1
|
Pettinato E, Hocq R, Pflügl S. Utilization of the liquid one carbon feedstocks methanol and formate for acetogenic bioproduction of chemicals and fuels. BIORESOURCE TECHNOLOGY 2025; 432:132643. [PMID: 40383309 DOI: 10.1016/j.biortech.2025.132643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
The fight against climate change requires consideration of carbon as a critical parameter in production systems, with the ultimate aim of creating a truly sustainable circular carbon economy. In this context, microbial bioproduction systems are a promising route to renewably generate value-added chemicals and fuels. Methanol and formate have recently gained interest as microbial one-carbon feedstocks, which can be produced sustainably from carbon dioxide and renewable energy, are easy to store and transport and readily dissolve in aqueous solutions. Acetogenic bacteria are strictly anaerobic microorganisms that can grow autotrophically on molecular hydrogen or use methanol, formate, and carbon monoxide as their sole carbon and energy sources via the Wood-Ljungdahl pathway, the most energetically efficient carbon fixation pathway known to date. Here, known variants of the Wood-Ljungdahl pathway, the physiology of a selection of methylotrophic and formatotrophic acetogens, and emphasize recent advancements in bioprocessing with respect to quantification of acetogen metabolism of methanol and formate as well as research aiming at establishing novel bioprocesses are reviewed. Additionally, the tools available for physiological and metabolic studies as well as for metabolic and genetic engineering are discussed. Finally, the features and constraints that govern the bioenergetics and stoichiometry of acetogen metabolism during growth on methanol and formate are reviewed, and future perspectives of the field discussed. The high energetic efficiency with which acetogens can convert methanol and formate into products renders them highly attractive platform hosts in the circular carbon economy.
Collapse
Affiliation(s)
- Eugenio Pettinato
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Rémi Hocq
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
2
|
Eladl SN, Elnabawy AM, Eltanahy EG. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. BOTANICAL STUDIES 2024; 65:28. [PMID: 39312045 PMCID: PMC11420431 DOI: 10.1186/s40529-024-00434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Microalgae and seaweed have been consumed as food for several decades to combat starvation and food shortages worldwide. The most famous edible microalgae species are Nostoc, Spirulina, and Aphanizomenon, in addition to seaweeds, which are used in traditional medicine and food, such as Nori, which is one of the most popular foods containing Pyropia alga as a major ingredient. Recently, many applications use algae-derived polysaccharides such as agar, alginate, carrageenan, cellulose, fucoidan, mannan, laminarin, ulvan, and xylan as gelling agents in food, pharmaceuticals, and cosmetics industries. Moreover, pigments (carotenoids particularly astaxanthins, chlorophylls, and phycobilins), minerals, vitamins, polyunsaturated fatty acids, peptides, proteins, polyphenols, and diterpenes compounds are accumulated under specific cultivation and stress conditions in the algal cells to be harvested and their biomass used as a feedstock for the relevant industries and applications. No less critical is the use of algae in bioremediation, thus contributing significantly to environmental sustainability.This review will explore and discuss the various applications of microalgae and seaweeds, emphasising their role in bioremediation, recent products with algal added-value compounds that are now on the market, and novel under-developing applications such as bioplastics and nanoparticle production. Nonetheless, special attention is also drawn towards the limitations of these applications and the technologies applied, and how they may be overcome.
Collapse
Affiliation(s)
- Salma N Eladl
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aya M Elnabawy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eladl G Eltanahy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Yagmur Goren A, Erdemir D, Dincer I. Comprehensive review and assessment of carbon capturing methods and technologies: An environmental research. ENVIRONMENTAL RESEARCH 2024; 240:117503. [PMID: 37907166 DOI: 10.1016/j.envres.2023.117503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
A majority of the primary contributors of carbon dioxide (CO2) emissions into the environment have really been out of human-made activities. The levels of CO2 in the atmosphere have increased substantially since the time of the industrial revolution. This has been linked to the use of fossil fuels for energy production, as well as the widespread production of some industrial components like cement and the encroaching destruction of forests. An extreme approach is now necessary to develop the right policies and address the local and global environmental issues in the right way. In this regard, CO2 capturing, utilization, and storage are reliable options that industrial facilities can initiate to overcome this problem. Therefore, we have evaluated the two leading technologies that are used for carbon capture: direct (pre-combustion, post-combustion, and oxy-combustion) and indirect carbon (reforestation, enhanced weathering, bioenergy with carbon capture, and agricultural practices) capturing to provide their current status and progresses. Among the considered processes, the post-combustion techniques are widely utilized on a commercial scale, especially in industrial applications. Technology readiness level (TRL) results have showed that amine solvents, pressure-vacuum swing adsorption, and gas separation membranes have the highest TRL value of 9. In addition, the environmental impact assessment methods have been ranked to evaluate their sustainability levels. The highest global warming potential of 219.53 kgCO2 eq./MWh has been obtained for the post-combustion process. Overall, through this comprehensive review, we have identified some critical research gaps in the open literature in the field of CO2-capturing methods where there are strong needs for future research and technology development studies, for instance, developing stable and cost-effective liquid solvents and improving the adsorption capacity of commercialized sorbents. Furthermore, some research areas, like novel process design, environmental and economic impact assessment of capturing methods with different chemicals and modeling and simulation studies, will require further effort to demonstrate the developed technologies for pilot and commercial-scale applications.
Collapse
Affiliation(s)
- Aysegul Yagmur Goren
- Ontario Tech University, Clean Energy Research Laboratory, Oshawa, Ontario, Canada; Izmir Institute of Technology, Department of Environmental Engineering, Urla, Izmir, Turkey.
| | - Dogan Erdemir
- Ontario Tech University, Clean Energy Research Laboratory, Oshawa, Ontario, Canada; Yildiz Technical University, Department of Mechanical Engineering, Istanbul, Turkey
| | - Ibrahim Dincer
- Ontario Tech University, Clean Energy Research Laboratory, Oshawa, Ontario, Canada; Yildiz Technical University, Department of Mechanical Engineering, Istanbul, Turkey
| |
Collapse
|
4
|
Chen Z, Chen L, Khoo KS, Gupta VK, Sharma M, Show PL, Yap PS. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnol Adv 2023; 69:108265. [PMID: 37783293 DOI: 10.1016/j.biotechadv.2023.108265] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- School of Civil Engineering, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| | | | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
5
|
Olivier A, Desgagnés A, Mercier E, Iliuta MC. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Antoine Olivier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Alex Desgagnés
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Etienne Mercier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Maria C. Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| |
Collapse
|
6
|
Raza S, Ghasali E, Raza M, Chen C, Li B, Orooji Y, Lin H, Karaman C, Karimi Maleh H, Erk N. Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment. ENVIRONMENTAL RESEARCH 2023; 220:115135. [PMID: 36566962 DOI: 10.1016/j.envres.2022.115135] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The greatest environmental issue of the twenty-first century is climate change. Human-caused greenhouse gas emissions are increasing the frequency of extreme weather. Carbon dioxide (CO2) accounts for 80% of human greenhouse gas emissions. However, CO2 emissions and global temperature have risen steadily from pre-industrial times. Emissions data are crucial for most carbon emission policymaking and goal-setting. Sustainable and carbon-neutral sources must be used to create green energy and fossil-based alternatives to reduce our reliance on fossil fuels. Near-real-time monitoring of carbon emissions is a critical national concern and cutting-edge science. This review article provides an overview of the many carbon accounting systems that are now in use and are based on an annual time frame. The primary emphasis of the study is on the recently created carbon emission and eliminating sources and technology, as well as the current application trends for carbon neutrality. We also propose a framework for the most advanced naturally available carbon neutral accounting sources capable of being implemented on a large scale. Forming relevant data and procedures will help the "carbon neutrality" plan decision-making process. The formation of pertinent data and methodologies will give robust database support to the decision-making process for the "carbon neutrality" plan for the globe. In conclusion, this article offers some opinions, opportunities, challenges and future perspectives related to carbon neutrality and carbon emission monitoring and eliminating resources and technologies.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Muslim Raza
- Department of Chemistry Bacha Khan University, Charsada, Khyber Pakhtunkhwa, Pakistan; Department of Chemistry, University of Massachusetts Boston, MA, 02125, USA
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, AkdenizUniversity, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Hassan Karimi Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
7
|
Microbial Behavior and Influencing Factors in the Anaerobic Digestion of Distiller: A Comprehensive Review. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Anaerobic digestion technology is regarded as the most ideal technology for the treatment of a distiller in terms of environmental protection, resource utilization, and cost. However, there are some limitations to this process, the most prominent of which is microbial activity. The purpose of this paper is to provide a critical review of the microorganisms involved in the anaerobic digestion process of a distiller, with emphasis on the archaea community. The effects of operating parameters on microbial activity and process, such as pH, temperature, TAN, etc., are discussed. By understanding the activity of microorganisms, the anaerobic treatment technology of a distiller can be more mature. Aiming at the problem that anaerobic treatment of a distiller alone is not effective, the synergistic effect of different substrates is briefly discussed. In addition, the recent literature on the use of microorganisms to purify a distiller was collected in order to better purify the distiller and reduce harm. In the future, more studies are needed to elucidate the interactions between microorganisms and establish the mechanisms of microbial interactions in different environments.
Collapse
|
8
|
Wang Q, Li L, Hong Y, Zhai Q, He Y. Novel insights into indoor air purification capability of microalgae: characterization using multiple air quality parameters and comparison with common methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49829-49839. [PMID: 36787060 DOI: 10.1007/s11356-023-25799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
Indoor air purification received more attention recently. In this study, the effects of six common indoor ornamental plants (Epripremnum aureum, Chlorphytum comosum, Aloe vera, Sedum sediforme, Cereus cv. Fairy Castle, and Sedum adolphii) and three kinds of microalgae (Chlorella sp. HQ, Scenedesmus sp. LX1, and C. vulgaris) on the removal of four types of air pollutants (particulate matters less than 2.5 (PM2.5) and 10 μm (PM10) in size, formaldehyde (HCHO) and total volatile organic compounds (VOCS)) in test chamber compared with common physical purification methods (high efficiency particulate air filter and nano activated carbon absorption) were investigated. Their effects on oxygen, carbon dioxide, and relative humidity were also evaluated. The results showed that microalgae, especially C. vulgaris, was more suitable for removing PM2.5 and PM10, and the removal rates were 55.42 ± 25.77% and 45.76 ± 5.32%, respectively. The removal rates of HCHO and VOCs by all three kings of microalgae could reach 100%. Part of ornamental plants took a longer time to achieve 100% removal of HCHO and VOCs. Physical methods were weaker than ornamental plants and microalgae in terms of increased relative humidity and O2 content. In general, microalgae, especially C. vulgaris could purify indoor air pollutants more efficiently. The above studies provided data and theoretical support for the purification of indoor air pollutants by microalgae.
Collapse
Affiliation(s)
- Qiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.,Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lihua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.,Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. .,Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qingyu Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.,Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yitian He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.,Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
9
|
Ahn YJ, Lee JA, Choi KR, Bang J, Lee SY. Can microbes be harnessed to reduce atmospheric loads of greenhouse gases? Environ Microbiol 2023; 25:17-25. [PMID: 36655716 DOI: 10.1111/1462-2920.16161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/21/2023]
Abstract
Reducing atmospheric loads of greenhouse gases (GHGs), especially CO2 and CH4 , has been considered the key to alleviating global crises we are facing, such as climate change, sea level elevation and ocean acidification. To this end, development of strategies and technologies for carbon capture, sequestration and utilization (CCSU) is urgently needed. Although physicochemical methods have been the most actively studied in the early stages of developing CCSU technologies, there have recently been growing interests in developing microbe-based CCSU processes. In this article, we discuss advantages of microbe-based CCSU technologies over physicochemical approaches and even plant-based approaches. Next, various parts of the global carbon cycle where microorganisms can contribute, such as sequestering atmospheric GHGs, facilitating the carbon cycle, and slowing down the depletion of carbon reservoirs are described, emphasizing the impacts of microbes on the carbon cycle. Strategies to upgrade microbes and increase their performance in assimilating GHGs or converting GHGs to value-added chemicals are also provided. Moreover, several examples of exploiting microbes to address environmental crises are discussed. Finally, we discuss things to overcome in microbe-based CCSU technologies and provide future perspectives.
Collapse
Affiliation(s)
- Yeah-Ji Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jong An Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Junho Bang
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
10
|
Liu X, Luo H, Yu D, Tan J, Yuan J, Li H. Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories. BIORESOUR BIOPROCESS 2022; 9:124. [PMID: 38647643 PMCID: PMC10992411 DOI: 10.1186/s40643-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022] Open
Abstract
Environmental problems such as greenhouse effect, the consumption of fossil energy, and the increase of human demand for energy are becoming more and more serious, which force researcher to turn their attention to the reduction of CO2 and the development of renewable energy. Unsafety, easy to lead to secondary environmental pollution, cost inefficiency, and other problems limit the development of conventional CO2 capture technology. In recent years, many microorganisms have attracted much attention to capture CO2 and synthesize valuable products directly. Fatty acid derivatives (e.g., fatty acid esters, fatty alcohols, and aliphatic hydrocarbons), which can be used as a kind of environmentally friendly and renewable biofuels, are sustainable substitutes for fossil energy. In this review, conventional CO2 capture techniques pathways, microbial CO2 concentration mechanisms and fixation pathways were introduced. Then, the metabolic pathway and progress of direct production of fatty acid derivatives from CO2 in microbial cell factories were discussed. The synthetic biology means used to design engineering microorganisms and optimize their metabolic pathways were depicted, with final discussion on the potential of optoelectronic-microbial integrated capture and production systems.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China.
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Junfa Yuan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
11
|
Ma Z, Cheah WY, Ng IS, Chang JS, Zhao M, Show PL. Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. Trends Biotechnol 2022; 40:1439-1453. [PMID: 36216714 DOI: 10.1016/j.tibtech.2022.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Excessive carbon dioxide (CO2) emissions into the atmosphere have become a dire threat to the human race and environmental sustainability. The ultimate goal of net zero emissions requires combined efforts on CO2 sequestration (natural sinks, biomass fixation, engineered approaches) and reduction in CO2 emissions while delivering economic growth (CO2 valorization for a circular carbon bioeconomy, CCE). We discuss microalgae-based CO2 biosequestration, including flue gas cultivation, biotechnological approaches for enhanced CO2 biosequestration, technological innovations for microalgal cultivation, and CO2 valorization/biofuel productions. We highlight challenges to current practices and future perspectives with the goal of contributing to environmental sustainability, net zero emissions, and the CCE.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| | - Min Zhao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Sri Wahyu Effendi S, Lin JY, Ng IS. Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains. BIORESOURCE TECHNOLOGY 2022; 363:127980. [PMID: 36137445 DOI: 10.1016/j.biortech.2022.127980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Human carbonic anhydrase II (hCAII) is a rapid-acting zinc-metalloenzyme that catalyzes CO2 hydration reversibly, with encouraging applications in carbon capture, sequestration, and utilization (CCSU). However, biocatalyst durability is a major challenge. Herein, hCAII is emphasized in 4 different Escherichia coli strains and designated under dual promoters from sigma factor 70 (σ70) and heat shock protein (HSP70A) to suppress the usage of inducer and stimulate activity in heat environments. As a result, hCAII under high-efficient dual promoters regulation retained high residual activity in CO2 biomineralization of 68.8 % after 4 cycles at 40 °C. Moreover, co-expression of CAC9 with lysine decarboxylase (CadA) simultaneously sequestered CO2 release up to 95.7 % and increased cadaverine titer from 18.0 to 36.7 g/L by using E. coli MG1655. The remnant biomass from cadaverine synthesis sustained converting CO2 to 57.9 mg-CaCO3. Thus, the dual promoters design demonstrated the promising potential for CCSU through simultaneous CO2 utilization and cadaverine synthesis.
Collapse
Affiliation(s)
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
13
|
Ting WW, Yu JY, Lin YC, Ng IS. Enhanced recombinant carbonic anhydrase in T7RNAP-equipped Escherichia coli W3110 for carbon capture storage and utilization (CCSU). BIORESOURCE TECHNOLOGY 2022; 363:128010. [PMID: 36167176 DOI: 10.1016/j.biortech.2022.128010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sulfurihydrogenibium yellowstonense carbonic anhydrase (SyCA) is a well-known thermophilic CA for carbon mineralization. To broaden the applications of SyCA, the activity of SyCA was improved through stepwise engineering and in different cultural conditions, as well as extended to co-expression with other enzymes. The engineered W3110 strains with 4 different T7 RNA polymerase levels were employed for SyCA production. As a result, the best strain WT7L cultured in modified M9 medium with temperature shifted from 37 to 30 °C after induction increased SyCA activity to 9122 U/mL. The SyCA whole-cell biocatalyst was successfully applied for carbon capture and storage (CCS) of CaCO3. Furthermore, SyCA was applied for low-carbon footprint synthesis of 5-aminolevulinic acid (5-ALA) and cadaverine (DAP) by coupling with ALA synthetase (ALAS) and lysine decarboxylase (CadA), suppressing CO2 release to -6.1 g-CO2/g-ALA and -2.53 g-CO2/g-DAP, respectively. Harnessing a highly active SyCA offers a complete strategy for CCSU in a green process.
Collapse
Affiliation(s)
- Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jie-Yao Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
14
|
Priyadharsini P, Nirmala N, Dawn S, Baskaran A, SundarRajan P, Gopinath K, Arun J. Genetic improvement of microalgae for enhanced carbon dioxide sequestration and enriched biomass productivity: Review on CO2 bio-fixation pathways modifications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Li S, Li X, Ho SH. How to enhance carbon capture by evolution of microalgal photosynthesis? Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Evaluation of protein production in rice seedlings under dark conditions. Sci Rep 2022; 12:7759. [PMID: 35545638 PMCID: PMC9095683 DOI: 10.1038/s41598-022-11672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
Although plants have several advantages for foreign protein production, cultivation of transgenic plants in artificial plant growth facilities involves the use of a great amount of electricity for lightning and air conditioning, reducing cost-effectiveness. Protein production in plants grown in darkness can overcome this problem, but the amount of protein produced in the dark is unknown. In this study, the total amount of soluble protein produced in rice seedlings germinated and grown in light or darkness were examined at several time points after germination and under different temperature, nutritional, and seedling density conditions. Our results indicate that rice seedlings grown in darkness produce a comparable amount of total soluble protein to those grown in light. Furthermore, we found that the best conditions for protein production in dark-grown rice seedlings are large seeds germinated and grown for 10-12 days at 28 °C supplemented with Murashige and Skoog medium and 30 g/l sucrose in dense planting. Therefore, our results suggest that foreign proteins can be produced in rice seedlings in the dark, with a reduced electricity use and an increase in cost-effectiveness.
Collapse
|
17
|
Anene UA, Alpay SP. Ab Initio Study of Hydrostable Metal-Organic Frameworks for Postsynthetic Modification and Tuning toward Practical Applications. ACS OMEGA 2022; 7:7791-7805. [PMID: 35284705 PMCID: PMC8908368 DOI: 10.1021/acsomega.1c06658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs), a subclass of nanoporous coordination polymers, have emerged as one of the most promising next-generation materials. The postsynthetic modification method, a strategy that provides tunability and control of these materials, plays an important role in enhancing its properties and functionalities. However, knowing adjustments which leads to a desired structure-function a priori remains a challenge. In this comprehensive study, the intermolecular interactions between 21 industrially important gases and a hydrostable STAM-17-OEt MOF were investigated using density functional theory. Substitutions on its 5-ethoxy isophthalate linker included two classes of chemical groups, electron-donating (-NH2, -OH, and -CH3) and electron-withdrawing (-CN, -COOH, and -F), as well as the effect of mono-, di-, and tri-substitutions. This resulted in 651 unique MOF-gas complexes. The adsorption energies at the ground state and room temperature, bond lengths, adsorption geometry, natural bond orbital analysis of the electric structure, HOMO-LUMO interactions, and the predicted zwitterionic properties are presented and discussed. This study provides a viable strategy for the functionalization, which leads to the strongest affinity for each gas, an insight into the role of different chemical groups in adsorbing various gas molecules, and identifies synthetic routes for moderating the gas adsorption capacity and reducing water adsorption. Recommendations for various applications are discussed. A custom Python script to assess and visualize the hypothetical separation of two equal gas mixtures of interest is provided. The methodology presented here provides new opportunities to expand the chemical space and physical properties of STAM-17-OEt and advances the development of other hydrostable MOFs.
Collapse
Affiliation(s)
- Uchenna A. Anene
- Department
of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - S. Pamir Alpay
- Department
of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
18
|
Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. THE ISME JOURNAL 2022; 16:370-377. [PMID: 34341507 PMCID: PMC8776907 DOI: 10.1038/s41396-021-01078-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The direct conversion of CO2 to value-added chemical commodities, thereby storing solar energy, offers a promising option for alleviating both the current energy crisis and global warming. Semiconductor-biological hybrid systems are novel approaches. However, the inherent defects of photocorrosion, photodegradation, and the toxicity of the semiconductor limit the application of these biohybrid systems. We report here that Rhodopseudomonas palustris was able to directly act as a living photosensitizer to drive CO2 to CH4 conversion by Methanosarcina barkeri under illumination after coculturing. Specifically, R. palustris formed a direct electric syntrophic coculture with M. barkeri. Here, R. palustris harvested solar energy, performed anoxygenic photosynthesis using sodium thiosulfate as an electron donor, and transferred electrons extracellularly to M. barkeri to drive methane generation. The methanogenesis of M. barkeri in coculture was a light-dependent process with a production rate of 4.73 ± 0.23 μM/h under light, which is slightly higher than that of typical semiconductor-biohybrid systems (approximately 4.36 μM/h). Mechanistic and transcriptomic analyses showed that electrons were transferred either directly or indirectly (via electron shuttles), subsequently driving CH4 production. Our study suggests that R. palustris acts as a natural photosensitizer that, in coculture with M. barkeri, results in a new way to harvest solar energy that could potentially replace semiconductors in biohybrid systems.
Collapse
|
19
|
Zhuang X, Zhang Y, Xiao AF, Zhang A, Fang B. Applications of Synthetic Biotechnology on Carbon Neutrality Research: A Review on Electrically Driven Microbial and Enzyme Engineering. Front Bioeng Biotechnol 2022; 10:826008. [PMID: 35145960 PMCID: PMC8822124 DOI: 10.3389/fbioe.2022.826008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
With the advancement of science, technology, and productivity, the rapid development of industrial production, transportation, and the exploitation of fossil fuels has gradually led to the accumulation of greenhouse gases and deterioration of global warming. Carbon neutrality is a balance between absorption and emissions achieved by minimizing carbon dioxide (CO2) emissions from human social productive activity through a series of initiatives, including energy substitution and energy efficiency improvement. Then CO2 was offset through forest carbon sequestration and captured at last. Therefore, efficiently reducing CO2 emissions and enhancing CO2 capture are a matter of great urgency. Because many species have the natural CO2 capture properties, more and more scientists focus their attention on developing the biological carbon sequestration technique and further combine with synthetic biotechnology and electricity. In this article, the advances of the synthetic biotechnology method for the most promising organisms were reviewed, such as cyanobacteria, Escherichia coli, and yeast, in which the metabolic pathways were reconstructed to enhance the efficiency of CO2 capture and product synthesis. Furthermore, the electrically driven microbial and enzyme engineering processes are also summarized, in which the critical role and principle of electricity in the process of CO2 capture are canvassed. This review provides detailed summary and analysis of CO2 capture through synthetic biotechnology, which also pave the way for implementing electrically driven combined strategies.
Collapse
Affiliation(s)
- Xiaoyan Zhuang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Yonghui Zhang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - An-Feng Xiao
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Aihui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Baishan Fang
- College of Food and Biology Engineering, Jimei University, Xiamen, China
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Abstract
CO2 methanation was studied over monometallic catalyst, i.e., Ni, Fe and Co; on CeO2-Cr2O3 support. The catalysts were prepared using one-pot hydrolysis of mixed metal nitrates and ammonium carbonate. Physicochemical properties of the pre- and post-exposure catalysts were characterized by X-Ray Powder Diffraction (XRD), Hydrogen Temperature Programmed Reduction (H2-TPR), and Field Emission Scanning Electron Microscope (FE-SEM). The screening of three dopants over CeO2-Cr2O3 for CO2 methanation was conducted in a milli-packed bed reactor. Ni-based catalyst was proven to be the most effective catalyst among all. Thus, a group of NiO/CeO2-Cr2O3 catalysts with Ni loading was investigated further. 40 % NiO/CeO2-Cr2O3 exhibited the highest CO2 conversion of 97.67% and CH4 selectivity of 100% at 290 °C. The catalytic stability of NiO/CeO2-Cr2O3 was tested towards the CO2 methanation reaction over 50 h of time-on-stream experiment, showing a good stability in term of catalytic activity.
Collapse
|
21
|
Zahed MA, Movahed E, Khodayari A, Zanganeh S, Badamaki M. Biotechnology for carbon capture and fixation: Critical review and future directions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112830. [PMID: 34051533 DOI: 10.1016/j.jenvman.2021.112830] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
To mitigate the growing threat of climate change and develop novel technologies that can eliminate carbon dioxide, the most abundant greenhouse gas derived from the flue gas stream of the fossil fuel-fired power stations, is momentous. The development of carbon capture and sequestration-based technologies may play a significant role in this regard. Carbon fixation mostly occurs by photosynthesizing plants as well as photo and chemoautotrophic microbes that turn the atmospheric carbon dioxide into organic materials via their enzymes. Biofuel can offer a sustainable solution for carbon mitigation. The pragmatic implementation of biofuel production processes is neither cost-effective nor has been proven safe over the long term. Searching for ways to enhance biofuel generation by the employment of genetic engineering is vital. Carbon biosequestration can help to curb the greenhouse effect. In addition, new genomic approaches, which are able to use gene-splicing biotechnology techniques and recombinant DNA technology to produce genetically modified organisms, can contribute to improvement in sustainable and renewable biofuel and biomaterial production from microorganisms. Biopolymers, Biosurfactants, and Biochars are suggested as sustainable future trends. This study aims to pave the way for implementing biotechnology methods to capture carbon and decrease the demand and consumption of fossil fuels as well as the emissions of greenhouse gases. Having a better image of microorganisms' potential role in carbon capture and storage can be prolific in developing powerful techniques to reduce CO2 emissions.
Collapse
Affiliation(s)
- Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran.
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Arezoo Khodayari
- Department of Civil and Environmental Engineering, California State University, Los Angeles, USA
| | - Saba Zanganeh
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran
| | - Maryam Badamaki
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran
| |
Collapse
|
22
|
Ahmad MS, Ab Rahim MH, Alqahtani TM, Witoon T, Lim JW, Cheng CK. A review on advances in green treatment of glycerol waste with a focus on electro-oxidation pathway. CHEMOSPHERE 2021; 276:130128. [PMID: 33714877 DOI: 10.1016/j.chemosphere.2021.130128] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Over the past decades, research efforts are being devoted into utilizing the biomass waste as a major source of green energy to maintain the economic, environmental, and social sustainability. Specifically, there is an emerging consensus on the significance of glycerol (an underutilised waste from biodiesel industry) as a cheap, non-toxic, and renewable source for valuable chemicals synthesis. There are numerous methods enacted to convert this glycerol waste to tartronic acid, mesoxalic acid, glyceraldehyde, dihydroxyacetone, oxalic acid and so on. Among these, the green electro-oxidation technique is one of the techniques that possesses potential for industrial application due to advantages such as non-toxicity process, fast response, and lower energy consumption. The current review covers the general understanding on commonly used techniques for alcohol (C1 & C2) conversion, with a specific insight on glycerol (C3) electro-oxidation (GOR). Since catalysts are the backbone of chemical reaction, they are responsible for the overall economy prospect of any processes. To this end, a comprehensive review on catalysts, which include noble metals, non-noble metals, and non-metals anchored over various supports are incorporated in this review. Moreover, a fundamental insight into the development of future electrocatalysts for glycerol oxidation along with products analysis is also presented.
Collapse
Affiliation(s)
- Muhammad Sheraz Ahmad
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang, Malaysia
| | - Mohd Hasbi Ab Rahim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Malaysia
| | | | - Thongthai Witoon
- Department of Chemical Engineering, Kasetsart University, Bangkok, Thailand
| | - Jun-Wei Lim
- School of Chemical Sciences, Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Leo F, Schwarz FM, Schuchmann K, Müller V. Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO 2 reduction to formate. Appl Microbiol Biotechnol 2021; 105:5861-5872. [PMID: 34331557 PMCID: PMC8390402 DOI: 10.1007/s00253-021-11463-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
In times of global climate change and the fear of dwindling resources, we are facing different considerable challenges such as the replacement of fossil fuel-based energy carriers with the coincident maintenance of the increasing energy supply of our growing world population. Therefore, CO2 capturing and H2 storing solutions are urgently needed. In this study, we demonstrate the production of a functional and biotechnological interesting enzyme complex from acetogenic bacteria, the hydrogen-dependent CO2 reductase (HDCR), in the well-known model organism Escherichia coli. We identified the metabolic bottlenecks of the host organisms for the production of the HDCR enzyme complex. Here we show that the recombinant expression of a heterologous enzyme complex transforms E. coli into a whole-cell biocatalyst for hydrogen-driven CO2 reduction to formate without the need of any external co-factors or endogenous enzymes in the reaction process. This shifts the industrial platform organism E. coli more and more into the focus as biocatalyst for CO2-capturing and H2-storage. KEY POINTS: • A functional HDCR enzyme complex was heterologously produced in E. coli. • The metabolic bottlenecks for HDCR production were identified. • HDCR enabled E. coli cell to capture and store H2 and CO2 in the form of formate.
Collapse
Affiliation(s)
- Felix Leo
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Fabian M Schwarz
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Kai Schuchmann
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Mishra S, Singh SP. Carbon management framework for sustainable manufacturing using life cycle assessment, IoT and carbon sequestration. BENCHMARKING-AN INTERNATIONAL JOURNAL 2021. [DOI: 10.1108/bij-01-2019-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeEmission reduction methodologies alone are not sufficient to mitigate the climatic catastrophes caused due to ongoing carbon emissions. Rather, a bidirectional approach is required to decarbonize the excess carbon in the atmosphere through carbon sequestration along with carbon reduction. Since the manufacturing sector contributes heavily to the ongoing carbon emissions, the purpose of this paper is to propose a framework for carbon emission reduction and carbon sequestration in the context of the manufacturing industry.Design/methodology/approachIn this paper, life cycle assessment (LCA) is employed to track the carbon emission at each stage of the product development life cycle. The pre-requisite for this is the accurate evaluation of the carbon emissions. Therefore, IoT technologies have been employed for collecting real-time data with high credibility to perceive environmental impact caused during the entire life cycle of the product. The total carbon emission calculation is based on the bill of material (BOM)-based LCA of the product to realize the multi-structure (from parts and components to product) as well as multi-stage (from cradle to gate) carbon emission evaluation. Carbon sequestration due to plantation is evaluated using root-shoot ratio and total biomass.FindingsA five interwoven layered structure is proposed in the paper to facilitate the real-time data collection and carbon emission evaluation using BOM-based LCA of products. Further, a carbon neutral coefficient (CNC) is proposed to indicate the state of a firm’s carbon sink and carbon emissions. CNC=1 indicates that the firm is carbon neutral. CNC >1 implies that the firm’s carbon sequestration is more than carbon emissions. CNC <1 indicates that the firm’s carbon emission is more than the carbon sink.Originality/valueThe paper provides a novel framework which integrates the real-time data collection and evaluation of carbon emissions with the carbon sequestration.
Collapse
|
25
|
Abstract
The burning of fossil fuels is an unsustainable activity, which is leading to an increase in greenhouse gases (GHGs) emissions and related global warming. Among sustainable energy sources, microalgae represent a promising alternative to fossil fuel and contribute to the achievement of important Sustainable Development Goals (SDGs). In particular, the potential contribution of marine microalgae to sustainable development is large as, among other benefits, they represent a carbon negative energy source and may be applied in many coastal areas around the world. Despite this, significant economic and technological improvements are needed in order to make microalgae biofuels viable on a large scale. This review aims to explore how and to what extent third-generation biofuels (marine microalgae, but also the latest advances in freshwater microalgae) can benefit the realization of these SDGs. From this study we concluded that the production of large-scale marine microalgae biofuels is not yet feasible from the economic perspective at a large scale. However, the cultivation of microalgae in seawater holds great potential for increasing the small to medium viability of this biofuel source. The possibilities for improvement along with the contributions to sustainable development lay the groundwork for continuing to study and apply the potential of sustainable production of microalgae bioenergy.
Collapse
|
26
|
Yang Q, Guo X, Liu Y, Jiang H. Biocatalytic C-C Bond Formation for One Carbon Resource Utilization. Int J Mol Sci 2021; 22:ijms22041890. [PMID: 33672882 PMCID: PMC7918591 DOI: 10.3390/ijms22041890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
The carbon-carbon bond formation has always been one of the most important reactions in C1 resource utilization. Compared to traditional organic synthesis methods, biocatalytic C-C bond formation offers a green and potent alternative for C1 transformation. In recent years, with the development of synthetic biology, more and more carboxylases and C-C ligases have been mined and designed for the C1 transformation in vitro and C1 assimilation in vivo. This article presents an overview of C-C bond formation in biocatalytic C1 resource utilization is first provided. Sets of newly mined and designed carboxylases and ligases capable of catalyzing C-C bond formation for the transformation of CO2, formaldehyde, CO, and formate are then reviewed, and their catalytic mechanisms are discussed. Finally, the current advances and the future perspectives for the development of catalysts for C1 resource utilization are provided.
Collapse
Affiliation(s)
- Qiaoyu Yang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Q.Y.); (X.G.)
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxian Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Q.Y.); (X.G.)
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yuwan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Q.Y.); (X.G.)
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Y.L.); (H.J.)
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Q.Y.); (X.G.)
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Y.L.); (H.J.)
| |
Collapse
|
27
|
Comitre AA, Vaz BDS, Costa JAV, Morais MGD. Renewal of nanofibers in Chlorella fusca microalgae cultivation to increase CO 2 fixation. BIORESOURCE TECHNOLOGY 2021; 321:124452. [PMID: 33310412 DOI: 10.1016/j.biortech.2020.124452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
This study explored strategies to increase the CO2 fixation ability of microalgae by renewing polymeric nanofibers in cultures of Chlorella fusca LEB 111. Nanofibers composed of 10% (w v-1) polyacrylonitrile (PAN)/dimethylformamide (DMF) containing 4% (w v-1) iron oxide nanoparticles (NPsFe2O3) were added to photobioreactors. The nanomaterial was renewed in the test cultures as follows: renewal only on day 7; renewal only on day 15; or renewal on both days 7 and 15 (i.e., double renewal). The highest biomass concentration (2.53 g L-1) and CO2 biofixation rate (141.5 mg L-1 d-1) were obtained by cultivating with double renewal, resulting in values 21.6% and 23% higher, respectively, than those obtained by cultivation without renewal. The application of nanofiber renewal in the cultivation of C. fusca LEB 111 shows the potential to increase CO2 biofixation, which may contribute to reducing the atmospheric concentrations of this main greenhouse gas intensifier.
Collapse
Affiliation(s)
- Allana Arcos Comitre
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Bruna da Silva Vaz
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
28
|
Using seawater-based Na2CO3 medium for scrubbing the CO2 released from Bio-CNG plant for enhanced biomass production of Pseudanabaena limnetica. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04271-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AbstractThe concentration of CO2, one of the most important greenhouse gases (GHG), has reached to 409.8 ± 0.1 ppm in 2019. Although there are many carbon capture and storage (CCS) methods, they are very costly and their long term use raises concern about environmental safety. Alternatively, bio-sequestration of CO2 using microalgal cell factories has emerged as a promising way of recycling CO2 into biomass via photosynthesis. In the present study, Indigenous algal strain Pseudanabaena limnetica was cultivated in pneumatically agitated 60-L flat-panel photobioreactor system. The gas was released from Bio-CNG plant as by-product into Na2CO3-rich medium and cultivated in semicontinuous mode of operation. It was observed that when CO2 was sparged in seawater-based 0.02 M Na2CO3 solution, maximum CO2 was dissolved in the system and was used for algal cultivation. Control system produced 0.64 ± 0.035 g/L of biomass at the end of 15 days, whereas CO2 sparged Na2CO3 medium produced 0.81 ± 0.046 g/L of biomass. When CO2 from Bio-CNG station was fed, it resulted in biomass production of 1.62 ± 0.070 g/L at the end of 18 days compared to 1.46 ± 0.066 g/L of biomass produced in control system which was not fed with gas released from Bio-CNG plant as by-product. Thus, feeding CO2 directly into Na2CO3 medium and operating the system semicontinuously would be efficient for scrubbing CO2 from commercial Bio-CNG plant. This study proves that feeding CO2 gas from Bio-CNG plant into Na2CO3-rich alkaline system can be used to feed algae for enhanced biomass production.
Collapse
|
29
|
Tan SI, Ng IS. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli. BIORESOURCE TECHNOLOGY 2020; 314:123785. [PMID: 32652452 DOI: 10.1016/j.biortech.2020.123785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Global warming is a surging issue that has provoked the demand of green process to mitigate carbon dioxide. In this context, RuBisCo-equipped Escherichia coli has first developed and evaluated the CO2-assimiliable capability based on the mass balance in three devices: Flask-based in CO2 incubator (FIC), two-layered device (TLD) and CO2 bubbling device (CBD) systematically. With the forced diffusion of 5% CO2 in CBD, which confers an efficient attack of CO2 to RuBisCo, the CO2 assimilation increased from -5.03 to -2.63 g-CO2/g-DCW. Furthermore, boosted CO2 assimilation ability was observed by co-expression of GroELS chaperone with 71% reduction on CO2 release. By DNA sequencing and tandem MS/MS analysis, the toxicity of RuBisCo and PRK was identified to interfere the sugar metabolism and energy producing, while the cell morphology was changed and observed in RuBisCo-equipped E. coli. Our study provides a new perspective of higher CO2 assimilation for sustainable to eco-friendly green bioprocess.
Collapse
Affiliation(s)
- Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
30
|
Seong W, Han GH, Lim HS, Baek JI, Kim SJ, Kim D, Kim SK, Lee H, Kim H, Lee SG, Lee DH. Adaptive laboratory evolution of Escherichia coli lacking cellular byproduct formation for enhanced acetate utilization through compensatory ATP consumption. Metab Eng 2020; 62:249-259. [PMID: 32931907 DOI: 10.1016/j.ymben.2020.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Acetate has attracted great attention as a carbon source to develop economically feasible bioprocesses for sustainable bioproducts. Acetate is a less-preferred carbon source and a well-known growth inhibitor of Escherichia coli. In this study, we carried out adaptive laboratory evolution of an E. coli strain lacking four genes (adhE, pta, ldhA, and frdA) involved in acetyl-CoA consumption, allowing the efficient utilization of acetate as its sole carbon and energy source. Four genomic mutations were found in the evolved strain through whole-genome sequencing, and two major mutations (in cspC and patZ) mainly contributed to efficient utilization of acetate and tolerance to acetate. Transcriptomic reprogramming was examined by analyzing the genome-wide transcriptome with different carbon sources. The evolved strain showed high levels of intracellular ATP by upregulation of genes involved in NADH and ATP biosynthesis, which facilitated the production of enhanced green fluorescent protein, mevalonate, and n-butanol using acetate alone. This new strain, given its high acetate tolerance and high ATP levels, has potential as a starting host for cell factories targeting the production of acetyl-CoA-derived products from acetate or of products requiring high ATP levels.
Collapse
Affiliation(s)
- Wonjae Seong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Gui Hwan Han
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Center for Industrialization of Agricultural and Livestock Microorganism (CIALM), Jeongeup, 56212, Republic of Korea
| | - Hyun Seung Lim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ji In Baek
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
31
|
Palm E, Nikoleris A. Conflicting expectations on carbon dioxide utilisation. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2020. [DOI: 10.1080/09537325.2020.1810225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ellen Palm
- Environmental and Energy Systems Studies, Lund University, Lund, Sweden
| | | |
Collapse
|
32
|
Entesari N, Goeppert A, Prakash GKS. Renewable Methanol Synthesis through Single Step Bi-reforming of Biogas. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nazanin Entesari
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, United States
| |
Collapse
|
33
|
Abstract
Among all greenhouse gases, CO2 is considered the most potent and the largest contributor to global warming. In this review, photocatalysis is presented as a promising technology to address the current global concern of industrial CO2 emissions. Photocatalysis utilizes a semiconductor material under renewable solar energy to reduce CO2 into an array of high-value fuels including methane, methanol, formaldehyde and formic acid. Herein, the kinetic and thermodynamic principles of CO2 photoreduction are thoroughly discussed and the CO2 reduction mechanism and pathways are described. Methods to enhance the adsorption of CO2 on the surface of semiconductors are also presented. Due to its efficient photoactivity, high stability, low cost, and safety, the semiconductor TiO2 is currently being widely investigated for its photocatalytic ability in reducing CO2 when suitably modified. The recent TiO2 synthesis and modification strategies that may be employed to enhance the efficiency of the CO2 photoreduction process are described. These modification techniques, including metal deposition, metal/non-metal doping, carbon-based material loading, semiconductor heterostructures, and dispersion on high surface area supports, aim to improve the light absorption, charge separation, and active surface of TiO2 in addition to increasing product yield and selectivity.
Collapse
|
34
|
Kumar Gupta G, Shukla P. Insights into the resources generation from pulp and paper industry wastes: Challenges, perspectives and innovations. BIORESOURCE TECHNOLOGY 2020; 297:122496. [PMID: 31831257 DOI: 10.1016/j.biortech.2019.122496] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Pulp and paper industry is swiftly budding to fulfill industrial needs and with the growth of this industry, a large amount of waste has also generated which includes biological sludge generated from the wood digestion process, fly ash accumulation and lime mud produced in chemical reagent recovery circuit. There are many health hazards associated with generated wastes and this waste material can be utilized in sustainable ways to generate useful resources through technological innovations. This review highlights a few useful aspects of waste conversion to resources like the production of green energy, sorbent development, and clinker preparation. The generation of resources from such wastes is a revolutionary and innovative concept for sustainable development including valorization of the generated waste to integrate pulp and paper industry with biorefinery. This review paper focuses on the sustainable utilization of waste from such industry along with its efficiency and future challenges.
Collapse
Affiliation(s)
- Guddu Kumar Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
35
|
Venkata Mohan S, Hemalatha M, Chakraborty D, Chatterjee S, Ranadheer P, Kona R. Algal biorefinery models with self-sustainable closed loop approach: Trends and prospective for blue-bioeconomy. BIORESOURCE TECHNOLOGY 2020; 295:122128. [PMID: 31563289 DOI: 10.1016/j.biortech.2019.122128] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Microalgae due to its metabolic versatility have received a focal attention in the biorefinery and bioeconomy context. Microalgae products have broad and promising application potential in the domain of renewable fuels/energy, nutraceutical, pharmaceuticals and cosmetics. Biorefining of microalgal biomass in a circular loop with an aim to maximize resource recovery is being considered as one of the sustainable option that will have both economical and environmental viability. The expansive scope of microalgae cultivation with self-sustainability approach was discussed in this communication in the framework of blue-bioeconomy. Microalgae based primary products, cultivation strategies, valorization of microalgae biomass for secondary products and integrated biorefinery models for the production of multi-based products were discussed. The need and prospect of self-sustainable models in closed loop format was also elaborated.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India.
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Debkumar Chakraborty
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Sulogna Chatterjee
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Palle Ranadheer
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Rajesh Kona
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| |
Collapse
|
36
|
Dionicio-Navarrete M, Arrieta-Gonzalez CD, Quinto-Hernandez A, Casales-Diaz M, Zuñiga-Diaz J, Porcayo-Calderon J, Martinez-Gomez L. Synthesis of NdAlO 3 Nanoparticles and Evaluation of the Catalytic Capacity for Biodiesel Synthesis. NANOMATERIALS 2019; 9:nano9111545. [PMID: 31671685 PMCID: PMC6915475 DOI: 10.3390/nano9111545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/27/2022]
Abstract
Biodiesel synthesis was carried out via heterogeneous catalysis of canola oil with nanoparticles of a mixed oxide based on rare earths. The catalyst synthesis (NdAlO3) was carried out based on the method proposed by Pechini for the synthesis of nanoparticles. Thermogravimetric analysis-differential thermal analysis (TGA-DTA) analysis was performed on the nanoparticle precursor gel in order to establish the optimum conditions for its calcination, with these being of 800 °C over 24 h. A pure NdAlO3 compound with an approximate size of 100 nm was obtained. The products of the transesterification reaction were analyzed using gas chromatography, FTIR, and NMR. The optimum reaction conditions were determined, namely, the temperature effect, reaction time, methanol:oil mass ratio, and recyclability of the catalyst. These studies showed the following optimal conditions: 200 °C, 5 h, methanol:oil mass ratio of 6:1, and a constant decrease in the catalytic activity of the catalyst was observed for up to six reuses, which later remained constant at around a 50% conversion rate. The maximum biodiesel yield obtained with the optimum conditions was around 75%. Analysis of the reaction products showed that the residual oil showed a chemical composition different from that of the source oil, and that both the biodiesel and glycerol obtained were of high purity.
Collapse
Affiliation(s)
- Mayra Dionicio-Navarrete
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, MOR, Mexico.
- Tecnológico Nacional de México - Instituto Tecnológico de Zacatepec, Calzada Instituto Tecnológico 27, Zacatepec 62780, MOR, Mexico.
| | - C Dinorah Arrieta-Gonzalez
- Tecnológico Nacional de México - Instituto Tecnológico de Zacatepec, Calzada Instituto Tecnológico 27, Zacatepec 62780, MOR, Mexico.
| | - Alfredo Quinto-Hernandez
- Tecnológico Nacional de México - Instituto Tecnológico de Zacatepec, Calzada Instituto Tecnológico 27, Zacatepec 62780, MOR, Mexico.
| | - Maura Casales-Diaz
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, MOR, Mexico.
| | - Jacqueline Zuñiga-Diaz
- Tecnológico Nacional de México - Instituto Tecnológico de Zacatepec, Calzada Instituto Tecnológico 27, Zacatepec 62780, MOR, Mexico.
| | - Jesus Porcayo-Calderon
- CIICAp, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca 62209, MOR, Mexico.
| | - Lorenzo Martinez-Gomez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, MOR, Mexico.
- Corrosion y Protección (CyP), Buffon 46, México City 11590, Mexico.
| |
Collapse
|
37
|
Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:112-128. [PMID: 31229809 DOI: 10.1016/j.scitotenv.2019.06.181] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
The rapid depletion of fossil fuels and ever-increasing environmental pollution have forced humankind to look for a renewable energy source. Microalgae, a renewable biomass source, has been proposed as a promising feedstock to generate biofuels due to their fast growth rate with high lipid content. However, literatures have indicated that sustainable production of microalgae biofuels are only viable with a highly optimized production system. In the present study, a cradle-to-gate approach was used to provide expedient insights on the effect of different cultivation systems and biomass productivity toward life cycle energy (LCEA), carbon balance (LCCO2) and economic (LCC) of microalgae biodiesel production pathways. In addition, a co-production of bioethanol from microalgae residue was proposed in order to improve the economic sustainability of the overall system. The results attained in the present work indicated that traditional microalgae biofuels processing pathways resulted to several shortcomings, such as dehydration and lipid extraction of microalgae biomass required high energy input and contributed nearly 21 to 30% and 39 to 57% of the total energy requirement, respectively. Besides, the microalgae biofuels production system also required a high capital investment, which accounted for 47 to 86% of total production costs that subsequently resulted to poor techno-economic performances. Moreover, current analysis of environmental aspects of microalgae biorefinery had revealed negative CO2 balance in producing microalgae biofuels.
Collapse
Affiliation(s)
- Yaleeni Kanna Dasan
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Suzana Yusup
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Jun Wei Lim
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
38
|
Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Maurice Mbadinga S, Yang SZ, Liu JF, Sand W, Gu JD, Mu BZ. Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials. BIORESOURCE TECHNOLOGY 2019; 288:121401. [PMID: 31151767 DOI: 10.1016/j.biortech.2019.121401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Carbon dioxide storage in petroleum and other geological reservoirs is an economical option for long-term separation of this gas from the atmosphere. Other options include applications through conversion to valuable chemicals. Microalgae and plants perform direct fixation of carbon dioxide to biomass, which is then used as raw material for further microbial transformation (MT). The approach by microbial transformation can achieve reduction of carbon dioxide and production of biofuels. This review addresses the research and technological processes related to direct MT of carbon dioxide, factors affecting their efficiency in operation and the review of economic feasibility. Additionally, some commercial plants making utilization of CO2 around the globe are also summarized along with different value-added chemicals (methane, acetate, fatty acids and alcohols) as reported in literature. Further information is also provided for a better understanding of direct CO2 MT and its future prospects leading to a sustainable and clean environment.
Collapse
Affiliation(s)
- Muhammad Irfan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Yang Bai
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mohsin Kazmi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Shan Yuan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Serge Maurice Mbadinga
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Ji-Dong Gu
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of MEOR, East China University of Science and Technology, Ministry of Education, Shanghai 200237, China.
| |
Collapse
|
39
|
Vaz BDS, Mastrantonio DJDS, Costa JAV, Morais MGD. Green alga cultivation with nanofibers as physical adsorbents of carbon dioxide: Evaluation of gas biofixation and macromolecule production. BIORESOURCE TECHNOLOGY 2019; 287:121406. [PMID: 31103017 DOI: 10.1016/j.biortech.2019.121406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The objective of this study was to evaluate the biofixation and production of biocompounds by Chlorella fusca LEB 111 cultivated with different concentrations of carbon dioxide (CO2) adsorbent nanofibers in their free form or retained. Cultures were grown in 15% (v v-1) CO2 with 0.1, 0.3 and 0.5 g L-1 nanofibers developed with 10% (w v-1) polyacrylonitrile (PAN)/dimethylformamide (DMF), with or without nanoparticles; retained or not. The addition of 0.1 g L-1 nanofibers with nanoparticles in their free form to the cultures promoted the accumulation of approximately 3 times more carbon in the medium (46.6 mg L-1), a 45% higher biofixation rate (89.2 mg L-1 d-1) and increased carbohydrate production by approximately 2.3% (w w-1) of that observed in cultures grown without nanofibers. Therefore, nanofibers showed promising potential as physical adsorbents of CO2 in the cultivation to increase gas fixation and promote the synthesis of macromolecules.
Collapse
Affiliation(s)
- Bruna da Silva Vaz
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Duna Joanol da Silveira Mastrantonio
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
40
|
Burkart MD, Hazari N, Tway CL, Zeitler EL. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02113] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Cathy L. Tway
- Johnson Matthey, 2 Trans Am Plaza Drive, Suite 230, Oakbrook Terrace, Illinois 60181, United States
| | - Elizabeth L. Zeitler
- Board on Energy
and Environmental Systems, National Academies of Sciences, Engineering and Medicine, 500 Fifth Street, NW, Washington, D.C. 20001, United States
| |
Collapse
|
41
|
Lim HK, Kim DR, Hwang IT. Sequestration of CO2 into CaCO3 using Carbonic Anhydrase Immobilization on Functionalized Aluminum Oxide. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Ho HJ, Iizuka A, Shibata E. Carbon Capture and Utilization Technology without Carbon Dioxide Purification and Pressurization: A Review on Its Necessity and Available Technologies. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01213] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hsing-Jung Ho
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Aoba-468-1 Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Atsushi Iizuka
- Center for Mineral Processing and Metallurgy, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Etsuro Shibata
- Center for Mineral Processing and Metallurgy, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
43
|
Electrocatalytic Processes for the Valorization of CO2: Synthesis of Cyanobenzoic Acid Using Eco-Friendly Strategies. Catalysts 2019. [DOI: 10.3390/catal9050413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbon dioxide (CO2) is a known greenhouse gas, and is the most important contributor to global warming. Therefore, one of the main challenges is to either eliminate or reuse it through the synthesis of value-added products, such as carboxylated derivatives. One of the most promising approaches for activating, capturing, and valorizing CO2 is the use of electrochemical techniques. In the current manuscript, we described an electrocarboxylation route for synthesizing 4-cyanobenzoic acid by valorizing CO2 through the synergistic use of electrochemical techniques (“green technology”) and ionic liquids (ILs) (“green solvents”)—two of the major entries in the general green chemistry tool kit. Moreover, the use of silver cathodes and ILs enabled the electrochemical potential applied to be reduced by more than 0.4 V. The “green” synthesis of those derivatives would provide a suitable environmentally friendly process for the design of plasticizers based on phthalate derivatives.
Collapse
|
44
|
Using Different Ions in the Hydrothermal Method to Enhance the Photoluminescence Properties of Synthesized ZnO-Based Nanowires. ELECTRONICS 2019. [DOI: 10.3390/electronics8040446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ZnO films with a thickness of ~200 nm were deposited on SiO2/Si substrates as the seed layer. Then Zn(NO3)2-6H2O and C6H12N4 containing different concentrations of Eu(NO3)2-6H2O or In(NO3)2-6H2O were used as precursors, and a hydrothermal process was used to synthesize pure ZnO as well as Eu-doped and In-doped ZnO nanowires at different synthesis temperatures. X-ray diffraction (XRD) was used to analyze the crystallization properties of the pure ZnO and the Eu-doped and In-doped ZnO nanowires, and field emission scanning electronic microscopy (FESEM) was used to analyze their surface morphologies. The important novelty in our approach is that the ZnO-based nanowires with different concentrations of Eu3+ and In3+ ions could be easily synthesized using a hydrothermal process. In addition, the effect of different concentrations of Eu3+ and In3+ ions on the physical and optical properties of ZnO-based nanowires was well investigated. FESEM observations found that the undoped ZnO nanowires could be grown at 100 °C. The third novelty is that we could synthesize the Eu-doped and In-doped ZnO nanowires at temperatures lower than 100 °C. The temperatures required to grow the Eu-doped and In-doped ZnO nanowires decreased with increasing concentrations of Eu3+ and In3+ ions. XRD patterns showed that with the addition of Eu3+ (In3+), the diffraction intensity of the (002) peak slightly increased with the concentration of Eu3+ (In3+) ions and reached a maximum at 3 (0.4) at%. We show that the concentrations of Eu3+ and In3+ ions have considerable effects on the synthesis temperatures and photoluminescence properties of Eu3+-doped and In3+-doped ZnO nanowires.
Collapse
|
45
|
Optimum Particle Size of Treated Calcites for CO 2 Capture in a Power Plant. MATERIALS 2019; 12:ma12081284. [PMID: 31003568 PMCID: PMC6514945 DOI: 10.3390/ma12081284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/17/2022]
Abstract
This work has analyzed the influence of the particle size of a calcite from a quarry, whether original, calcined, or rehydrated, on the efficiency of CO2 capture of the gases emitted in a coal-fired power plant. Three different particle sizes 0.5 mm, 0.1 mm, and 0.045 mm have been studied. The calcination had a minimal effect on the particle size of the smaller samples A1045 and A1M1 (<30 μm). The N2 isotherms and the CO2 adsorption isotherms at 0 °C showed a very significant increase in the surface of the calcined and rehydrated samples (A15CH, A1045CH, and A1M1CH) with respect to the calcined or original samples. The results obtained showed that the capture of CO2 for the sample A1M1, with a smaller average particle size (<30 μm, is the most effective. For the sample A1M1 calcined and completely rehydrated (Ca(OH)2), the chemical adsorption of CO2 to form CaCO3 is practically total, under the experimental conditions used (550 °C and CO2 flow of 20 mL min−1). The weight increase was 34.11% and the adsorption capacity was 577.00 mg g−1. The experiment was repeated 10 times with the same sample A1M1 calcined and rehydrated. No appreciable loss of adsorption capacity was observed.
Collapse
|
46
|
Zamani A, Shohaimi NAM, Rosid SJM, Abdullah NH, Shukri NM. Enhanced low temperature reaction for the CO2 methanation over Ru promoted Cu/Mn on alumina support catalyst using double reactor system. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Rosa GM, Morais MG, Costa JAV. Fed-batch cultivation with CO 2 and monoethanolamine: Influence on Chlorella fusca LEB 111 cultivation, carbon biofixation and biomolecules production. BIORESOURCE TECHNOLOGY 2019; 273:627-633. [PMID: 30502642 DOI: 10.1016/j.biortech.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
The aim of this study was to evaluate the interaction between the periodic addition of monoethanolamine (MEA) and CO2 during the cultivation of Chlorella fusca LEB 111. For this purpose, MEA has been added in abiotic assays, followed by fed-batch cultures with that green alga and the absorbent. BG-11 medium shown a higher potential of CO2 absorption with MEA addition, and the bicarbonate was the chemical species of carbon prevailing in the chemical equilibrium. The periodic addition of MEA did not reduce the kinetics of growth, promoted a higher accumulation of DIC (81.4 mg L-1) in the medium and protein (44.0% w w-1) and lipid (30.8% w w-1) concentrations in the biomass of C. fusca LEB 111. Therefore, it was demonstrated that fed-batch culture with MEA increased CO2 fixation and the biomolecule synthesis as proteins and lipids.
Collapse
Affiliation(s)
- G M Rosa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - M G Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - J A V Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
48
|
Abstract
In this work, different kinds of ionic liquids and reaction conditions for the extraction of lipid from microalgae biomass were optimized and repeated use of ionic liquids for microalgal lipid extraction was evaluated. Morphological changes of microalgae cells were compared in terms of pre- and post-treatment to understand the mechanisms of ionic liquid treatment. Ionic liquid [BMIM][MeSO4] showed the best lipid extraction efficiency at 70°C and with reaction time of 2 hours. The ratios (ILs : methanol) of 1 : 7 and 1 : 3 were the optimum ratios to complete the extraction of the lipids from microalgae. The initial 50% volume fraction of [BMIM][MeSO4] was 16.04% of dry weight, which showed the highest five average extraction rates. The loss of ionic liquid in the reaction system and the increase in water content of ionic liquids were considered as the main reasons for the decrease in the extraction rate. It is suggested that the potential of lipid extraction in this IL-methanol co-solvent system is promising due to the high efficiency, low cost, safety, environmental protection, and other characteristics.
Collapse
|
49
|
Chang YK, Show PL, Lan JCW, Tsai JC, Huang CR. Isolation of C-phycocyanin from Spirulina platensis microalga using Ionic liquid based aqueous two-phase system. BIORESOURCE TECHNOLOGY 2018; 270:320-327. [PMID: 30241065 DOI: 10.1016/j.biortech.2018.07.138] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
An aqueous two-phase system (ATPS) with ionic liquids (ILs) was used for the isolate of C-phycocyanin (CPC) from Spirulina platensis microalga. Various imidazolium ILs and potassium salts were studied. The effect of ILs-ATPS on the extraction efficiency of CPC was also studied. The experimental parameters like pH, loading volume, algae concentration, temperature, and alkyl chain length of IL were well-covered in this report. The experimental results showed that the extraction efficiency, the partition coefficient, and the separation factor for CPC were 99%, 36.6, and 5.8, respectively, for an optimal pH value of 7 and a temperature of 308 K. The order of extraction efficiency for CPC using IL-ATPS was: 1-octyl-3-methylimidazolium bromide (C8MIM-Br) > 1-hexyl-3-methylimidazolium bromide (C6MIM-Br) > 1-butyl-3-methylimidazolium bromide (C4MIM-Br). The isolation process followed the pseudo second-order kinetic model and the thermodynamic results were obviously spontaneous.
Collapse
Affiliation(s)
- Yu-Kaung Chang
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| | - Pau-Loke Show
- Bioseparation Research Group, Department of Chemical Engineering and Environmental Engineering, University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia
| | - John Chi-Wei Lan
- Department of Chemical Engineering and Materials Science, College of Engineering, Yuan Ze University, Taiwan
| | - Jung-Chin Tsai
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chi-Rong Huang
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
50
|
Benedetti M, Vecchi V, Barera S, Dall’Osto L. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb Cell Fact 2018; 17:173. [PMID: 30414618 PMCID: PMC6230293 DOI: 10.1186/s12934-018-1019-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Interest in bulk biomass from microalgae, for the extraction of high-value nutraceuticals, bio-products, animal feed and as a source of renewable fuels, is high. Advantages of microalgal vs. plant biomass production include higher yield, use of non-arable land, recovery of nutrients from wastewater, efficient carbon capture and faster development of new domesticated strains. Moreover, adaptation to a wide range of environmental conditions evolved a great genetic diversity within this polyphyletic group, making microalgae a rich source of interesting and useful metabolites. Microalgae have the potential to satisfy many global demands; however, realization of this potential requires a decrease of the current production costs. Average productivity of the most common industrial strains is far lower than maximal theoretical estimations, suggesting that identification of factors limiting biomass yield and removing bottlenecks are pivotal in domestication strategies aimed to make algal-derived bio-products profitable on the industrial scale. In particular, the light-to-biomass conversion efficiency represents a major constraint to finally fill the gap between theoretical and industrial productivity. In this respect, recent results suggest that significant yield enhancement is feasible. Full realization of this potential requires further advances in cultivation techniques, together with genetic manipulation of both algal physiology and metabolic networks, to maximize the efficiency with which solar energy is converted into biomass and bio-products. In this review, we draft the molecular events of photosynthesis which regulate the conversion of light into biomass, and discuss how these can be targeted to enhance productivity through mutagenesis, strain selection or genetic engineering. We outline major successes reached, and promising strategies to achieving significant contributions to future microalgae-based biotechnology.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Simone Barera
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|