1
|
Ma C, Zeng W, Miao H, Li S, Peng Y. Combination of sulfide-driven partial denitrification with anammox enhanced by zeolite powder for autotrophic nitrogen and sulfide removal from wastewater. ENVIRONMENTAL RESEARCH 2023; 237:116906. [PMID: 37595825 DOI: 10.1016/j.envres.2023.116906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Sulfide-driven partial denitrification and anaerobic ammonia oxidizing (anammox) (SPDA) is a high-efficiency technology to achieve simultaneous nitrogen and sulfide removal. Nitrite accumulation from sulfide-driven partial denitrification is the key to achieve SPDA. Zeolite powder was added to strengthen the competition of anammox bacteria against nitrite. The nitrogen removal rate (NRR) and partial denitrification efficiency in reactor was 5.18 kg-N m-3d-1 and 92.3% during 180 days of operation, higher than those without zeolite powder, indicating an improving contribution of zeolite powder. Metabolomics analysis revealed zeolite powder addition enhanced the metabolisms of amino acids, nicotinate and porphyrin through increasing glutamate content, and improved EPS secretion, heme c content and particle size. Besides, high ammonia enriched by zeolite powder was conducive to improve anammox activity and NRR. This study provides the metabolic insights into the mechanism of zeolite powder enhancing SPDA, which is meaningful towards overcoming the limitations in practical application of SDPA.
Collapse
Affiliation(s)
- Chenyang Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Haohao Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Shuangshuang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Li L, Bian D, Wang Q, Xue C, Zhang Q, Zhang SM. Performance of anammox enchanced by pulsed electric fields under added organic carbon sources using integrated network and metagenomics analyses. BIORESOURCE TECHNOLOGY 2023; 380:129116. [PMID: 37137447 DOI: 10.1016/j.biortech.2023.129116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
This paper aims to investigate the function of a pulsed electric field (PEF) in the anaerobic ammonia oxidation (anammox) process after adding certain chemical oxygen demand (COD) through integrated network and metagenomics analyses. The findings showed that the presence of COD was detrimental to anammox, but PEF could significantly reduce the adverse effect. The total nitrogen removal in the reactor for applying PEF was 16.99% higher on average than the reactor for only dosing COD. Additionally, PEF upgraded the abundance of anammox bacteria subordinate to the phylum Planctomycetes by 9.64%. The analysis of molecular ecological networks promulgated that PEF resulted in an increase in network scale and topology complexity, thereby boosting the potential collaboration of the communities. Metagenomics analyses demonstrated that PEF dramatically promoted anammox central metabolism in the presence of COD, specifically enhancing pivotal N functional genes (hzs, hdh, amo, hao, nas, nor and nos).
Collapse
Affiliation(s)
- Liang Li
- College of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Di Bian
- College of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| | - Qichun Wang
- College of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - ChengYao Xue
- College of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Qiuying Zhang
- College of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Shi Meng Zhang
- College of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|
3
|
Jiang M, Ji S, Wu R, Yang H, Li YY, Liu J. Exploiting refractory organic matter for advanced nitrogen removal from mature landfill leachate via anammox in an expanded granular sludge bed reactor. BIORESOURCE TECHNOLOGY 2023; 371:128594. [PMID: 36634882 DOI: 10.1016/j.biortech.2023.128594] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Anammox is an efficient low-carbon nitrogen removal technology for mature landfill leachate (MLL). However, it produces 11 % nitrate theoretically, which needs further removal. In this study, the mechanisms of exploiting refractory organic matter (ROM) from an MLL as an inner carbon source for advanced nitrogen removal via anammox were systematically analyzed, and the effects of hydraulic retention time on nitrogen and ROM removal/utilization were investigated. Without any external carbon source, a total nitrogen and organic carbon removal efficiency of 94.50 % and 27.12 %, respectively, were achieved, with a nitrogen loading rate of 2.4 kg N/(m3·d). The abundances of norank_f_norank_o_SBR1031, OLB13, and norank_f_A4b, which had the capacity to degrade ROM, increased from 21.63 % to 49.21 %. This study reveals that the ROM in an MLL can be exploited for synchronous advanced nitrogen and organic matter removal.
Collapse
Affiliation(s)
- Mengting Jiang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Ruixin Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Huan Yang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
4
|
Wang C, Qiao S, Zhou J. Strategy of nitrate removal in anaerobic ammonia oxidation-dependent processes. CHEMOSPHERE 2023; 313:137586. [PMID: 36529177 DOI: 10.1016/j.chemosphere.2022.137586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic ammonium oxidation (anammox), a microbial process that is considered as a low-cost and high efficient wastewater treatment, has received extensive attention with an attractive application prospect. The anammox process reduces nitrite (NO2-) to nitrogen gas (N2) with ammonium (NH4+) as the electron donor. However, some nitrate (NO3-) equivalent to 11% of total nitrogen (TN) is generated in this process, which limits the development of anammox. To overcome this problem, many efforts have been made in this regard, mainly combining with other biological treatment methods (denitrification, denitrifying anaerobic methane oxidation, etc.), introducing the substance into anammox process, etc. Herein, we summarized a detailed review of previous researches on the removal of NO3- in the anammox-dependent processes. It is hoped that this review could serve as valuable guidance in future research and practical applications of anammox.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Yang Y, Long Y, Xu J, Liu S, Liu L, Liu C, Tian Y. Achieving robust and highly efficient nitrogen removal in a mainstream anammox reactor by introducing low concentrations of readily biodegradable organics. Front Microbiol 2023; 14:1186819. [PMID: 37187540 PMCID: PMC10175599 DOI: 10.3389/fmicb.2023.1186819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
In this study, an anammox reactor was operated to treat low-strength (NH4+ + NO2-, 25-35 mg/L) wastewater without (phase I) or with (phase II) readily biodegradable chemical oxygen demand (rbCOD). In phase I, although efficient nitrogen removal was achieved at the beginning, nitrate accumulated in the effluent after long-term operation (75 days), resulting in a decrease in the nitrogen removal efficiency to 30%. Microbial analysis revealed that the abundance of anammox bacteria decreased from 2.15 to 1.78%, whereas that of nitrite-oxidizing bacteria (NOB) increased from 0.14 to 0.56%. In phase II, rbCOD, in terms of acetate, was introduced into the reactor with a carbon/nitrogen ratio of 0.9. The nitrate concentration in the effluent decreased within 2 days. Advanced nitrogen removal was achieved in the following operation, with an average effluent total nitrogen of 3.4 mg/L. Despite the introduction of rbCOD, anammox pathway still dominated to the nitrogen loss. High-throughput sequencing indicated that high anammox abundance (2.48%) further supports its dominant position. The improvement in nitrogen removal was attributed to the enhanced suppression of NOB activity, simultaneous nitrate polishing through partial denitrification and anammox, and promotion of sludge granulation. Overall, the introduction of low concentrations of rbCOD is a feasible strategy for achieving robust and efficient nitrogen removal in mainstream anammox reactors.
Collapse
Affiliation(s)
- Yandong Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
- Engineering Research Center of Concrete Technology Under Marine Environment, Ministry of Education, Qingdao, China
- *Correspondence: Yandong Yang,
| | - Yanan Long
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Jiarui Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shichong Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Lei Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yong Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
6
|
Fofana R, Huynh H, Jones K, Delgado Vela J, Long C, Chandran K, Bott C, Akyon B, Liu W, deBarbadillo C, De Clippeleir H. Mainstream partial denitrification-anammox in sand and expanded clay deep-bed polishing filters under practical loading rates and backwashing conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10728. [PMID: 35621228 DOI: 10.1002/wer.10728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
This study focused on evaluating the feasibility of expanded clay and sand as media types for mainstream partial denitrification-anammox (PdNA) in deep-bed single-media polishing filters under nitrogen and solids loading rates as well as backwash conditions similar to conventional denitrification filters. The surface roughness and iron content of the expanded clay were hypothesized to allow for enhanced anammox retention, nitrogen removal rates, and runtimes. However, under the tested loading rates and backwash conditions, no clear benefit of expanded clay was observed compared with conventional sand. This study showed the feasibility of PdNA in filters with both sand and expanded clay with PdN efficiencies of 76% and 77%, PdNA rates of 840 and 843 g N/m3 /d and TIN removal rates of 960 and 964 g N/m3 /d, respectively. Glycerol demands were 1.5-1.6 g COD added per g TIN removed , thus indicating potential carbon savings up to 75% compared with conventional denitrification. Overall, this study showed for the first time PdNA filters performing at nitrogen removal rates double that of previous PdNA studies under realistic conditions while providing insights into the media choice and backwashing conditions. Future research on expanded clay backwash conditions is needed to provide its full potential in PdNA filters. PRACTITIONER POINTS: Hydraulic and TSS loading rates similar to conventional denitrification can be applied in PdNA filters. Conventional sand can be used when retrofitting conventional denitrification filters into PdNA filters. Carbon savings up to 75% can be achieved with glycerol when retrofitting conventional filters into PdNA filters.
Collapse
Affiliation(s)
- Rahil Fofana
- DC Water and Sewer Authority, Washington, DC, USA
- Howard University, Washington, DC, USA
| | - Huu Huynh
- DC Water and Sewer Authority, Washington, DC, USA
| | | | | | | | | | - Charles Bott
- Hampton Road Sanitation District, Virginia Beach, Virginia, USA
| | | | - Wenjun Liu
- Xylem Inc, Zelienople, Pennsylvania, USA
| | | | | |
Collapse
|
7
|
Li J, Gao F, Chen X, Zhang Y, Dong H. Insights into nitrogen removal from seawater-based wastewater through marine anammox bacteria under ampicillin stress: Microbial community evolution and genetic response. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127597. [PMID: 34782200 DOI: 10.1016/j.jhazmat.2021.127597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Global spread of ampicillin (AMP) in the aquatic environment have attracted much attention recently. Marine anammox bacteria (MAB) have potentials in saline wastewater treatment due to their good salt tolerance. However, to date, the effect resulting from AMP on MAB is still unknown. Herein, the effect of AMP on MAB, involving microbial community evolution and genetic response, was investigated for the first time. A lab-scale reactor inoculated by MAB sludge was operated under saline condition (35 g/L) and AMP stress of different gradients. Within 200 cycles, nitrogen removal performance was monitored and sludge samples were withdrawn for high-throughput sequencing analyses and qPCR. The results confirmed that the nitrogen removal capacity of MAB declined with increasing AMP dosage, and almost collapsed at 300 mg/L AMP. The total nitrogen removal rate and specific anammox activity finally dropped to 0.17 kg N m-3 d-1 and 101.86 mg N g-1VSS d-1, respectively. Pseudoalteromonas (38.13%) dominated the reactor on Cycle 190, which formed a new symbiosis with MAB. And the emergence of oleophilic bacteria such as Colwellia (2.53%) was also observed. Moreover, antibiotic resistance genes were detected with increased abundance and diversity, indicating the AMP dosing significantly promoted microbial community evolution and genetic response.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fei Gao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiuqin Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yulong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huiyu Dong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Zhu Z, Zhang Y, Li J, Dong H. Insight into quorum sensing and microbial community of an anammox consortium in response to salt stress: From "Candaditus Brocadia" to "Candaditus Scalindua". THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148979. [PMID: 34274671 DOI: 10.1016/j.scitotenv.2021.148979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The shift of microbial community and signaling molecules release were studied to explore the potential mechanism of anammox consortium under salt stress. Due to increased salinity, the abundance of "Candidatus Brocadia" decreased from 29.5% to 1.9%. "Candidatus Brocadia" was reduced by the salinity shock. Besides, "Candidatus Scalindua", marine anammox bacteria, was detected at 18 g L-1 NaCl and dominated the reactor. Principle coordinates analysis further proved that salinity was the driving force on the distribution and diversity of anammox consortium. Also, quorum sensing feedback mechanism of anammox bacteria under salt stress was investigated for the first time. The concentration of N-(3-oxohexanoyl)-DL-homoserine lactone (3OC6-HSL) increased from 0.27 ± 0.02 to 1.24 ± 0.09 μM at 7 to 9 g L-1 NaCl. The concentration of 3OC6-HSL maintained at a high level at 9 to 12 g L-1 NaCl. Nacylated-l-homoserine lactones (AHLs)-mediated QS became more active and then improved the coordinated interaction in anammox consortium. High concentration of AHLs promoted the bacteria to produce more extracellular polymeric substances, which increased the bacterial tolerance to salt stress.
Collapse
Affiliation(s)
- Zebang Zhu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yulong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Zhou S, Zhang Z, Sun Z, Song Z, Bai Y, Hu J. Responses of simultaneous anammox and denitrification (SAD) process to nitrogen loading variation: Start-up, performance, sludge morphology and microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148911. [PMID: 34328926 DOI: 10.1016/j.scitotenv.2021.148911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The effects of loading variation on the efficiency, EPS, sludge morphology and microbial population of simultaneous anammox and denitrification (SAD) were thoroughly investigated with the low-abundance SAD sludge. Results indicated that the first stage lasted the longest (33d), and the average removal rate of TN can be maintained above 95%. The specific anammox activity (SAA), specific denitrification activity and PN/PS continued to increase, but the excessive loading caused the effluent to deteriorate rapidly, and SAA and PN/PS also decreased slightly, but it could be recovered quickly. The contribution rate of anammox and denitrification to N removal reached 87.6% and 12.4% eventually, respectively. The abundance of AnAOB was 10.68%-18.01%, 9.01%-15.54%, 5.74%-12.88% in the upper, middle and lower layers, respectively. Candidatus Kuenenia was always the dominant AnAOB, especially after high loading inhibition. The abundance of denitrifying bacteria (mainly Bacillus, Comamonas and Denitratisoma) gradually became the highest.
Collapse
Affiliation(s)
- Shun Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Zhulong Sun
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Zhuangzhuang Song
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiawei Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
10
|
Yin S, Li J, Dong H, Qiang Z. Unraveling the nitrogen removal properties and microbial characterization of "Candidatus Scalindua"-dominated consortia treating seawater-based wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147470. [PMID: 33975101 DOI: 10.1016/j.scitotenv.2021.147470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
"Candidatus Scalindua", as known as marine anammox bacteria (MAB), was engineered to remove nitrogen from seawater-based wastewater (SWW). In this study, "Candidatus Scalindua" was successfully enriched within 106 days with marine sediments as inoculated sludge. The operating temperature was 20 ± 2 °C, and influent pH was 7.5 ± 0.1. Ammonia (NH4+-N) removal rate (ARR) was 0.53 kg/(m3·d) with the NH4+-N loading rate of 0.68 kg/(m3·d), and nitrite (NO2--N) removal rate (NRR) was 0.57 kg/(m3·d) at 0.89 kg/(m3·d) NO2--N loading rate. Nitrogen removal was negatively affected at an influent NO2- above 224 mg/L, which decreased the ARR and NRR to 0.36 and 0.31 kg/(m3·d), respectively. The genus "Ca. Scalindua" dominated the reactor, and it synergistically coexisted with Marinicella to achieve efficient nitrogen removal. This work would help to better understand the nitrogen removal properties and microbial characterization of MAB in SWW wastewater treatment under low temperature.
Collapse
Affiliation(s)
- Shuyan Yin
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Chen H, Tu Z, Wu S, Yu G, Du C, Wang H, Yang E, Zhou L, Deng B, Wang D, Li H. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. CHEMOSPHERE 2021; 278:130436. [PMID: 33839386 DOI: 10.1016/j.chemosphere.2021.130436] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 05/05/2023]
Abstract
To solve the bottleneck of the unstable accumulation of nitrite in the partial nitrification (PN)-anammox (AMX) in municipal wastewater treatment, a novel process called partial denitrification (PD)-AMX has been developed. PD-AMX, which is known for cost-efficiency and environmental friendliness, has currently exhibited a promising potential for the removal of biological nitrogen from municipal wastewater and has attracted much research interest regarding its process mechanisms, as well as its practical applications. Here, we review the recent advances in the PD process and its coupling to the anammox process, including the development, basic principles, main characteristics, and critical process parameters of the stable operation of the PD-AMX process. We also explore the microbial community and its characteristics in the system and summarize the knowledge of the dominant bacteria to clarify the key factors affecting PD-AMX. Then, we introduce the engineering feasibility and economic feasibility as well as the potential challenges of the process. The induction and implementation of partial denitrification and maintenance of mainstream anammox are critical issues to be urgently solved. Meanwhile, the implementation of a full mainstream anammox application remains burdensome, while the mechanism of partial denitrification coupled to anammox needs to be further studied. Additionally, stable operation performance and process control1 methods need to be optimized or developed for the PD-AMX system for better engineering practice. This review can help to accelerate the research and application of the PD-AMX process for municipal wastewater treatment.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Guanlong Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Chunyan Du
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Lu Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Bin Deng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
12
|
Li D, Wei Z, Li S, Wang W, Zeng H, Zhang J. Operational mode affects the role of organic matter in granular anammox process. BIORESOURCE TECHNOLOGY 2021; 336:125337. [PMID: 34087731 DOI: 10.1016/j.biortech.2021.125337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
In the presence of organic matter, the granular anammox system under sequencing batch mode showed more robust anammox performance than that under completely mixed mode, which was attributed to the better biomass retention with high settling ability and stability of granular sludge. Based on the specific anammox activity test, stratified and mixed distribution of heterotrophic bacteria was found under completely mixed and sequencing batch mode, respectively. The stratified microbial distribution resulted in low enzyme activity of anammox bacteria and sludge disintegration by hindering substrate transfer with a large accumulation of EPS on the granular surface. Whereas the heterotrophic bacteria mixed in granules (mixed microbial distribution) act as a "skeleton", which increased the particle size, density, and stability of granular sludge. Compared with biokinetic-based selection, diffusion-based selection with high substrate penetration depth more likely resulted in the mixed granular structure and strong resistance to organic inhibition under sequencing batch mode.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Wenqiang Wang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Guo C, Qi L, Bai Y, Yin L, Li L, Zhang W. Geochemical stability of zero-valent iron modified raw wheat straw innovatively applicated to in situ permeable reactive barrier: N 2 selectivity and long-term denitrification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112649. [PMID: 34425538 DOI: 10.1016/j.ecoenv.2021.112649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The zero-valent iron (ZVI) modified wheat straw materials are widely used for treating groundwater by permeable reactive barrier (PRB). We report the performance of a field-scale PRB filled with ZVI modified wheat straw materials for nitrate (NO3-)-contaminated groundwater. In lab-scale PRB filled with ZVI modified wheat straw material, NO3- concentration entering the PRB was varied (27.80-59.86 mg L-1) according to the in situ NO3- contamination. A stable NO3- removal rate of 90% was achieved at a controlled hydraulic retention time of 22 days, together with a proportion of denitrifying bacteria up to 34.37%. The field-scale PRB filled with ZVI modified wheat straw material was successful at removing NO3- from groundwater (removal percentages ≥60%) at a groundwater flow rate of 0.01 m3 d-1. Monitoring of groundwater within this PRB provided evidences that the nitrogen gas (N2) selectivity increased with lower ammonia (NH4+) generated from ZVI reduction of NO3-, and few emission of NO2- present due to denitrification capacity in this PRB. The results are finally compared with the few others reported existing PRBs for nitrate-contaminated groundwater worldwide, and demonstrated that the ZVI modified wheat straw material would be an effective fillings for field PRB to remediate groundwater.
Collapse
Affiliation(s)
- Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Liang Qi
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Ying Bai
- School of Earth Science and Engineering, Nanjing University, 210023 Nanjing, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, 210023 Nanjing, China
| | - Lin Yin
- School of Earth Science and Engineering, Nanjing University, 210023 Nanjing, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, 210023 Nanjing, China
| | - Ling Li
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Wen Zhang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
14
|
Jiang H, Wang Z, Ren S, Qiu J, Li X, Peng Y. Culturing sludge fermentation liquid-driven partial denitrification in two-stage Anammox process to realize advanced nitrogen removal from mature landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125568. [PMID: 33773256 DOI: 10.1016/j.jhazmat.2021.125568] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The two-stage partial nitrification (PN)-Anammox process, during long term treatment of high-ammonia nitrogen leachate, faces challenges such as the adaptation of nitrite oxidation bacteria (NOB) and failure of real-time control of pH. Resultant instabilities including NH4+-N and NO3--N accumulation were overcome by culturing sludge fermentation liquid (SFL)-driven partial denitrification (PD) in situ in the Anammox process. Biodegradation of slowly biodegradable organics (SBO) in SFL created organics restriction condition, which limited the activity of denitrification bacteria and achieved its balance with Anammox bacteria. Produced NO3--N is reduced to NO2--N through PD, which further improved the removal of NH4+-N through Anammox. NO2--N was utilized timely by Anammox bacteria, which avoid further reduction of NO2--N to N2, and result in a high nitrate to nitrite transformation ratio (NTR) of 93.3%. Satisfactory nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of 99.6% and 822.0 ± 9.0 g N/(m3∙d) were obtained, respectively. Key genera related to degradation of SBO, PD and Anammox were enriched. The value of narG/(nirK+nirS) increased from 0.05 on day 1-0.15 on day 250. Combining SFL-driven PD with two-stage Anammox process provided a novel insight for applying this process to realize advanced nitrogen removal in practical engineering.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Jagaba AH, Kutty SRM, Lawal IM, Abubakar S, Hassan I, Zubairu I, Umaru I, Abdurrasheed AS, Adam AA, Ghaleb AAS, Almahbashi NMY, Al-Dhawi BNS, Noor A. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111946. [PMID: 33486234 DOI: 10.1016/j.jenvman.2021.111946] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/06/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Landfill has become an underlying source of surface and groundwater pollution if not efficiently managed, due to the risk of leachate infiltration into to land and aquifers. The generated leachate is considered a serious environmental threat for the public health, because of the toxic and recalcitrant nature of its constituents. Thus, it must be collected and appropriately treated before being discharged into the environment. At present, there is no single unit process available for proper leachate treatment as conventional wastewater treatment processes cannot achieve a satisfactory level for degrading toxic substances present. Therefore, there is a growing interest in examination of different leachate treatment processes for maximum operational flexibility. Based on leachate characteristics, discharge requirements, technical possibilities, regulatory requirements and financial considerations, several techniques have been applied for its degradation, presenting varying degrees of efficiency. Therefore, this article presents a comprehensive review of existing research articles on the pros and cons of various leachate degradation methods. In line with environmental sustainability, the article stressed on the application and efficiency of sequencing batch reactor (SBR) system treating landfill leachate due to its operational flexibility, resistance to shock loads and high biomass retention. Contributions of integrated leachate treatment technologies with SBR were also discussed. The article further analyzed the effect of different adopted materials, processes, strategies and configurations on leachate treatment. Environmental and operational parameters that affect SBR system were critically discussed. It is believed that information contained in this review will increase readers fundamental knowledge, guide future researchers and be incorporated into future works on experimentally-based SBR studies for leachate treatment.
Collapse
Affiliation(s)
- A H Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
| | - S R M Kutty
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - I M Lawal
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - S Abubakar
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Hassan
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Zubairu
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Umaru
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - A S Abdurrasheed
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - A A Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A A S Ghaleb
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - N M Y Almahbashi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - B N S Al-Dhawi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A Noor
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
16
|
Pichel A, Fra A, Morales N, Campos JL, Méndez R, Mosquera-Corral A, Val Del Río Á. Is the ammonia stripping pre-treatment suitable for the nitrogen removal via partial nitritation-anammox of OFMSW digestate? JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123458. [PMID: 32846255 DOI: 10.1016/j.jhazmat.2020.123458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Treating the organic fraction of municipal solid waste (OFMSW) can be performed by coupling the anaerobic digestion (AD) and partial nitritation-anammox (PN-AMX) processes for organic matter and nitrogen removal, respectively. Besides, an ammonia stripping (AS) step before the AD benefit the removal of organic matter. In the present study, the operation of two PN-AMX sequencing batch reactors with and without AS pre-treated OFMSW digestate (AS-SBR and nAS-SBR, respectively) was assessed. The specific anammox activity decreased by 90 % for increasing proportions of fed OFMSW in both cases, indicating no differences over the anammox activity whether the AS pre-treatment is implemented or not. For 100 % OFMSW proportion, the AS-SBR achieved better effluent quality than the nAS-SBR (127 ± 88 vs. 1050 ± 23 mg N/L) but with lower nitrogen removal rates (58 ± 8 vs. 687 ± 32 g N/(L·d)). Still, the latter required successive re-inoculations to obtain higher removal rates. Changes in the microbial communities were mainly correlated to sCOD/N ratios in the OFMSW, being Candidatus Brocadia the dominant anamnmox species. The results proved the AS to be a suitable pre-treatment, despite the higher sCOD/N ratios in the OFMSW digestate, achieving good synergy between the PN-AMX and heterotrophic denitrification processes.
Collapse
Affiliation(s)
- Andrés Pichel
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15705, Santiago de Compostela, Spain.
| | - Andrea Fra
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15705, Santiago de Compostela, Spain
| | - Nicolás Morales
- Aqualia, Guillarei WWTP, Camino de la Veiga s/n, E-36720 Tui, Spain
| | - José Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, E- 2503500, Chile
| | - Ramón Méndez
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15705, Santiago de Compostela, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15705, Santiago de Compostela, Spain
| | - Ángeles Val Del Río
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, E-15705, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Zhou S, Song Z, Sun Z, Shi X, Zhang Z. The effects of undulating seasonal temperature on the performance and microbial community characteristics of simultaneous anammox and denitrification (SAD) process. BIORESOURCE TECHNOLOGY 2021; 321:124493. [PMID: 33310385 DOI: 10.1016/j.biortech.2020.124493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The effects of undulating seasonal temperature change (USTC) (10.1 °C-31.8 °C) on the N and carbon removal efficiency of simultaneous anammox and denitrification (SAD) were investigated, and the recovery performance of SAD was simulated. Results showed that 15 °C was the critical temperature of SAD for N and carbon removal under USTC from summer to winter. The removal efficiency of NH4+-N was improved in the final stage after temperature rise, but still lower than that in summer after long-term low temperature inhibition. The contribution of anammox to N removal was more than denitrification. The abundance of anammox bacteria (AnAOB) in SAD reactor was 8.8%-11.7% from summer to autumn. Candidatus Kuenenia replaced Candidatus Brocadia as the main AnAOB gradually. Finally, AnAOB abundance increased from 4.2% to 6.6% after recovery, and the abundance of denitrifying bacteria (DB) became the highest, which mainly includes Thauera and Hydrogenophaga.
Collapse
Affiliation(s)
- Shun Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhuangzhuang Song
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhulong Sun
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xingdong Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
18
|
Li J, Chen X, Liu W, Tao Y. Biostimulation of a marine anammox bacteria-dominated bioprocess by Co(II) to treat nitrogen-rich, saline wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141489. [PMID: 32846348 DOI: 10.1016/j.scitotenv.2020.141489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The biostimulation of a marine anammox bacteria (MAB)-dominated bioprocess with Co(II) was studied in a sequencing batch reactor (SBR) treating nitrogen-rich saline wastewater at 15 °C. The low Co(II) load of 0.0015 kgCo2+added/(m3.d) had little effect on the removal of nitrogen. The nitrite removal rate (NRR), ammonia removal rate (ARR), and specific anammox activity (SAA) reached 0.73 kg/(m3·d), 0.59 kg/(m3·d), and 0.23 kg/(kg·d), respectively, under the Co(II) load of 0.009 kgCo2+added/(m3.d). However, the loadings of Co(II) at 0.024-0.03 kgCo2+added/(m3.d) negatively affected the activity of MAB. Besides, the values of ΔNO2--N/ΔNH4+-N (1.15-1.29) were lower than the theoretical ratio values (around 1.32) likely because of the marine commamox process. The removal of nitrogen from nitrogen-rich saline wastewater was achieved by the synergy between Candidatus Scalindua (27.11%) and Candidatus Kuenenia (9.55%). The nitrogen removal with Co(II) addition could be well described by a modified Logistic model.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xiuqin Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Tao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
19
|
Zhu W, Li J, Wang B, Chen G. Enhancement of pollutants removal from saline wastewater through simultaneous anammox and denitrification (SAD) process with glycine betaine addition. BIORESOURCE TECHNOLOGY 2020; 315:123784. [PMID: 32652439 DOI: 10.1016/j.biortech.2020.123784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 05/12/2023]
Abstract
Enhanced pollutants removal from saline wastewater was investigated in simultaneous anammox and denitrification (SAD) process with glycine betaine (GB) addition. Long-term operation indicated the optimal GB dose was around 0.4 mM, which enhanced both anammox and denitrifying activity by 30% and 45%, respectively. The total nitrogen and organic removal rates were 0.38 ± 0.2 kgN/m3/d and 0.34 ± 0.3 kgCOD/m3/d, respectively, which increased by 34.5% and 20.5%. Independent of GB dose, denitrifying activity was promoted, but anammox activity was drastically deteriorated after excessive GB addition. The optimal GB dose predicated by both Gaussian and Modified-Boltzmann models were 0.42-0.45 mM. Besides, the bacterial activity recovery after excessive GB addition could be analyzed by the Modified-Boltzmann model. With 1.5 mM GB, granular floatation occurred since numerous gas bubbles were inside the granules. In general, exogenous GB addition can mitigate salinity inhibition and promote pollutants removal from saline wastewater.
Collapse
Affiliation(s)
- Weiqiang Zhu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Bo Wang
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
20
|
Wang Z, Ji Y, Yan L, Yan Y, Zhang H, Gao P, Li S. Simultaneous anammox and denitrification process shifted from the anammox process in response to C/N ratios: Performance, sludge granulation, and microbial community. J Biosci Bioeng 2020; 130:319-326. [DOI: 10.1016/j.jbiosc.2020.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
|
21
|
Li Z, Peng Y, Gao H. Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA-2Na/Fe(II) ratio and pH control. BIORESOURCE TECHNOLOGY 2020; 305:123083. [PMID: 32145699 DOI: 10.1016/j.biortech.2020.123083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
A long-term experiment in an anaerobic ammonium oxidation (anammox) reactor showed that anammox consortia could perform a stable and efficient Fe(II)-dependent dissimilatory nitrate reduction to ammonium (DNRA) coupled to the anammox (DNRA-anammox) process by controlling the EDTA-2Na/Fe(II) ratio and pH, with a total nitrogen removal rate (TNRR) of 0.23 ± 0.01 kg-N/m3/d. Anammox bacteria (Candidatus Kuenenia) were the dominant and functional microbes in such a nitrate wastewater treatment system. Visual MINTEQ analysis showed that the EDTA-2Na/Fe(II) molar ratio affected the influent composition of Fe and EDTA species and hence nitrate removal, while pH influenced both nitrate removal and the coupling degree of the Fe(II)-dependent DNRA-anammox process due to its own physiology. The kinetic simulation results showed that excess EDTA-2Na imposed a competitive inhibition on the Fe(II)-dependent DNRA-anammox process, and the Bell-shaped (A), (B), (C) and Ratkowsky models could be used to explore the pH dependency of the Fe(II)-dependent DNRA-anammox process.
Collapse
Affiliation(s)
- Zhixing Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Haijing Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
22
|
Deng S, Peng Y, Zhang L, Wu L. Advanced nitrogen removal from municipal wastewater via two-stage partial nitrification-simultaneous anammox and denitrification (PN-SAD) process. BIORESOURCE TECHNOLOGY 2020; 304:122955. [PMID: 32062497 DOI: 10.1016/j.biortech.2020.122955] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 05/12/2023]
Abstract
A modified two-stage anammox process was constructed and achieved advanced nitrogen removal from municipal wastewater. The first stage was Partial Nitrification (PN), in which nitrite accumulation rate was over 95% by controlling dissolved oxygen concentration (<1 mg/L) and aeration time (90-120 min). The second stage was simultaneous anammox and denitrification (SAD), in which the reactor was fed with the effluent of the first stage and a part of raw wastewater. The effluent total inorganic nitrogen (NH4+-N, NO2--N and NO3--N) was only 1.6 ± 0.8 mg N/L and the nitrogen removal efficiency reached 97.1%. The proportion of anammox in nitrogen removal was up to 73-82% and Candidatus Brocadia was the main anammox genus accounted for 8.0-2.2%. And partial denitrification occurred with the appearance of Thauera (0-1.0%). The PN-SAD process is an energy-saving treatment for municipal wastewater with a total hydraulic retention time of 6 h.
Collapse
Affiliation(s)
- Shiyun Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
23
|
Li J, Feng L, Biswal BK, Chen GH, Wu D. Bioaugmentation of marine anammox bacteria (MAB)-based anaerobic ammonia oxidation by adding Fe(III) in saline wastewater treatment under low temperature. BIORESOURCE TECHNOLOGY 2020; 295:122292. [PMID: 31655251 DOI: 10.1016/j.biortech.2019.122292] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
This work investigated a new method of using Fe(III) to enhance the reactor performance enriched with marine anammox bacteria (MAB). The experiments were conducted in a sequencing batch reactor at low temperature (15 °C), high salinity (35 g/L) and varying Fe(III) concentrations (0-250 mg/l). The results of this study showed that at low Fe(III) (6 mg Fe/L), the rate of ammonium removal, nitrite removal and specific anammox activity remarkably increased to 0.42 kg/(m3·d), 0.53 kg/(m3·d), 0.56 kg/(kg·d), respectively. However, Fe(III) at above 120 mg Fe/L, the reaction time was significantly shortened from 5 to 2 h. MAB-based nitrite removal could be predicated based on the change of pH (ΔpH) and oxidation-reduction potential (ΔORP). Kinetics analysis demonstrated, the "Remodified Logistic Model" could simulate the Fe(III) enhanced anammox process. Overall, this research shed the light of designing a new high-rate anaerobic nitrogen removal technology for carbon insufficient, nitrogen-laden saline wastewater.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Li Feng
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
24
|
Yin S, Li J, Dong H, Qiang Z. Enhanced nitrogen removal through marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Fe(III) addition: Nitrogen shock loading and community structure. BIORESOURCE TECHNOLOGY 2019; 287:121405. [PMID: 31085055 DOI: 10.1016/j.biortech.2019.121405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Marine anammox bacteria (MAB) were used to treat nitrogen-rich saline wastewater with Fe(III) addition under nitrogen shock loading. Ammonia loading rate (ALR) and nitrite loading rate (NLR) gradually increased from 0.033 and 0.039 to 0.68 and 0.89 kg/(m3·d), respectively. With 5 mg/L Fe(III) addition, ammonia removal rate (ARR) and nitrite removal rate (NRR) reached maximal values of 0.56 and 0.60 kg/(m3·d), respectively. The value of ΔNO2--N/ΔNH4+-N was lower than theoretical ratio due to existing marine Feammox process. The growth rate of MAB was accelerated by Fe(III) and it dominated the reactor (27.70%). Besides, MAB were synergized with Marinicella and Caldithrix to achieve higher total nitrogen removal. Haldane model was proper to analyze and predict the effect resulting from nitrite on the activity of MAB under nitrogen shock loading. Overall, this study provides novel insights into the effect of Fe(III) on MAB treating nitrogen-rich wastewater.
Collapse
Affiliation(s)
- Shuyan Yin
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
25
|
Wang D, Li T, Huang K, He X, Zhang XX. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1355-1363. [PMID: 30577127 DOI: 10.1016/j.scitotenv.2018.11.321] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 05/21/2023]
Abstract
Simultaneous anammox and denitrification (SAD) is a newly developed wastewater treatment process efficient in nitrogen removal, but its underlying microbiological mechanisms during start-up remains unknown. This study investigated the changing patterns of functional bacteria and genes, as well as their correlation during the start-up (260 d) of the SAD systems in two lab-scale up-flow anaerobic sludge blanket bioreactors separately inoculated with anaerobic granular sludge (R1) and aerobic floccular sludge (R2). Results showed that high total nitrogen removal was achieved in the SAD systems of both R1 (88.25%) and R2 (89.42%). High-throughput sequencing of 16S rRNA gene amplicons revealed that Armatimonadetes phylum had a high abundance (44.34%) in R2, while was not detectable in R1 during the anammox stage. However, the SAD bioreactors retained inherent microbial community and the inoculation with different sludge showed less notable effects on their microbial composition. In the SAD systems, Candidatus Brocadia had high abundance in R1 (2.93%) and R2 (4.64%) and played important role in anammox. Network analysis indicated that Denitratisoma and Dokdonella were positively correlated with nitrite reductase genes nirS and nirK (p < 0.05), while Thermomonas and Pseudomonas showing a positive correlation with nitrate reductase gene narG (p < 0.05) were mainly responsible for the nitrate reduction in the SAD systems. Moreover, the overwhelming dominance of narG v.s. napA revealed the crucial roles of respiratory nitrate reduction in the bioreactors. The results extend our knowledge regarding the microbial ecology of the SAD system, which might be practically helpful for application of the process in wastewater treatment.
Collapse
Affiliation(s)
- Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
26
|
Carbon and nitrogen removal through “Candidatus Brocadia sinica”-dominated simultaneous anammox and denitrification (SAD) process treating saline wastewater. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Li J, Bai L, Qiang Z, Dong H, Wang D. Nitrogen removal through "Candidatus Brocadia sinica" treating high-salinity and low-temperature wastewater with glycine addition: Enhanced performance and kinetics. BIORESOURCE TECHNOLOGY 2018; 270:755-761. [PMID: 30279101 DOI: 10.1016/j.biortech.2018.09.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Freshwater-derived anaerobic ammonia oxidation (anammox) bacteria ("Candidatus Brocadia sinica") were investigated to remove nitrogen from high-salinity and low-temperature wastewater with glycine addition. The reactor was operated at 15 ± 0.5 °C with influent pH of 7.5 ± 0.1. When glycine were 0.2, 0.4, and 0.6 mM, respectively, nitrite removal rate (NRR) increased by 27.7%, 47.3%, and 70.4% accordingly. Optimal ammonia removal rate (0.32 kg/(m3·d)) and NRR (0.45 kg/(m3·d)) were achieved at 0.8 mM glycine. Effect resulting from glycine on nitrite reductase was higher than hydrazine synthase. Moreover, ΔNO2--N/ΔNH4+-N increased with glycine addition while ΔNO3--N/ΔNH4+-N first increased and then decreased. The remodified Logistic model and modified Boltzmann model were appropriate to describe nitrogen removal with glycine addition. Kinetic parameter λ achieved through the remodified Logistic model revealed that "Candidatus Brocadia sinica" had a shorter lag phase than that of marine anammox bacteria.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lijing Bai
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dan Wang
- National Marine Environmental Forecasting Center, State Oceanic Administration, Beijing 100081, China
| |
Collapse
|
28
|
Li Q, Wang S, Zhang P, Yu J, Qiu C, Zheng J. Influence of temperature on an Anammox sequencing batch reactor (SBR) system under lower nitrogen load. BIORESOURCE TECHNOLOGY 2018; 269:50-56. [PMID: 30149254 DOI: 10.1016/j.biortech.2018.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
The nitrogen removal performance and microbial communities of an Anammox sequencing batch reactor (SBR) was studied under varied temperatures with a lower nitrogen loading rate (NLR) about 0.28 kgN/m3/d. Results showed that the temperature could influence the nitrogen removal performance and the community structure in the Anammox SBR system. Under lower temperatures, both the nitrogen removal efficiencies and Anammox activity were in lower levels. When temperature was raised again, the Anammox activity recovered accordingly. When the temperature dropped from 33 ± 1 °C to15 °C, the dominant Anammox bacteria shifted from Ca. Brocadia to Ca. Kuenenia in the sludge. When the temperature returned over, the abundance of Ca. Brocadia recovered, while the Ca. Kuenenia was still the dominant Anammox bacteria. This indicated that Ca. Kuenenia is more adaptable to low temperature environment than Ca. Brocadia under low NLR with temperature variation.
Collapse
Affiliation(s)
- Quan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Pengda Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jianfeng Zheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
29
|
A comprehensive insight into the functional bacteria and genes and their roles in simultaneous denitrification and anammox system at varying substrate loadings. Appl Microbiol Biotechnol 2018; 103:1523-1533. [DOI: 10.1007/s00253-018-9536-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
30
|
He S, Yang W, Qin M, Mao Z, Niu Q, Han M. Performance and microbial community of anammox in presence of micro-molecule carbon source. CHEMOSPHERE 2018; 205:545-552. [PMID: 29709805 DOI: 10.1016/j.chemosphere.2018.04.136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 05/14/2023]
Abstract
Because ammonium (NH4+-N) coexists with organic matter in some wastewaters, the possible adverse influences of organic matter become a major concern in the applications of anaerobic ammonium oxidation (anammox). In this study, the effects of acetate, as a representative of micro-molecule organic matter, on anammox were investigated. Efficient nitrogen removal was realized because denitrifying bacteria and anammox bacteria (AnAOB) had a better synergistic effect under the condition of chemical oxygen demand (COD) concentrations lower than 251 ± 7 mg L-1. Furthermore, the nitrogen removal efficiency (NRE) decreased to 82.02 ± 3.14% when COD was increased to 730 ± 9 mg L-1, and effluent free ammonia (FA) reached 21.93 ± 4.71 mg L-1 might be one of factors leading to inhibition. However, the nitrogen-removal contribution rate of anammox remained steady at 61.97 ± 2.84% at COD of 730 ± 9 mg L-1, which indicated that anammox was still dominant in the system. AnAOB, such as Ca. Kuenenia and Ca. Jettenia, and denitrifying bacteria, such as Denitratisoma and Thauera, were found to coexist in the reactor. Interestingly, Ca. Kuenenia presented in the trend of first decreased then increased with the increasing of organic matter concentration, which might be one of reasons that anammox played an important role in nitrogen removal at high COD concentration.
Collapse
Affiliation(s)
- Shilong He
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China.
| | - Wan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Meng Qin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Zhen Mao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda South Road, Jinan 250100, Shandong Province, PR China
| | - Ming Han
- China Institute for Radiation Protection, Taiyuan 030006, Shanxi Province, PR China
| |
Collapse
|
31
|
Ge CH, Sun N, Kang Q, Ren LF, Ahmad HA, Ni SQ, Wang Z. Bacterial community evolutions driven by organic matter and powder activated carbon in simultaneous anammox and denitrification (SAD) process. BIORESOURCE TECHNOLOGY 2018; 251:13-21. [PMID: 29257992 DOI: 10.1016/j.biortech.2017.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
A distinct shift of bacterial community driven by organic matter (OM) and powder activated carbon (PAC) was discovered in the simultaneous anammox and denitrification (SAD) process which was operated in an anti-fouling submerged anaerobic membrane bio-reactor. Based on anammox performance, optimal OM dose (50 mg/L) was advised to start up SAD process successfully. The results of qPCR and high throughput sequencing analysis indicated that OM played a key role in microbial community evolutions, impelling denitrifiers to challenge anammox's dominance. The addition of PAC not only mitigated the membrane fouling, but also stimulated the enrichment of denitrifiers, accounting for the predominant phylum changing from Planctomycetes to Proteobacteria in SAD process. Functional genes forecasts based on KEGG database and COG database showed that the expressions of full denitrification functional genes were highly promoted in RC, which demonstrated the enhanced full denitrification pathway driven by OM and PAC under low COD/N value (0.11).
Collapse
Affiliation(s)
- Cheng-Hao Ge
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Na Sun
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, PR China
| | - Hafiz Adeel Ahmad
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Shou-Qing Ni
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China.
| | - Zhibin Wang
- Institute of Marine Science and Technology, Shandong University, PR China
| |
Collapse
|
32
|
Li J, Zhang L, Peng Y, Zhang Q. Effect of low COD/N ratios on stability of single-stage partial nitritation/anammox (SPN/A) process in a long-term operation. BIORESOURCE TECHNOLOGY 2017; 244:192-197. [PMID: 28779671 DOI: 10.1016/j.biortech.2017.07.127] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the effects of varying COD/N ratios on single-stage partial nitritation/anammox (SPN/A) process in a SBR. The operational period was divided into three phases with different influent COD/N ratios (0.4, 0 and 0.5). Stable nitrogen removal was achieved in phase I with a COD/N of 0.4. In phase II COD was absent, effluent nitrite and nitrate increased and nitrogen removal performance gradually deteriorated. In phase III SPN/A failed to recover from nitrate accumulation when COD/N was increased. Microbial activity was measured and microbial community was analyzed by high-throughput sequencing. These results revealed that ordinary heterotrophic organisms (OHO) was suppressed when influent COD was absent, leading to the promotion of nitrification even at a low DO (0.2mgL-1). Therefore, nitrite oxidizing bacteria (NOB) was gradually enriched and anammox bacteria was suppressed. Besides, it was observed that flocs were sensitive to influent COD variations than granules, which requires further investigation.
Collapse
Affiliation(s)
- Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
33
|
Zhu W, Zhang P, Dong H, Li J. Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process. J Biosci Bioeng 2017; 123:497-504. [DOI: 10.1016/j.jbiosc.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
34
|
Nitrogen removal performance of anaerobic ammonia oxidation (ANAMMOX) in presence of organic matter. Biodegradation 2017; 28:159-170. [DOI: 10.1007/s10532-017-9785-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
|