1
|
Guo L, Hu Y. Clinical Observation of Low-Temperature Plasma Knife Tonsil Adenoidectomy for Pediatric Snoring and Analysis of Influencing Factors. Emerg Med Int 2022; 2022:1691583. [PMID: 36467863 PMCID: PMC9715336 DOI: 10.1155/2022/1691583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 09/05/2023] Open
Abstract
Objective To investigate the clinical efficacy of low-temperature plasma knife tonsil adenoidectomy for pediatric snoring and to analyze the factors influencing the efficacy. Methods 90 children with snoring who were scheduled for surgical treatment in our hospital from June 2020 to December 2021 were selected as the research objects. According to the random number table method, they were divided into control group (group C) and observation group (group O), with 45 cases in each group. The children in group C were treated with power cutting system to remove adenoids combined with conventional peeling of bilateral tonsils, while the children in group O were treated with low-temperature plasma adenoidectomy combined with bilateral tonsillectomy, and both the groups received psychological care, preoperative preparation, health guidance, postoperative posture care and close monitoring of vital signs during the perioperative period. The clinical efficacy, perioperative related indexes (including operation time, intraoperative bleeding, postoperative pain time, and hospital stay) were compared between the two groups. The apnea-hypopnea index (AHI), oxygen decrement index (ODI), longest apnea time (LAT), and lowest oxygen saturation (LSaO2) were measured before operation and 1 week after operation to evaluate the ventilatory function of the two groups. According to the curative effect, 90 children with snoring were divided into cure + significant effective group and valid + invalid group. The general data and preoperative biochemical indexes of the two groups were collected, and logistic regression model was used to analyze the related influencing factors of the curative effect. Results The total effective rate of group O (100.00%, 45 cases) was significantly higher than that of group C (91.11%, 41 cases) (P < 0.05); the operative time, intraoperative bleeding, postoperative pain time, and hospitalization time of group O were shorter/less than those of group C; the AHI, ODI, and LAT of group O at 1 week after surgery were shorter/less than those of the control group; and LSaO2 was higher than that of group C. The differences were statistically significant (P < 0.05). Univariate analysis showed that there were significant differences in age, BMI, course of disease, preoperative AHI, preoperative LsaO2, and surgical method between cure + significant effective group and valid + invalid group (P < 0.05). Multivariate analysis showed that high BMI, high preoperative AHI, and power cutting system for adenoids combined with routine peeling of the bilateral tonsils were independent risk factors for postoperative outcome in children with obstructive sleep apnea syndrome (OSAS) (P < 0.05).
Collapse
Affiliation(s)
- Li Guo
- Department of Otorhinolaryngology, Zhejiang Zhuji People Hospital, Zhuji 311800, Zhejiang, China
| | - Yirong Hu
- Department of Maternal and Children Health, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, China
| |
Collapse
|
2
|
Xu M, Zhou W, Chen X, Zhou Y, He B, Tan S. Analysis of the biodegradation performance and biofouling in a halophilic MBBR-MBR to improve the treatment of disinfected saline wastewater. CHEMOSPHERE 2021; 269:128716. [PMID: 33121810 PMCID: PMC7578672 DOI: 10.1016/j.chemosphere.2020.128716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 05/12/2023]
Abstract
Disinfectant-containing wastewaters have been generated from many places, including marine industries. The synthetic NaClO-containing wastewaters have been effectively treated in a saline MBBR-MBR (moving bed biofilm reactor & membrane bioreactor) system containing marine microorganisms. A low concentration of NaCl (below 100 mg/L) is not enough to kill the microorganisms, but can affect their bioactivity and induce membrane biofouling. A linear relationship has been obtained for the half-life of membrane biofouling as a function of the NaClO concentration (10-100 mg/L): [half-life] = 25-0.12 × [NaClO concentration]. The COD and NH3-N removals are the highest at a salinity of 30 g/L for the marine bioreactors. The behaviour of the typical biofoulants, measured real-timely by fluorescence spectroscopy, can indicate the levels of membrane biofouling and microbial activity, responding to the NaClO and NaCl influences. Based on the behaviour of biofoulants, this work has also proposed a novel strategy of biofoulants monitoring for membrane antifouling, where antifouling responses can be carried out when the concentration of biofoulants significantly increases.
Collapse
Affiliation(s)
- Mengchang Xu
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, 410219, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
| | - Xuncai Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, 410219, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Zhang H, Zhou W, Zhan X, Chi Z, Li W, He B, Tan S. Biodegradation performance and biofouling control of a halophilic biocarriers-MBR in saline pharmaceutical (ampicillin-containing) wastewater treatment. CHEMOSPHERE 2021; 263:127949. [PMID: 32822933 DOI: 10.1016/j.chemosphere.2020.127949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
This work develops a halophilic biocarriers-MBR for saline pharmaceutical wastewater treatment. The system has effectively treated the ampicillin-containing saline wastewater for 32 days, when the ampicillin concentration is lower than 20 mg/L. The system can tolerate the saline organic wastewater with a reasonable biodegradability (removals of COD over 75%) when the ampicillin concentration is 50 mg/L. The system has a bad performance in biodegradation (COD removals around 60-70%) and fouled within 16 days at a high ampicillin concentration of 100 mg/L. At high transmembrane pressures over 30 KPa, some ampicillin molecules may permeate through the membrane causing decreases in the ampicillin removal. The concentrations of protein and carbohydrate in EPS and SMP have increased over time and with increasing the ampicillin concentration. The method of biofouling control in MBR for the ampicillin situations has been proposed based on monitoring the concentrations of EPS and SMP. The drying-assisted monitoring of membrane biofoulants has showed a better efficiency than the monitoring of transmembrane pressure for membrane anti-biofouling in the treatment of pharmaceutical saline wastewaters where a spectroscopic detection can be hardly applied. This work may benefit relative research works for the control of biodegradation performance and membrane biofouling to better treat saline pharmaceutical wastewaters.
Collapse
Affiliation(s)
- Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, 410219, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
| | - Xuehui Zhan
- School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zhenxing Chi
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, 410219, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China; Department of Environmental Engineering, Harbin Institute of Technology, Weihai, Shandong, 264209, China.
| |
Collapse
|
4
|
Yu Z, Li W, Tan S. Real-time monitoring of the membrane biofouling based on spectroscopic analysis in a marine MBBR-MBR (moving bed biofilm reactor-membrane bioreactor) for saline wastewater treatment. CHEMOSPHERE 2019; 235:1154-1161. [PMID: 31561306 DOI: 10.1016/j.chemosphere.2019.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
A MBBR-MBR system has been developed with marine microorganisms enriched for saline wastewater treatment in this work, showing high COD and NH3-N removals. The behaviour of fouling-related components (EPS and SMP) has been studied as functions of operating time (40-90 days), salinity (0-30 g/L NaCl) and backflow ratio (0-300%, from MBR to MBBR). High biodegradability of the MBBR-MBR at optimal conditions can induce more biodegradation of humic acid-like (λex/λem: 350nm/430 nm) and fulvic acid-like (260nm/445 nm) molecules to soluble microbial by-product-like molecules (275nm/325 nm), reducing the membrane biofouling rate. The biodegradation process is suggested by the excitation-emission matrix (EEM) images. In the study of sudden salinity shock, results show that real-time monitoring the concentration of biofoulants is more effective (operative time extended by 60%) than monitoring the transmembrane pressure (operative time extended by 33%) to prevent membrane fouling. Due to an early warning from the real-time monitoring, the coming membrane-fouling is predictable and the operating conditions, such as backflow ratio, can be changed to minimize the biofouling rate.
Collapse
Affiliation(s)
- Zhengyu Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai, Shandong, 264209, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai, Shandong, 264209, China.
| |
Collapse
|
5
|
Emaminejad SA, Avval SS, Bonakdarpour B. Gaining deeper insights into the bioflocculation process occurring in a high loaded membrane bioreactor used for the treatment of synthetic greywater. CHEMOSPHERE 2019; 230:316-326. [PMID: 31108443 DOI: 10.1016/j.chemosphere.2019.04.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
In the present study, a high loaded membrane bioreactor (HL-MBR) operated at a hydraulic retention time (HRT) of 1.5 h, and three different sludge retention times (SRTs) in the range of 0.5-2 days, was used for the treatment of synthetic greywater. The chemical oxygen demand (COD) removal efficiency of the system was in the range 87-89% at all SRTs. Bioflocculation efficiency (defined as the percentage of suspended COD in the concentrate stream), COD bio-oxidation, total extracellular polymeric substances (EPS), tightly bound (TB) EPS and the ratio of EPS protein (EPSp) to carbohydrate (EPSc) increased when SRT was increased from 0.5 to 2 days. Sludge supernatant soluble microbial products (SMP) increased with increase in SRT from 0.5 to 2 days, while the effluent SMP was negligible. Particle size distribution analyses revealed a bimodal distribution at an SRT of 0.5 days, and normal distributions at other SRTs. Furthermore, depending on the value of the F/M ratio, different SRTs in the range of 0.5-2 days had either positive or negative effects on the mean particle size. Linear correlation analyses were performed using the data obtained during both transient and steady-state operations of the HL-MBR system. TB-EPS and EPSp showed strong correlations with the biofloccultaion efficiency, whereas loosely bound (LB) EPS correlated with soluble COD removal. TB-EPS and EPSc had negative correlations with the energy recovery potential of the system. The trend of change of parameters affecting membrane fouling intensity with SRT suggested that, in the range studied, the lowest rate of membrane fouling would be expected at SRT of 0.5 days.
Collapse
Affiliation(s)
- Seyed Aryan Emaminejad
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran
| | - Shirin Saffar Avval
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran
| | - Babak Bonakdarpour
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, Iran.
| |
Collapse
|
6
|
Kong Z, Li L, Kurihara R, Zhang T, Li YY. Anaerobic treatment of N,N-dimethylformamide-containing high-strength wastewater by submerged anaerobic membrane bioreactor with a co-cultured inoculum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:696-708. [PMID: 30731415 DOI: 10.1016/j.scitotenv.2019.01.358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The anaerobic treatment of wastewater containing approximately 2000 mg L-1N,N-dimethylformamide (DMF) was conducted by a lab-scale submerged anaerobic membrane bioreactor (SAnMBR). The inoculum consisted of aerobic DMF-hydrolyzing activated sludge (DAS) and anaerobic digested sludge (ADS). A rapid start-up was achieved with thorough DMF methanogenic degradation on the first day. The results of a 250-day long-term experiment demonstrated that under a low organic loading rate (OLR) of 3.14-4.16 g COD L-1 d-1, SAnMBR maintained excellent DMF removal efficiency along with high methane conversion. However, the elevation of OLR significantly limited DMF hydrolysis. When OLR exceeded 6.54 g COD L-1 d-1, both removal efficiency and methane production dramatically dropped. The DMF-hydrolyzing bacteria originating from the DAS gradually decayed under the anaerobic condition, resulting in the weak hydrolysis of DMF. The shortening of hydraulic retention time (HRT) is not recommended for the SAnMBR because severe membrane fouling occurred when HRT was shortened to 8 h. To handle high OLRs, an appropriate solution is to maintain a low F/M ratio by increasing both the influent DMF concentration and sludge concentration. The high CH4 content in the biogas, exceeding 85%, was shown to be the reason for the suitability of anaerobic treatment to DMF. Some improvements which would help to maintain the effective hydrolysis are proposed: a side-stream system to replenish DAS to the SAnMBR is helpful; slight dosage of nitrate could also help to enrich the DMF-hydrolyzing bacteria; and the co-digestion of DMF and other organics might be convenient to establish a stable DMF-degrading consortium.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Rei Kurihara
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tao Zhang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Tan X, Acquah I, Liu H, Li W, Tan S. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. CHEMOSPHERE 2019; 220:1150-1162. [PMID: 33395802 DOI: 10.1016/j.chemosphere.2019.01.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 05/12/2023]
Abstract
This work has reviewed from a microbial perspective and listed the typical studies on MBR techniques for saline wastewater treatments. When the salinity of influent is lower than 10 g/L NaCl, conventional MBR can be easily applied with adjusted operating conditions. For better biodegradation and anti-fouling ability at higher salinities (10-100 g/L), modified and hybrid MBR systems may need to be wisely designed according to the change in the microbial community and contents of EPS/SMP. To treat hypersaline wastewaters with salinities of up to 100 g/L NaCl, inoculation of halophilic bacteria has been applied in MBR works. Microbial community structures in some typical works have been discussed from a microbial perspective to benefit the identification and isolation of halophilic bacteria for future works. The following aspects are also suggested in future MBR research for saline wastewater treatment: (1) The structure design of MBR and the manufacture of advanced membranes; (2) The maintenance of the microbial biodiversity for anti-membrane fouling; (3) The metabolic mechanism for halophilic (or salt-tolerant) microorganisms against salinity shocks; (4) The revolution stage and process of microorganisms during saline wastewater treatment in MBR; (5) The effects of characteristics (cell structure, shape and metabolic pathways) of microorganisms on the salt tolerance; (6) Applying halophilic microorganisms for salinities over 150 g/L NaCl.
Collapse
Affiliation(s)
- Xu Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Department of Civil and Environmental Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Isaac Acquah
- Programme of Biomedical Engineering, Kwame Nkrumah University of Science and Technology, PMB, University Post, Kumasi, Ghana
| | - Hanzhe Liu
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Songwen Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Tan S, Hou Y, Cui C, Chen X, Li W. Real-time monitoring of biofoulants in a membrane bioreactor during saline wastewater treatment for anti-fouling strategies. BIORESOURCE TECHNOLOGY 2017; 224:183-187. [PMID: 27839860 DOI: 10.1016/j.biortech.2016.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
This work presents a novel, fast and simple monitoring-responding method at the very early stages of membrane bio-fouling in a membrane bioreactor (MBR) during saline wastewater treatment. The impacts of multiple environmental shocks on membrane fouling were studied. The transmembrane pressure exceeded the critical fouling pressure within 8days in the case of salinity shock or temperature shock. In the case of DO shock, the transmembrane pressure exceeded the critical fouling pressure after 16days, showing the lower impact of DO shock on the MBR. In another study, the membrane fouling was observed within 4days responding to mixed environmental shocks. To decrease the potential of membrane bio-fouling, another bioreactor was integrated immediately with the MBR as a quickly-responded countermeasure, when an early warning of membrane bio-fouling was provided. After the bioreactor enhancement, the time required for membrane fouling increased from 4 to 10days.
Collapse
Affiliation(s)
- Songwen Tan
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China; Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yang Hou
- Department of Biological Science, Hunan Normal University, Changsha 410000, China
| | - Chunzhi Cui
- Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Xuncai Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney 2006, Australia
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China.
| |
Collapse
|