin Ho
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinguo Shi
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Youping Xie
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Y.X.); (J.C.); Tel.: +86-591-22866373 (Y.X. & J.C.)
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (X.Z.); (Y.L.)
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Y.X.); (J.C.); Tel.: +86-591-22866373 (Y.X. & J.C.)
| |
Collapse
|
10
|
Yun JH, Cho DH, Lee B, Lee YJ, Choi DY, Kim HS, Chang YK. Utilization of the acid hydrolysate of defatted Chlorella biomass as a sole fermentation substrate for the production of biosurfactant from Bacillus subtilis C9. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Puglisi I, La Bella E, Rovetto EI, Lo Piero AR, Baglieri A. Biostimulant Effect and Biochemical Response in Lettuce Seedlings Treated with A Scenedesmus quadricauda Extract. PLANTS 2020; 9:plants9010123. [PMID: 31963686 PMCID: PMC7020177 DOI: 10.3390/plants9010123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 11/19/2022]
Abstract
The use of natural biostimulants is becoming an attractive option in order to reduce the use of fertilizer and increase the yield of crops. In particular, algal extracts are suitable candidates as they positively affect plant physiology. Among crops, lettuce often requires the use of biostimulants to improve both the quality and quantity of production. The aim of this work is to investigate the potential use of a Scenedesmus quadricauda extract as a biostimulant in order to obtain sustainable cultivation and a reduction in the cost of chemical fertilizers in lettuce cultivation. Therefore, the effect of S. quadricauda extract on lettuce seedlings was explored by evaluating the physiological parameters, chlorophyll, carotenoid, and total protein contents as well as several plant enzymatic activities involved in primary and secondary metabolisms. The experiment was performed by growing plants on inert substrate (pumice) with a 16-h photoperiod, by carrying out two consecutive radical treatments, one week apart, using a concentration of the extract corresponding to 1 mg Corg L−1. Lettuce plants were sampled at 1, 4, and 7 days from the first treatment and 7 days from the second treatment. The results showed that the S. quadricauda extract positively affected the growth of lettuce seedlings, mainly acting at the shoot level, determining an increase in dry matter, chlorophylls, carotenoids, proteins, and influencing the activities of several enzymes involved in the primary metabolism.
Collapse
|
12
|
Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels. SUSTAINABILITY 2019. [DOI: 10.3390/su11195424] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biofuel production by oleaginous microalgae is a promising alternative to the conventional fossil fuels. Many microalgae species have been investigated and deemed as potential renewable sources for the production of biofuel, biogas, food supplements and other products. Oleaginous microalgae, named for their ability to produce oil, are reported to store 30–70% of lipid content due to its metabolic properties under nutrient starvation conditions. This review presents the assortment of the research studies focused on biofuel production from oleaginous microalgae. The new methods and technologies developed for oleaginous microalgae cultivation to improve their biomass content and lipid accumulation capacity were reviewed. The production of renewable, carbon neutral, bio-based or microalgae-based transport fuels are necessary for environmental protection and economic sustainability. Microalgae are a significant source of renewable biodiesel because of their ability to produce oils in the presence of sunlight more efficiently than that of crop oils. This review will provide the background to understanding the bottlenecks and the need for improvement in the cultivation or harvesting process for oleaginous microalgae.
Collapse
|
13
|
Mishra S, Mohanty K. Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: An integrated bioremediation and biorefinery approach. BIORESOURCE TECHNOLOGY 2019; 273:177-184. [PMID: 30445270 DOI: 10.1016/j.biortech.2018.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
The present study investigated the feasibility of domestic sewage wastewater (DSW) as an alternate to fresh-water microalgae growth media towards high-value bioenergy feedstock production. Eight native microalgal strains were screened from DSW and the effect of raw DSW (RDSW), and autoclaved DSW (ADSW) on growth and bioremediation potential were evaluated and compared with control BG11 medium. The study confirmed RDSW as a potential growth medium while Monoraphidium sp. KMC4 showed superior biomass (1.47 ± 0.08 g L-1) and lipid yield (436.01 ± 0.06 mg L-1). The corresponding values for bioremediation of ammonia, nitrate, phosphate, as well as COD remained within 88-100%. CHNS, biochemical, TGA, FTIR, FAME analysis of KMC4 confirmed it's potential as bioenergy feedstock. Additionally, a comprehensive characterization of lipid-extracted microalgae biomass (LEMB) was carried out which suggested that LEMB can be used as a growth promoter as well as feedstock for biogas, bioethanol, and bio-oil production.
Collapse
Affiliation(s)
- Sanjeev Mishra
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
14
|
Aray-Andrade MM, Uyaguari-Diaz MI, Bermúdez JR. Short-term deleterious effects of standard isolation and cultivation methods on new tropical freshwater microalgae strains. PeerJ 2018; 6:e5143. [PMID: 30038855 PMCID: PMC6054863 DOI: 10.7717/peerj.5143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
Algae with potential biotechnological applications in different industries are commonly isolated from the environment in order to obtain pure (axenic) stocks that can be safely stored for long periods of time. To obtain axenic cultures, antibiotics are frequently employed, and cryopreservation is applied to preserve standing stocks. However, many of these now standard methods were developed using strains derived from pristine to near-pristine environments and cold to temperate regions. The potential effect of the said methods on the life cycle and biochemical profile of algae isolates from hyper-eutrophic and constant high-temperature tropical regions is not well understood. These effects could potentially render them unsuitable for their intended biotechnological application. In this study, we conducted a genetic characterization (18S rRNA) and evaluated the effect of purification (the use of the antibiotic chloramphenicol, CAP) and cryopreservation (dimethyl sulfoxide; DMSO–sucrose mix and glycerol) on the growth rate and lipid content of three new tropical freshwater algal isolates: Chorella sp. M2, Chlorella sp. M6, and Scenedesmus sp. R3, obtained from the Ecuadorian coast. The genetic and morphological characterization revealed a clear discrimination between these strains. All strains cultured with CAP exhibited a lower growth rate. Subsequent to cryopreservation, Chorella sp. M2, Chlorella sp. M6, and Scenedesmus sp. R3 presented no significant difference in growth rate between the cryopreservants. Further, a significantly higher lipid content was observed in the biomass cryopreserved with glycerol in relation to the DMSO–sucrose, with Chorella sp. M2 and Chlorella sp. M6 having twice as much as they had in the first treatment. These results highlight the relevance of selecting an appropriate method for storage, as the materials used can affect the biological performance of different tropical species, although it is still to be determined if the effects observed in this study are long lasting in subsequent cultures of these algae.
Collapse
Affiliation(s)
- M Magdalena Aray-Andrade
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Plankton Laboratory, Facultad de Ingenería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales, Campus Gustavo Galindo, Guayaquil, Ecuador.,Joint Postgraduate VLIR NETWORK Master Program in Applied Biosciences, Biodiscovery, ESPOL Polytechnic University, Guayaquil, Guayas, Ecuador.,Escuela de Medicina, Universidad Espíritu Santo-Ecuador, Samborondón, Guayas, Ecuador
| | - Miguel I Uyaguari-Diaz
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - J Rafael Bermúdez
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Plankton Laboratory, Facultad de Ingenería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales, Campus Gustavo Galindo, Guayaquil, Ecuador.,Galapagos Marine Research and Exploration, GMaRE. Joint ESPOL-CDF program, Charles Darwin Research Station, Galapagos Islands, Ecuador
| |
Collapse
|
15
|
Gayathri M, Shunmugam S, Mugasundari AV, Rahman PKSM, Muralitharan G. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains. BIORESOURCE TECHNOLOGY 2018; 247:453-462. [PMID: 28965076 DOI: 10.1016/j.biortech.2017.09.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
The efficiency of cyanobacterial strains as biodiesel feedstock varies with the dwelling habitat. Fourteen indigenous heterocystous cyanobacterial strains from rice field ecosystem were screened based on growth kinetic and fuel parameters. The highest biomass productivity was obtained in Nostoc punctiforme MBDU 621 (19.22mg/L/day) followed by Calothrix sp. MBDU 701 (13.43mg/L/day). While lipid productivity and lipid content was highest in Nostoc spongiaeforme MBDU 704 (4.45mg/L/day and 22.5%dwt) followed by Calothrix sp. MBDU 701 (1.54mg/L/day and 10.75%dwt). Among the tested strains, Nostoc spongiaeforme MBDU 704 and Nostoc punctiforme MBDU 621 were selected as promising strains for good quality biodiesel production by Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis.
Collapse
Affiliation(s)
- Manickam Gayathri
- Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India
| | - Sumathy Shunmugam
- Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India
| | - Arumugam Vanmathi Mugasundari
- Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India
| | | | - Gangatharan Muralitharan
- Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India.
| |
Collapse
|
16
|
Maurya R, Ghosh T, Saravaia H, Paliwal C, Ghosh A, Mishra S. Non-isothermal pyrolysis of de-oiled microalgal biomass: Kinetics and evolved gas analysis. BIORESOURCE TECHNOLOGY 2016; 221:251-261. [PMID: 27643733 DOI: 10.1016/j.biortech.2016.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Non-isothermal (β=5, 10, 20, 35°C/min) pyrolysis of de-oiled microalgal biomass (DMB) of Chlorella variabilis was investigated by TGA-MS (30-900°C, Argon atmosphere) to understand thermal decomposition and evolved gas analysis (EGA). The results showed that three-stage thermal decomposition and three volatilization zone (100-400°C, 400-550°C and 600-750°C) of organic matters during pyrolysis. The highest rate of weight-loss is 8.91%/min at 302°C for 35°C/min heating-rate. Kinetics of pyrolysis were investigated by iso-conversional (KAS, FWO) and model-fitting (Coats-Redfern) method. For Zone-1and3, similar activation energy (Ea) is found in between KAS (α=0.4), FWO (α=0.4) and Avrami-Erofe'ev (n=4) model. Using the best-fitted kinetic model Avrami-Erofe'ev (n=4), Ea values (R2=>0.96) are 171.12 (Zone-1), 404.65 (Zone-2) and 691.42kJ/mol (Zone-3). EGA indicate the abundance of most gases observed consequently between 200-300°C and 400-500°C. The pyrolysis of DMB involved multi-step reaction mechanisms for solid-state reactions having different Ea values.
Collapse
Affiliation(s)
- Rahulkumar Maurya
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Tonmoy Ghosh
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Hitesh Saravaia
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Analytical Division and Centralized Instrument Facility, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Chetan Paliwal
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Division of Plant Omics, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
17
|
Maurya R, Paliwal C, Ghosh T, Pancha I, Chokshi K, Mitra M, Ghosh A, Mishra S. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. BIORESOURCE TECHNOLOGY 2016; 214:787-796. [PMID: 27161655 DOI: 10.1016/j.biortech.2016.04.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
In view of commercialization of microalgal biofuel, the de-oiled microalgal biomass (DMB) is a surplus by-product in the biorefinery process that needs to be exploited to make the process economically attractive and feasible. This DMB, rich in carbohydrates, proteins, and minerals, can be used as feed, fertilizer, and substrate for the production of bioethanol/bio-methane. Further, thermo-chemical conversion of DMB results into fuels and industrially important chemicals. Future prospects of DMB also lie with its conversion into novel biomaterials like nanoparticles and carbon-dot which have biomedical importance. The lowest valued application of DMB is to use it for adsorption of dyes and heavy metals from industrial effluents. This study reviews how DMB can be utilized for different applications and in the generation of valuable co-products. The value addition of DMB would thereby improve the overall cost economics of the microalgal bio-refinery.
Collapse
Affiliation(s)
- Rahulkumar Maurya
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Chetan Paliwal
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Tonmoy Ghosh
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Imran Pancha
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Kaumeel Chokshi
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Madhusree Mitra
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Division of Plant Omics, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
18
|
Chokshi K, Pancha I, Ghosh T, Paliwal C, Maurya R, Ghosh A, Mishra S. Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv 2016. [DOI: 10.1039/c6ra15322d] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antioxidant activity of silver nanoparticles biosynthesized from de-oiled biomass of microalgae A. dimorphus.
Collapse
Affiliation(s)
- Kaumeel Chokshi
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Imran Pancha
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
| | - Tonmoy Ghosh
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Chetan Paliwal
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Rahulkumar Maurya
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR)
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Division of Plant Omics
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| |
Collapse
|