Chen Z, Ma X, Xu L, Wang Y, Long J. Catalytic conversion of duckweed to methyl levulinate in the presence of acidic ionic liquids.
BIORESOURCE TECHNOLOGY 2018;
268:488-495. [PMID:
30114668 DOI:
10.1016/j.biortech.2018.08.033]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
In this study, an efficient strategy is proposed for selective methyl levulinate production from duckweed, a typical fast-growing aquatic microalgae in warm and humid regions, in the presence of acidic ionic liquids (ILs). The results show that IL structure has a significant effect on its acidic strength, which finally determines the process efficiency for levulinate methyl generation. With the optimized catalyst of [C3H6SO3HPy]HSO4, 88.0% duckweed is consumed, resulting in a comparable methyl levulinate yield of 73.7% and a process efficiency of 81.8% at 170 °C for 5 h. Furthermore, this process is substantially influenced by the reaction condition, particularly, it is significantly temperature-dependent. In addition, solvent has a remarkable intensified effect on the process efficiency, which dramatically decreases from 81.8 to 53.7% when methanol is replaced by water.
Collapse