1
|
Wang L, Chen B, Liao G, Wang J, Chen W, Li X, Tang Y, Wang X, Li L. Selective oxidation of ammonium to nitrogen with VUV/UV/Cl ⁻ process: Efficiency, pathway and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138257. [PMID: 40233459 DOI: 10.1016/j.jhazmat.2025.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/19/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Conversion of chloride ions (Cl⁻) into reactive chlorine species (RCS) is an effective strategy for ammonium (NH4⁺-N) selective oxidation to nitrogen (N2) under high salinity conditions. Herein, vacuum ultraviolet (VUV) irradiation was introduced for NH4⁺-N removal in simulated recirculating mariculture systems (RMS) water treatment. Complete oxidation of NH4⁺-N and 88.3 % N2 selectivity were achieved for VUV/UV/Cl⁻ process. Mechanism analysis revealed that Cl⁻ were effectively converted into RCS under VUV irradiation and chlorine oxide radical (ClO•) was the predominant RCS responsible for NH4+-N removal. The pathway of NH4+-N oxidation was proposed as chlorination because chloramine was identified as the main intermediate. Influence factor investigation indicated that Cl⁻ and bicarbonate (HCO3⁻) could significantly promote the removal of NH4+-N in VUV/UV/Cl⁻ process due to acceleration of ClO• generation. Ultimately, the NH4+-N removal performance of VUV/UV/Cl⁻ process in practical application was also investigated. The results showed that not only NH4+-N in actual seawater or RMS could be converted effectively to N2, but also nitrite (NO2⁻-N) and partial nitrate (NO3⁻-N) could be removed efficiently by VUV/UV/Cl⁻ process. Hence, the VUV/UV/Cl⁻ process has promising potential in NH4+-N and total nitrogen (TN) removal for RMS water treatment.
Collapse
Affiliation(s)
- Lingdan Wang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, China
| | - Bing Chen
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, China
| | - Gaozu Liao
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, China.
| | - Jing Wang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xukai Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, China
| | - Yiming Tang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, China
| | - Xi Wang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, China
| |
Collapse
|
2
|
Du R, Tang M, Liu Q, Cao S, Peng Y. Stable continuous flow CANDAN process transitioning from anammox UASB reactor by facilitating indigenous nitrite-producing denitrification community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171929. [PMID: 38522528 DOI: 10.1016/j.scitotenv.2024.171929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The emerging nitrogen removal process known as CANDAN (Complete Ammonium and Nitrate removal via Denitratation-Anammox over Nitrite) has been developed in Sequencing Batch Reactors (SBRs). Yet, starting up and maintaining stability in continuous-flow reactors remain challenging. This study explores the feasibility of transitioning the CANDAN process from an anammox-dominated process by introducing appropriate external organics to facilitate indigenous nitrite-producing denitrification community in an Upflow Anaerobic Sludge Blanket (UASB) reactor. 150-day operation results indicate that under feeding rates of domestic wastewater at 0.54 L/h and nitrate-containing wastewater at 1.08 L/h, excellent N removal was achieved, with effluent TN below 10.0 mg N/L. Adding external sodium acetate at a COD/NO3--N = 2.0 triggered denitratation, ex-situ denitrification activity tests showed increased nitrite production rates, maintaining the nitrate-to-nitrite transformation ratio (NTR) above 90 %. Consequently, anammox activity was consistently maintained, dominating Total Nitrogen (TN) removal with a contribution as high as 78.3 ± 8.0 %. Anammox functional bacteria, Brocadia and Kuenenia were identified and showed no decrease throughout the operation, indicating the robustness of the anammox process. Notably, the troublesome of sludge flotation, did not occur, also contributing to sustained outstanding performance. In conclusion, this study advances our understanding of the synergistic interplay between anammox and denitrifying bacteria in the Anammox-UASB system, offering technical insights for establishing a stable continuous-flow CANDAN process for simultaneous ammonium and nitrate removal.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Meihui Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Manav-Demir N. Model-based fractionation of biomass in a biological nutrient removal system and its effect on the removal efficiencies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:123-132. [PMID: 37159727 PMCID: PMC10163197 DOI: 10.1007/s40201-022-00845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/17/2022] [Accepted: 11/27/2022] [Indexed: 05/11/2023]
Abstract
Fractionation of active biomass in a five-stage Bardenpho process was accomplished using an MS Excel wastewater treatment plant modeling tool based on Activated Sludge Model No. 3 extended with a bio-P module. The biomass fractions within the treatment system were predicted as autotrophs, ordinary heterotrophs, and phosphorus accumulating organisms (PAOs). Several simulations were performed in a Bardenpho process using various C/N/P ratios in primary effluent. Biomass fractionation was obtained from steady-state simulation results. The results suggest that the mass percentage of autotrophs, heterotrophs, and PAOs in active biomass range from 1.7 to 7.8%, 5.7-69.0%, and 23.2-92.6%, respectively, depending on characteristics of primary effluent. Results of principal component analysis showed that TKN/COD ratio in primary effluent determines the population of autotrophs and ordinary heterotrophs whereas PAO population is mainly a function of TP/COD ratio.
Collapse
Affiliation(s)
- Neslihan Manav-Demir
- Yildiz Technical University, Davutpasa Campus, Environmental Engineering Department, 34220 Esenler, Istanbul Turkey
| |
Collapse
|
4
|
Tian L, Wang L, Zhang X, Huang X, Wang F, Zhu S, Li X, Guan Y. Multi-omics analysis on seasonal variations of the biofilm microbial community in a full-scale pre-denitrification biofilter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24284-24298. [PMID: 36334202 DOI: 10.1007/s11356-022-23539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The seasonal variations of biofilm communities in a municipal wastewater treatment plant were investigated using multi-omics techniques. The abundance of the main phyla of microorganisms varied with summer (July 2019) and winter (January 2019) samples considerably, the Bacteroidetes enriched in winter and Chloroflexi in summer. The results of metaproteomic and metagenomic showed that most of the functional microorganisms belonged to the Betaproteobacteria class, and the enrichment of Flavobacteria class in winter guaranteed the stability of denitrification performance to some extent. Seasonal variations affected the proteomic expression profiling, a total of 2835 differentially expressed proteins identified were significantly enriched in quorum sensing, two-component system, ribosome, benzoate degradation, butanoate metabolism, tricarboxylic acid cycle (TCA cycle), and cysteine and methionine metabolism pathways. With the expression of nitrogen metabolic proteins decreases in winter, the overall expression of denitrification-related enzymes in winter was much lower than that in summer, the nitrogen metabolism pathway varied significantly. Seasonal variations also induced the alteration of the biofilm metabolite profile; a total of 66 differential metabolites, 8 potential biomarkers, and 8 perturbed metabolic pathways such as TCA cycle were detected. It was found that most of the perturbed pathways are directly related to nitrogen metabolism, and several amino acids and organic acids associated with the TCA cycle were significantly perturbed, the accumulation of TCA cycle intermediates, ornithine, and L-histidine in winter might be conducive to resisting cold temperatures. Furthermore, the correlation between biofilm microbial communities and metabolites was identified by the combined analysis of metabolomic and metaproteomic. The differences of microbial community structure, function, and metabolism between winter and summer in a full-scale pre-denitrification biofilter were revealed for the first time, strengthening our understanding of the microbial ecology of biofilm communities.
Collapse
Affiliation(s)
- Lu Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Xiaofeng Zhang
- Qingdao Water Development Service Center, Qingdao, 266071, China
| | - Xuda Huang
- Qingdao Water Development Service Center, Qingdao, 266071, China
| | - Fuhao Wang
- Qingdao Water Affairs Group, Environmental Energy Co., Ltd, Qingdao, 266075, China
| | - Sifu Zhu
- Qingdao Haibo River Water Operation Co., Ltd, Qingdao, 266021, China
| | - Xueqiang Li
- Qingdao Haibo River Water Operation Co., Ltd, Qingdao, 266021, China
| | - Ying Guan
- Qingdao Haibo River Water Operation Co., Ltd, Qingdao, 266021, China
| |
Collapse
|
5
|
Jin L, Sun X, Ren H, Huang H. Biological filtration for wastewater treatment in the 21st century: A data-driven analysis of hotspots, challenges and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158951. [PMID: 36155035 DOI: 10.1016/j.scitotenv.2022.158951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Biological filtration has been widely used in wastewater treatment around the world, yet achieving satisfactory removal of pollutants remains a challenge due to the complexity of water pollution. In order to reveal the hotspots and trends of biological filtration from the perspective of research innovation, 5454 SCI papers and 14,287 patents collected from the Web of Science Core Collection and Derwent Innovation Index database were analyzed by visualization techniques. The results showed that China ranked first in the number of both papers and patents, while the USA and Japan contributed significantly in papers and patents, respectively. Co-occurrence analysis obtained the mapping knowledge domains and demonstrated distinct associations between contaminants ("nitrogen", "pharmaceuticals", "personal care products"), chemicals ("carbon", "activated carbon", "media"), process ("biodegradation", "adsorption" or "ozonation") and characteristics ("kinetics", "performance", "diversity"). Moreover, this review summarized the recent advances of biological filtration media, microorganism and combined process being applied. It was concluded that environmentally friendly biological filtration ("phytoremedi", "microalga", "recirculating aquaculture system"), bio-enhanced biological filtration ("bioaugment", "fungi", "low augment") and emerging pollutants ("emerging contamin", "antibiotic resistance gen", "organic micropollut", "trace organic chem") were the hotspots through data-driven analyses. Technology evolution path of biological filtration generally indicated the transition from conventional biological filtration for nitrogen and phosphorus removal to Fenton-biofiltration combined technology and finally to ozone-biological filtration. Furthermore, the technical innovation direction of the collaborative control of multi-media pollution, the low-carbon biological filtration and short-process technology was prospected. This work can serve as a quick reference for early-career researchers and industries working in the area of biological filtration.
Collapse
Affiliation(s)
- Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
6
|
Manirakiza B, Sirotkin AC. Bioaugmentation of nitrifying bacteria in up-flow biological aerated filter's microbial community for wastewater treatment and analysis of its microbial community. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Shifting from Conventional to Organic Filter Media in Wastewater Biofiltration Treatment: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biofiltration is a promising wastewater treatment green technology employed to remove various types of pollutants. The efficiency of biofiltration relies on biofilm, and its performance is significantly influenced by various factors such as dissolved oxygen concentration, organic loading rate, hydraulic retention time, temperature, and filter media selection. The existing biofilters utilize conventional media such as gravel, sand, anthracite, and many other composite materials. The material cost of these conventional filter materials is usually higher compared to using organic waste materials as the filter media. However, the utilization of organic materials as biofilter media has not been fully explored and their potential in terms of physicochemical properties to promote biofilm growth is lacking in the literature. Therefore, this review critically discusses the potential of shifting conventional filter media to that of organic in biofiltration wastewater treatment, focusing on filtration efficiency-influenced factors, their comparative filtration performance, advantages, and disadvantages, as well as challenges and prospective areas of organic biofilter development.
Collapse
|
8
|
Performances of simultaneous enhanced removal of nitrogen and phosphorus via biological aerated filter with biochar as fillers under low dissolved oxygen for digested swine wastewater treatment. Bioprocess Biosyst Eng 2021; 44:1741-1753. [PMID: 33792778 DOI: 10.1007/s00449-021-02557-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
This study aims to explore the feasibility of biochar as a carrier to improve the simultaneous removal of nitrogen and phosphorus in biological aerated filters (BAFs) for treating low C/N digested swine wastewater (DSW). Two similar BAFs (BAF-A with hydrophobic polypropylene resin as fillers and BAF-B with bamboo biochar as carrier) were developed for DSW treatment. Results showed that the NH4+-N, TN, and TP removal performances in BAF-B were higher than those in BAF-A. Carrier type had an obvious influence on the structures and diversity of the microbial population. The biochar carrier in BAF-B was conducive to the enrichment of the functional microorganisms and the increase of microbial diversity under high NH4+-N conditions. Microbial analysis showed that the genera Rhodanobacter (10.64%), JGI_0001001-h003 (14.24%), RBG-13-54-9 (8.87%), Chujaibacter (11.27%), and Ottowia were the predominant populations involved in nitrogen and phosphorus removal in the later stage of phase III in BAF-B. BAF with biochar as carrier was highly promising for TN and TP removal in low C/N and high NH4+-N DSW treatment.
Collapse
|
9
|
Tian L, Wang L. Multi-omics analysis reveals structure and function of biofilm microbial communities in a pre-denitrification biofilter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143908. [PMID: 33316516 DOI: 10.1016/j.scitotenv.2020.143908] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The highly complex microbial communities in biofilm play crucial roles in the pollutant removal performance of wastewater treatment plants (WWTPs). In the present study, using multi-omics analysis, we studied microbial structure, key enzymes, functional traits, and key metabolic pathways of pre-denitrification biofilter in an urban WWTP in China. The analysis results of metagenomic and metaproteomic showed that Betaproteobacteria and Flavobacteriia were dominant in biofilms. The integrated metagenomic and metaproteomic data showed that the expression of nitrogen metabolism genes was high, and the high proportion of denitrification module indicating that denitrification was the main nitrogen removal pathway. The most abundant denitrifying bacterial genera were: Dechloromonas, Acidovorax, Bosea, Polaromonas, and Chryseobacterium. And microorganisms with denitrification potential may not be able to denitrify in the actual operation of the filter. The integrated analysis of metaproteomic and metabolomic showed that there was a correlation between biofilm microorganisms and metabolites. Metabolomic analysis indicated that metabolic profiles of biofilms varied with layer height. This study provides the first detailed microbial communities and metabolic profiles in a full-scale pre-denitrification biofilter and clarifies the mechanism of denitrification.
Collapse
Affiliation(s)
- Lu Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
10
|
Montalvo S, Huiliñir C, Borja R, Sánchez E, Herrmann C. Application of zeolites for biological treatment processes of solid wastes and wastewaters - A review. BIORESOURCE TECHNOLOGY 2020; 301:122808. [PMID: 31987490 DOI: 10.1016/j.biortech.2020.122808] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
This review reports the use of zeolites in biological processes such as anaerobic digestion, nitrification, denitrification and composting, review that has not been proposed yet. It was found that aerobic processes (activated sludge, nitrification, Anammox) use zeolites as ion-exchanger and biomass carriers in order to improve the seattlebility, the biomass growth on zeolite surface and the phosphorous removal. In the case of anaerobic digestion and composting, zeolites are mainly used with the aim of retaining inhibitors such as ammonia and heavy metals through ion-exchange. The inclusion of zeolite effect on mathematical models applied in biological processes is still an area that should be improved, including also the life cycle analysis of the processes that include zeolites. At the same time, the application of zeolites at industrial or full-scale is still very scarce in anaerobic digestion, being more common in nitrogen removal processes.
Collapse
Affiliation(s)
- S Montalvo
- Universidad de Santiago de Chile, Ave. Lib. Bdo ÓHiggins 3363, Santiago de Chile, Chile
| | - C Huiliñir
- Universidad de Santiago de Chile, Ave. Lib. Bdo ÓHiggins 3363, Santiago de Chile, Chile.
| | - R Borja
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide - Edificio 46, Ctra. de Utrera, km. 1, 41013 Sevilla, Spain
| | - E Sánchez
- Ministerio de Ciencia y Tecnología, Calle 2 No 124 e/ 1ra y 3ra Miramar, La Habana, Cuba
| | - C Herrmann
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Alle 100, 14469 Potsdam, Germany
| |
Collapse
|
11
|
Zeng J, Chen S, Wan K, Li J, Hu D, Zhang S, Yu X. Study of biological up-flow roughing filters designed for drinking water pretreatment in rural areas: using ceramic media as filter material. ENVIRONMENTAL TECHNOLOGY 2020; 41:1256-1265. [PMID: 30265216 DOI: 10.1080/09593330.2018.1530304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Roughing filters have been successfully employed as a pretreatment method in rural water supply, but few studies have reported the performance of up-flow roughing filters (URFs) packed with ceramic media. In this study, two pilot-scale URFs filled with ceramic media were designed. Filter performance, height profiles and head loss development were fully investigated. The average DOC, UV254 absorbance, NH4+-N and total bacterial counts removal efficiencies of filters were found to be close to 8%, 10%, 70% and 0.6 log (75%), respectively. Both filters could remove about 60-90% of turbidity with influent turbidity ranging from 1 to 500 NTU and high removal efficiencies (∼60%) were achieved when influent turbidity was lower than 2.5 NTU at a hydraulic load up to 2 m h-1. Height profiles revealed that UV254 absorbance, NH4+-N and turbidity were primarily removed in the former part of filter columns and that the separated solids stored within 20 cm of ceramic media layer above the bottom contributed to over 90% of total head loss. Filter run times were estimated to be around 60-80 days with a maximum head loss of 30 cm and an average influent turbidity of 10 NTU. The results indicated that the two URFs, combining low-cost operation and simple maintenance with good performance, were well suited to small waterworks in rural areas.
Collapse
Affiliation(s)
- Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sheng Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jinmei Li
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, People's Republic of China
| | - Dong Hu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
| |
Collapse
|
12
|
Zhou H, Xu G. Biofilm characteristics, microbial community structure and function of an up-flow anaerobic filter-biological aerated filter (UAF-BAF) driven by COD/N ratio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134422. [PMID: 31806326 DOI: 10.1016/j.scitotenv.2019.134422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
The biofilm characteristics, microbial community structure and function in a lab-scale up-flow anaerobic filter-biological aerated filter (UAF-BAF) driven by COD/N ratio were investigated. Results showed that the TN removal rate of system reduced from 68.7% to 50.6% with COD/N ratio ranging from 10 to 3. Biofilm characteristics analysis indicated that the biomass, biofilm thickness, polysaccharide and protein contents in extracellular polymeric substance and dehydrogenase activity from biofilm in the UAF-BAF declined with the decrease of COD/N ratio. The biofilm structure visualized by confocal laser scanning microscopy displayed that the total cells and EPS content decreased as the COD/N ratio downshifted. 16S rRNA sequencing illustrated that Zoogloea and Pleomorphomonas were the major contributors to TN removal in the UAF, with dramatically decreasing abundance. Functional prediction indicated that the genes involved in nitrogen metabolism and nitrate reductase (EC 1.7.99.4) also decreased, which was responsible for the decrease of TN removal. This study provided insights into understanding of the biofilm structure and underlying ecological function in the UAF-BAF, which would help to regulate wastewater biofilm and improve process performance.
Collapse
Affiliation(s)
- Hexi Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Ren J, Cheng W, Wan T, Wang M, Meng T, Lv T. Characteristics of the extracellular polymeric substance composition in an up-flow biological aerated filter reactor: The impacts of different aeration rates and filter medium heights. BIORESOURCE TECHNOLOGY 2019; 289:121664. [PMID: 31229858 DOI: 10.1016/j.biortech.2019.121664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
In this study, the compositional characteristics of extracellular polymeric substances (EPS) were systematically explored to reveal their relationship with microbial community under different conditions in an up-flow biological aerated filter reactor. The aeration rates had a significant positive correlation (0.898 ≤ R ≤ 0.979) with the tightly bound (TB)-EPS contents, but basically showed an opposite trend (R < -0.631) with the loosely bound (LB)-EPS. Moreover, the filter medium heights also affected EPS distribution. The microbial biofilm produced more LB-EPS and TB-EPS to withdraw from the extreme environment. Five fluorescent substances were identified in the EPS by EEM-PARAFAC modeling; namely, two protein-like components (protein-like C1 and tryptophan-like C2) and three humic-like components (UVA marine humic-like C3, hydrophobic humic acid-like C4, and humic acid-like C5). Under different conditions, the relative abundance of Proteobacteria and Nitrospirae had a significant positive correlation with C5 and C4, respectively. These results demonstrated that microbial community distribution could affect EPS composition.
Collapse
Affiliation(s)
- Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China.
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Ting Meng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| | - Taotao Lv
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, NO. 5, South Jinhua Road, Xi'an, Shaanxi 710048, PR China
| |
Collapse
|
14
|
Wang JB, Li X, Zhou ZW, Fan XY. Bacterial communities, metabolic functions and resistance genes to antibiotics and metals in two saline seafood wastewater treatment systems. BIORESOURCE TECHNOLOGY 2019; 287:121460. [PMID: 31121446 DOI: 10.1016/j.biortech.2019.121460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the bacterial communities, metabolic functions, antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in two alternating anaerobic/aerobic biological filters (A/O-BFs) treating saline seafood wastewater (SSW). Firmicutes was the most abundant phylum in both systems, and halophilic and alkaliphilic bacteria were largely enriched. 15 potential pathogens were obtained. Metabolism was the predominant bacterial function. 49 ARGs and 7 MRGs were detected, and the total abundance of ARGs increased while that of MRGs decreased. Clear shifts in bacterial structure and function, ARGs and MRGs were observed in both systems and at different heights. Co-occurrence of ARGs and MRGs and their hosts were identified. ARGs and MRGs mainly negatively correlated with bacterial functions, which were also the important contributors to shifts in bacterial communities and functions. This study highlights the importance of investigating ARGs and MRGs in SSW treatment systems and their complex interactions with bacterial communities and functions.
Collapse
Affiliation(s)
- Jia-Bin Wang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhi-Wei Zhou
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
15
|
Ji G, Zhou Y, Zhou B, Yun Y, Chen Z, Liu H. Combined UMBAF-MBAF process treating detergent wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:672-678. [PMID: 30793418 DOI: 10.1002/wer.1091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
A combined process of the upflow multimedium biological aerated filter (UMBAF) and the multimedia biological aerated filter (MBAF) treating detergent wastewater was investigated in this study. Results showed that the optimal filtration rate of the combined system was 1.4 m/hr while the optimized performance was observed at air to water ratio of 2:1. The average removal rate of chemical oxygen demand (COD), linear alkyl benzene sulfonate sodium (LAS), and total phosphate (TP) was up to 91.4%, 88.5%, and 40%, respectively, while the average effluent concentrations of COD, LAS, and TP under stable operation states were 35.0 mg/L, 7.0 mg/L, and 4.4 mg/L, respectively. UMBAF played a major role in TP removal; the removal of COD in the combined UMBAF and MBAF process was consistent with the general formula C = C0 e -(ah + b) , while the kinetic model of LAS removal in the combined UMBAF and MBAF process could be expressed by L = L0 e-(mh + n) . The combined UMBAF-MBAF process provides a promising technology for the treatment of detergent wastewater. The kinetic model of LAS removal in the UMBAF and MBAF units is helpful for the prediction of the treatment efficiency of organic pollutants. PRACTITIONER POINTS: A novel UMBAF-MBAF process was developed treating detergent wastewater. The average removal rate of COD, LAS, and TP by the combined process was up to 91.4%, 88.5%, and 40%, respectively. Kinetic models for the UMBAF-MBAF process were investigated.
Collapse
Affiliation(s)
- Guixia Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanhong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Buxuan Zhou
- Kolbenschmidt Pierburg Shanghai Nonferrous Components Co. Ltd, Shanghai, China
| | - Yunbo Yun
- Research Institute for Water and Waste Management at RWTH Aachen University, Aachen, Germany
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Wang Y, Wang WH, Yan FL, Ding Z, Feng LL, Zhao JC. Effects and mechanisms of calcium peroxide on purification of severely eutrophic water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2796-2806. [PMID: 30373057 DOI: 10.1016/j.scitotenv.2018.10.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
In consideration of severe eutrophication of scenic water caused by pollutants released from sediments in summer, calcium peroxide (CaO2) was adopted as the slow release peroxide to improve the water quality in a field experiment of 600 m2. The effect of CaO2 on the overlying water, interstitial water, sediment, and sediment microorganisms of scenic water was studied. Results for two months indicated that the dissolved oxygen (DO) concentration of the overlying water in the test zone was 3.78 times that in the control zone; the oxidation-reduction potential (ORP) in the overlying water and sediment increased significantly (p = 0.002 and p = 0). Meanwhile, CaO2 could effectively inhibit the release of nitrogen (N) and phosphorus (P) from the sediment and could obviously reduce the concentrations of N and P in the overlying water by enhancing the microbiological action. Moreover, the average concentrations of total nitrogen and total phosphorus in the overlying water of the test zone were 46.27% and 50.51% of those in control zone, respectively, and the concentrations of N and P in the interstitial water decreased during the entire experiment. In addition, CaO2 decreased the relative abundance of anaerobic bacteria in the sediment, whereas it increased that of aerobic bacteria and promoted the appearance of the functional bacteria, such as Nitrospirae and Thermodesulfoba. In conclusion, CaO2 can improve the DO and ORP in the eutrophic water effectively and change the microbial community in the sediment to a certain extent, thereby controlling the pollutants released from the sediment and reducing the N and P concentrations in the overlying water. Thus, CaO2 can effectively realize the purification and restoration of the severely eutrophic scenic water.
Collapse
Affiliation(s)
- Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China.
| | - Wen-Huai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China.
| | - Fei-Long Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China.
| | - Zhuo Ding
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China.
| | - Lin-Lin Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China.
| | - Jing-Chan Zhao
- College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
17
|
Chen H, Liu Y, Xu X, Sun M, Jiang M, Xue G, Li X, Liu Z. How does iron facilitate the aerated biofilter for tertiary simultaneous nutrient and refractory organics removal from real dyeing wastewater? WATER RESEARCH 2019; 148:344-358. [PMID: 30391863 DOI: 10.1016/j.watres.2018.10.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/30/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Textile dyeing wastewater is characterized by low biodegradability and high nitrogen strength, which is difficult to meet the increasingly stringent discharge requirements. Therefore, the tertiary nutrient and refractory organics removal is considered and aerated biofilter is often adopted. However, the aerobic condition and carbon source shortage restrict tertiary biological nitrogen removal. In this study, iron scrap was introduced as the filter medium to enhance the pollutant removal capacity, and three aerobic biofilters were constructed. Biofilter Fe-CE was filled with iron scrap and ceramisite; biofilter Fe-AC was added with iron scrap and granular activated carbon, and biofilter CE only had ceramisite to pad as control system. After the biofilters were acclimatized by synthetic wastewater and actual dyeing wastewater, the optimal operation parameters based on nitrogen removal were determined as pH 7, gas-water ratio 5:1, hydraulic retention time 8 h and C/N ratio 8.5:1. The iron scraps improved total nitrogen (TN) removal significantly, with TN removal efficiency of 68.7% and 57.3% in biofilter Fe-AC and biofilter Fe-CE, comparing with biofilter CE of 29.9%. Additionally, phosphorus and COD had better removal performance as well when iron scrap existed. Further investigation interpreted the reason for iron's facilitating effect on tertiary nutrient and refractory organics removal. The introduction of iron scrap made the habitat conditions such as pH values, DO concentrations and biomass contents inside the biofilters change towards the direction beneficial for pollutant elimination especially for nitrogen removal. In iron containing biofilters, the majority of nitrogen, phosphorus and organic pollutants were removed in the iron scrap layers, and more pollutants types appeared, implying that iron triggered pollutants to go through more diverse degradation or transformation pathways. Moreover, the phylum Proteoabcteria dominated in samples of ceramisite-containing biofilters, with abundances more than 40%. The iron scrap existence increased the abundances of phyla Bacteroidetes and Firmicutes, and triggered higher abundance of denitrification bacteria.
Collapse
Affiliation(s)
- Hong Chen
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China; Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng, 224000, China
| | - Yunfan Liu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Xiaoqiang Xu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Min Sun
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Mingji Jiang
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Gang Xue
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 200000, China.
| | - Xiang Li
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China; Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng, 224000, China
| | - Zhenhong Liu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| |
Collapse
|
18
|
Effect of Aeration Rates and Filter Media Heights on the Performance of Pollutant Removal in an Up-Flow Biological Aerated Filter. WATER 2018. [DOI: 10.3390/w10091244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biological aerated filter (BAF) is an effective biological treatment technology which removes the pollutants in municipal wastewater secondary treatment. However, we still know little about the interaction between the pollutants removal and microbes within the BAF. In this study, we used an up-flow BAF (UBAF) reactor to investigate the relationships between the pollutants removal and microbial community structure at different aeration rates and filter media heights. The microbial community of biofilm was analyzed by Illumina pyrosequencing. Our results showed that the UBAF achieved a better removal efficiency of chemical oxygen demand (COD), NH4+-N, NO3−-N, and total phosphorus (TP) at an aeration rate of 65 L/h. In addition, the COD and NH4+-N removal mainly occurred at 0–25 cm height of filter media. The microbial community structure in the UBAF demonstrated that the relative abundance of the Planctomycetes and Comamonadaceae at 10 cm height of filter media were 11% and 48.1%, respectively, proportions significantly higher than those under others treatments. Finally, the changes in relative abundance of Proteobacteria, Planctomycetes, and Nitrospirae likely explained the mechanism of nitrogen and phosphorus removal. Our results showed that suitable conditions could enhance the microbial community structure to achieve a high pollutants removal in the UBAF.
Collapse
|
19
|
Nomoto N, Ali M, Jayaswal K, Iguchi A, Hatamoto M, Okubo T, Takahashi M, Kubota K, Tagawa T, Uemura S, Yamaguchi T, Harada H. Characteristics of DO, organic matter, and ammonium profile for practical-scale DHS reactor under various organic load and temperature conditions. ENVIRONMENTAL TECHNOLOGY 2018; 39:907-916. [PMID: 28387149 DOI: 10.1080/09593330.2017.1316319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Profile analysis of the down-flow hanging sponge (DHS) reactor was conducted under various temperature and organic load conditions to understand the organic removal and nitrification process for sewage treatment. Under high organic load conditions (3.21-7.89 kg-COD m-3 day-1), dissolved oxygen (DO) on the upper layer of the reactor was affected by organic matter concentration and water temperature, and sometimes reaches around zero. Almost half of the CODCr was removed by the first layer, which could be attributed to the adsorption of organic matter on sponge media. After the first layer, organic removal proceeded along the first-order reaction equation from the second to the fourth layers. The ammoniacal nitrogen removal ratio decreased under high organic matter concentration (above 100 mg L-1) and low DO (less than 1 mg L-1) condition. Ammoniacal nitrogen removal proceeded via a zero-order reaction equation along the reactor height. In addition, the profile results of DO, CODCr, and NH3-N were different in the horizontal direction. Thus, it is thought the concentration of these items and microbial activities were not in a uniform state even in the same sponge layer of the DHS reactor.
Collapse
Affiliation(s)
- Naoki Nomoto
- a Department of Energy and Environment Science , Nagaoka University of Technology , Niigata , Japan
| | - Muntjeer Ali
- b New Industry Creation Hatchery Center , Tohoku University , Sendai , Japan
| | - Komal Jayaswal
- c Department of Civil Engineering , Indian Institute of Technology Roorkee , Roorkee , India
| | - Akinori Iguchi
- d Faculty of Applied Life Sciences , Niigata University of Pharmacy and Applied Life Sciences , Niigata , Japan
| | - Masashi Hatamoto
- e Department of Civil and Environmental Engineering , Nagaoka University of Technology , Niigata , Japan
| | - Tsutomu Okubo
- f Department of Civil Engineering , National Institute of Technology, Kisarazu College , Kisarazu , Japan
| | - Masanobu Takahashi
- b New Industry Creation Hatchery Center , Tohoku University , Sendai , Japan
| | - Kengo Kubota
- g Department of Civil and Environmental Engineering , Tohoku University , Sendai , Japan
| | - Tadashi Tagawa
- h Department of Civil Engineering , National Institute of Technology, Kagawa College , Takamatsu , Japan
| | - Shigeki Uemura
- f Department of Civil Engineering , National Institute of Technology, Kisarazu College , Kisarazu , Japan
| | - Takashi Yamaguchi
- i Department of Science of Technology Innovation , Nagaoka University of Technology , Niigata , Japan
| | - Hideki Harada
- b New Industry Creation Hatchery Center , Tohoku University , Sendai , Japan
| |
Collapse
|
20
|
Chen J, Liu YS, Zhang JN, Yang YQ, Hu LX, Yang YY, Zhao JL, Chen FR, Ying GG. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics. BIORESOURCE TECHNOLOGY 2017; 238:70-77. [PMID: 28432952 DOI: 10.1016/j.biortech.2017.04.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/12/2023]
Abstract
This study aimed to investigate the removal efficiency and mechanism for antibiotics in swine wastewater by a biological aerated filter system (BAF system) in combination with laboratory aerobic and anaerobic incubation experiments. Nine antibiotics including sulfamonomethoxine, sulfachloropyridazine, sulfamethazine, trimethoprim, norfloxacin, ofloxacin, lincomycin, leucomycin and oxytetracycline were detected in the wastewater with concentrations up to 192,000ng/L. The results from this pilot study showed efficient removals (>82%) of the conventional wastewater pollutants (BOD5, COD, TN and NH3-N) and the detected nine antibiotics by the BAF system. Laboratory simulation experiment showed first-order dissipation kinetics for the nine antibiotics in the wastewater under aerobic and anaerobic conditions. The biodegradation kinetic parameters successfully predicted the fate of the nine antibiotics in the BAF system. This suggests that biodegradation was the dominant process for antibiotic removal in the BAF system.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Sheng Liu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yong-Qiang Yang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Li-Xin Hu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuan-Yuan Yang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian-Liang Zhao
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fan-Rong Chen
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|