1
|
Abstract
The problem of global warming and the emission of greenhouse gases is already directly affecting the world’s energy. In the future, the impact of CO2 emissions on the world economy will constantly grow. In this paper, we review the available literature sources on the benefits of using algae cultivation for CO2 capture to decrease CO2 emission. CO2 emission accounts for about 77% of all greenhouse gases, and the calculation of greenhouse gas emissions is 56% of all CO2 imports. As a result of the study of various types of algae, it was concluded that Chlorella sp. is the best at capturing CO2. Various methods of cultivating microalgae were also considered and it was found that vertical tubular bioreactors are emerging. Moreover, for energy purposes, thermochemical methods for processing algae that absorb CO2 from flue gases were considered. Of all five types of thermochemical processes for producing synthesis gas, the most preferred method is the method of supercritical gasification of algae. In addition, attention is paid to the drying and flocculation of biofuels. Several different experiments were also reviewed on the use of flue gases through the cultivation of algae biomass. Based on this literature review, it can be concluded that microalgae are a third generation biofuel. With the absorption of greenhouse gases, the growth of microalgae cultures is accelerated. When a large mass of microalgae appears, it can be used for energy purposes. In the results, we present a plan for further studies of microalgae cultivation, a thermodynamic analysis of gasification and pyrolysis, and a comparison of the results with other biofuels and other algae cultures.
Collapse
|
2
|
Towards sustainable catalysts in hydrodeoxygenation of algae-derived oils: A critical review. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
A Mini Review on Pyrolysis of Natural Algae for Bio-Fuel and Chemicals. Processes (Basel) 2021. [DOI: 10.3390/pr9112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The disposal and use of natural algae have recently been the subject of great interest, due to increasing concern for environmental protection and resource utilization. In this paper, a mini review of recent research on the pyrolysis of natural algae, especially the algae from water blooms, is presented. The chemical compositions of the natural algae are summarized, and the pyrolysis properties of different compositions are reviewed. Non-catalytic, catalytic, and integrated catalytic processes are reviewed. Different ideas and methods for the production of bio-fuel or chemicals are discussed. Apparently, deoxygenation and denitrogenation are highly necessary for algae-based bio-fuel and catalysts play an important role in these processes. In addition, the integrated catalytic process, which involves catalysis and other operation conditions aside from the thermal treatment under inert atmosphere, shows potential for the valorization of algae-based bio-oil. Based on the recent concept and progress, the research gaps are discussed, followed by the challenges and proposals to achieve high-value utilization of the natural algae.
Collapse
|
4
|
Presser C, Nazarian A, Ohaion-Raz T, Lerner A, Dubkin H, Dabush B, Danon A, Paz Tal O. Thermochemical behavior of Chlorella sp. and Chlamydomonas reinhardtii algae: Comparison of laser-driven calorimetry with thermogravimetric analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Arun J, Gopinath KP, Sivaramakrishnan R, SundarRajan P, Malolan R, Pugazhendhi A. Technical insights into the production of green fuel from CO 2 sequestered algal biomass: A conceptual review on green energy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142636. [PMID: 33065504 DOI: 10.1016/j.scitotenv.2020.142636] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Algae a promising energy reserve due to its adaptability, cheap source, sustainability and it's growth ability in wastewater with efficient sequestration of industrial carbon dioxide. This review summarizes the pathways available for biofuel production from carbon sequestered algae biomass. In this regard, this review focuses on microalgae and its cultivation in wastewater with CO2 sequestration. Conversion of carbon sequestered biomass into bio-fuels via thermo-chemical routes and its engine emission properties. Energy perspective of green gaseous biofuels in near future. This review revealed that algae was the pre-dominant CO2 sequester than terrestrial plants in an eco-friendly and economical way with simultaneous wastewater remediation. Hydrothermal liquefaction of algae biomass was the most preferred mode for biofuel generation than pyrolysis due to high moisture content. The algae based fuels exhibit less greenhouse gases emission and higher energy value. This review helps the researchers, environmentalists and industrialists to evaluate the impact of algae based bio-energy towards green energy and environment.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Center for Waste Management - 'International Research Centre', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600 119, Tamil Nadu, India.
| | | | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - PanneerSelvam SundarRajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Kwon G, Bhatnagar A, Wang H, Kwon EE, Song H. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123242. [PMID: 32585525 DOI: 10.1016/j.jhazmat.2020.123242] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 05/12/2023]
Abstract
For past few years, biochar has gained a great deal of attention for its versatile utility in agricultural and environmental applications. The diverse functionality and environmental-friendly nature of biochar have motivated many researchers to delve into biochar researches and spurred rapid expansion of literature in recent years. Biochar can be produced from virtually all the biomass, but the properties of biochar are highly dependent upon the types of feedstock biomass and preparation methods. The overall performances of as-prepared biochar in treating soil and water contaminants is generally inferior to activated carbon due to its lower surface area and limited functionalities. This limitation has led to many follow-up studies that focused on improving material characteristics by imparting desired functionality. Such efforts have greatly advanced knowledge to produce better-performing engineered biochar with enhanced capability and versatility. To this end, this review was prepared to compile recent advancements in fabrication and application of engineered biochar, especially with respect to the influences of biomass feedstock on the properties of biochar and the utilization of industrial wastes in fabrication of engineered biochar.
Collapse
Affiliation(s)
- Gihoon Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, Fl-70211, Kuopio, Finland
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea.
| |
Collapse
|
7
|
Catalytic Thermochemical Conversion of Algae and Upgrading of Algal Oil for the Production of High-Grade Liquid Fuel: A Review. Catalysts 2020. [DOI: 10.3390/catal10020145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The depletion of fossil fuel has drawn growing attention towards the utilization of renewable biomass for sustainable energy production. Technologies for the production of algae derived biofuel has attracted wide attention in recent years. Direct thermochemical conversion of algae obtained biocrude oil with poor fuel quality due to the complex composition of algae. Thus, catalysts are required in such process to remove the heteroatoms such as oxygen, nitrogen, and sulfur. This article reviews the recent advances in catalytic systems for the direct catalytic conversion of algae, as well as catalytic upgrading of algae-derived oil or biocrude into liquid fuels with high quality. Heterogeneous catalysts with high activity in deoxygenation and denitrogenation are preferable for the conversion of algae oil to high-grade liquid fuel. The paper summarized the influence of reaction parameters and reaction routes for the catalytic conversion process of algae from critical literature. The development of new catalysts, conversion conditions, and efficiency indicators (yields and selectivity) from different literature are presented and compared. The future prospect and challenges in general utilization of algae are also proposed.
Collapse
|
8
|
Yang H, Gao L, Bai Q, Xu S, Pan D, Wu Y, Xiao G. Nitrogenous compounds produced by catalytic pyrolysis of cyanobacteria over metal loaded MCM-41 with vaporized methanol. NEW J CHEM 2019. [DOI: 10.1039/c9nj00290a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect of methanol and an acidic catalyst promotes the production of nitriles and the enrichment of pentadecanenitrile.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Lijing Gao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Qianqian Bai
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Siquan Xu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Donghui Pan
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Yuanfeng Wu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Guomin Xiao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
9
|
Rahman MA. Pyrolysis of water hyacinth in a fixed bed reactor: Parametric effects on product distribution, characterization and syngas evolutionary behavior. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 80:310-318. [PMID: 30455012 DOI: 10.1016/j.wasman.2018.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 05/08/2023]
Abstract
In this investigation, the effect of operating parameters on product distribution for the conversion of water hyacinth into most valuable product bio oil as well as char and gases are investigated. To observe the parametric effect on product distribution, the temperature was varied 300-600 °C, heating rate 10-50 °C/min, particle size of the feed <0.5-2.5 mm and carrier gas nitrogen flow rate 0-12 lpm. The highest bio-oil yield of 44.9 wt% was obtained at 350 °C, 30 °C/min, particle feed size less than 0.5 mm and 6 lpm. The results show that the product yield is strongly influenced by the temperature variation whereas weakly affected by the heating rate. The biomass and the products were characterized by ultimate, proximate, DTG, FTIR, 1H NMR, and GC-MS. Syngas evolution increase with the increase of temperature except CO2. The quality of bio-oil is perspective as a source of value-added chemicals and char is a promising source for the production of carbonaceous materials as well as solid fuel.
Collapse
Affiliation(s)
- M A Rahman
- Bangladesh Power Development Board, Ministry of Power, Energy and Mineral Resources, Dhaka 1000, Bangladesh.
| |
Collapse
|
10
|
Kabir G, Mohd Din AT, Hameed BH. Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production. BIORESOURCE TECHNOLOGY 2018; 249:42-48. [PMID: 29040858 DOI: 10.1016/j.biortech.2017.09.190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
The pyrolysis of oil palm mesocarp fiber (OPMF) was catalyzed with a steel slag-derived zeolite (FAU-SL) in a slow-heating fixed-bed reactor at 450 °C, 550 °C, and 600 °C. The catalytic pyrolysis of OPMF produced a maximum yield of 47 wt% bio-oil at 550 °C, and the crude pyrolysis vapor (CPV) of this process yielded crude pyrolysis oil with broad distribution of bulky oxygenated organic compounds. The bio-oil composition produced at 550 °C contained mainly light and stable acid-rich carbonyls at a relative abundance of 48.02% peak area and phenolic compounds at 12.03% peak area. The FAU-SL high mesoporosity and strong surface acidity caused the conversion of the bulky CPV molecules into mostly light acid-rich carbonyls and aromatics through secondary reactions. The secondary reactions mechanisms facilitated by FAU-SL reduced the distribution of the organic compounds in the bio-oil to mostly acid-rich carbonyls and aromatic in contrast to other common zeolite.
Collapse
Affiliation(s)
- G Kabir
- School of Chemical Engineering, Engineering Campus, University Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia; Department of Chemical Engineering, Abubakar Tafawa Balewa University, P. M. B. 0248, Bauchi, Nigeria
| | - A T Mohd Din
- School of Chemical Engineering, Engineering Campus, University Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - B H Hameed
- School of Chemical Engineering, Engineering Campus, University Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|