1
|
Wang T, Xue H, Liu H, Yuan H, Huang D, Jiang Y. Advancements in metabolic engineering: unlocking the potential of key organic acids for sustainable industrial applications. Front Bioeng Biotechnol 2025; 13:1556516. [PMID: 40134770 PMCID: PMC11933101 DOI: 10.3389/fbioe.2025.1556516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
This review explores the advancements, application potential, and challenges of microbial metabolic engineering strategies for sustainable organic acid production. By integrating gene editing, pathway reconstruction, and dynamic regulation, microbial platforms have achieved enhanced biosynthesis of key organic acids such as pyruvate, lactic acid, and succinic acid. Strategies including by-product pathway knockout, key enzyme overexpression, and improved CO2 fixation have contributed to higher production efficiency. Additionally, utilizing non-food biomass sources, such as lignocellulose, algal feedstocks, and industrial waste, has reduced reliance on conventional carbon sources, supporting sustainability goals. However, challenges remain in substrate inhibition, purification complexity, and metabolic flux imbalances. Addressing these requires omics-driven metabolic optimization, stress-resistant strain development, and biorefinery integration. Future research should focus on system-level design to enhance cost-effectiveness and sustainability, advancing industrial bio-manufacturing of organic acids.
Collapse
Affiliation(s)
- Tengfei Wang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Han Xue
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Haibo Yuan
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Di Huang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Green Papermaking and Resource Recycling, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
2
|
Ren L, Zha H, Zhang Q, Xie Y, Li J, Hu Z, Tao X, Xu D, Li F, Zhang B. Altered sterol composition mediates multiple tolerance of Kluyveromyces marxianus for xylitol production. Microb Cell Fact 2024; 23:271. [PMID: 39385269 PMCID: PMC11465571 DOI: 10.1186/s12934-024-02546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Currently, the synthesis of compounds based on microbial cell factories is rapidly advancing, yet it encounters several challenges. During the production process, engineered strains frequently encounter disturbances in the cultivation environment or the impact of their metabolites, such as high temperature, acid-base imbalances, hypertonicity, organic solvents, toxic byproducts, and mechanical damage. These stress factors can constrain the efficiency of microbial fermentation, resulting in slow cell growth, decreased production, significantly increased energy consumption, and other issues that severely limit the application of microbial cell factories. RESULTS This study demonstrated that sterol engineering in Kluyveromyces marxianus, achieved by overexpressing or deleting the coding genes for the last five steps of ergosterol synthase (Erg2-Erg6), altered the composition and ratio of sterols in its cell membrane, and affected its multiple tolerance. The results suggest that the knockout of the Erg5 can enhance the thermotolerance of K. marxianus, while the overexpression of the Erg4 can improve its acid tolerance. Additionally, engineering strain overexpressed Erg6 improved its tolerance to elevated temperature, hypertonic, and acid. YZB453, obtained by overexpressing Erg6 in an engineering strain with high efficiency in synthesizing xylitol, produced 101.22 g/L xylitol at 45oC and 75.11 g/L xylitol at 46oC. Using corncob hydrolysate for simultaneous saccharification and fermentation (SSF) at 46oC that xylose released from corncob hydrolysate by saccharification with hemicellulase, YZB453 can produce 45.98 g/L of xylitol, saving 53.72% of the cost of hemicellulase compared to 42oC. CONCLUSIONS This study elucidates the mechanism by which K. marxianus acquires resistance to various antifungal drugs, high temperatures, high osmolarity, acidity, and other stressors, through alterations in the composition and ratio of membrane sterols. By employing sterol engineering, the fermentation temperature of this unconventional thermotolerant K. marxianus was further elevated, ultimately providing an efficient platform for synthesizing high-value-added xylitol from biomass via the SSF process at temperatures exceeding 45 °C.
Collapse
Affiliation(s)
- Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Hao Zha
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Qi Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Yujie Xie
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Jiacheng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Zhongmei Hu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Xiurong Tao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China.
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China.
| |
Collapse
|
3
|
Wang L, Wang A, Wang D, Hong J. The novel properties of Kluyveromyces marxianus glucose sensor/receptor repressor pathway and the construction of glucose repression-released strains. Microb Cell Fact 2023; 22:123. [PMID: 37430283 DOI: 10.1186/s12934-023-02138-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Glucose repression in yeast leads to the sequential or diauxic utilization of mixed sugars and reduces the co-utilization of glucose and xylose from lignocellulosic biomasses. Study of the glucose sensing pathway helps to construct glucose repression-released yeast strains and enhance the utilization of lignocellulosic biomasses. RESULTS Herein, the glucose sensor/receptor repressor (SRR) pathway of Kluyveromyces marxianus which mainly consisted of KmSnf3, KmGrr1, KmMth1, and KmRgt1 was studied. The disruption of KmSNF3 led to a release of glucose repression, enhanced xylose consumption and did not result in deficient glucose utilization. Over-expression of glucose transporter gene restored the mild decrease of glucose utilization ability of Kmsnf3 strain to a similar level of the wildtype strain but did not restore glucose repression. Therefore, the repression on glucose transporter is parallel to glucose repression to xylose and other alternative carbon utilization. KmGRR1 disruption also released glucose repression and kept glucose utilization ability, although its xylose utilization ability was very weak with xylose as sole carbon source. The stable mutant of KmMth1-ΔT enabled the release of glucose repression irrespective that the genetic background was Kmsnf3, Kmmth1, or wildtype. Disruption of KmSNF1 in the Kmsnf3 strain or KmMTH1-ΔT overexpression in Kmsnf1 strain kept constitutive glucose repression, indicating that KmSNF1 was necessary to release the glucose repression in both SRR and Mig1-Hxk2 pathway. Finally, overexpression of KmMTH1-ΔT released the glucose repression to xylose utilization in S. cerevisiae. CONCLUSION The glucose repression-released K. marxianus strains constructed via a modified glucose SRR pathway did not lead to a deficiency in the utilization ability of sugar. The obtained thermotolerant, glucose repression-released, and xylose utilization-enhanced strains are good platforms for the construction of efficient lignocellulosic biomass utilization yeast strains.
Collapse
Affiliation(s)
- Lingya Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Anran Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China.
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, 230026, P. R. China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
4
|
Ren L, Liu Y, Xia Y, Huang Y, Liu Y, Wang Y, Li P, Chang K, Xu D, Li F, Zhang B. Improving glycerol utilization during high-temperature xylitol production with Kluyveromyces marxianus using a transient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system. BIORESOURCE TECHNOLOGY 2022; 365:128179. [PMID: 36283669 DOI: 10.1016/j.biortech.2022.128179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Glycerol is an ideal co-substrate for xylitol production with Kluyveromyces marxianus. This study demonstrated that K. marxianus catabolizes glycerol through the Gut1-Gut2 pathway instead of the previously speculated NADPH-dependent Gcy1-Dak1 pathway using the transient clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system. Additionally, Utr1p was demonstrated to mediate NADPH generation through NADH phosphorylation. YZB392, which was constructed by integrating Utr1 into the Ypr1 site in the strain overexpressing NcXyl1 and CiGxf1 and harboring disrupted Xyl2, exhibited enhanced glycerol utilization for xylitol production (from 2.50- to 3.30- g/L after consuming 1 g/L glycerol). Fed-batch fermentation at 42 °C with YZB392 yielded 322.07 g/L xylitol, which is the highest known xylitol titer obtained via biological method. Feeding crude glycerol, xylose mother liquor, and corn steep liquor powder into a bioreactor resulted in the production of 235.69 g/L xylitol. This study developed a platform for xylitol production from industrial by-products.
Collapse
Affiliation(s)
- Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yanyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yitong Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yi Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Youming Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Pengfei Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Kechao Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
5
|
Liu Y, Ren L, Zhao J, Xia Y, Zhang Z, Guan X, Huang S, Wang Q, Wu J, Yu Z, Xu D, Li F, Zhang B. Ergosterol production at elevated temperatures by Upc2-overexpressing Kluyveromyces marxianus using Jerusalem artichoke tubers as feedstock. BIORESOURCE TECHNOLOGY 2022; 362:127878. [PMID: 36055542 DOI: 10.1016/j.biortech.2022.127878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Ergosterol is an important precursor in the pharmaceutical industry for the production of numerous drugs. In this study, Kluyveromyces marxianus that showed more potential for ergosterol production than some other yeasts was reported. The effects of transcription factors UPC2, MOT3, and ROX1 of K. marxianus on ergosterol synthesis were explored, and a Upc2-overexpressing strain produced 1.78 times more ergosterol (167.33 mg/L) than the wild-type strain (60.04 mg/L). A total of 239.98 mg/L ergosterol was produced when glucose was replaced with fructose to limit ethanol production. Enhanced aeration increased ergosterol titer from 63.09 mg/L to 128.46 mg/L at 42 °C. The ergosterol titer reached 304.37 mg/L in a shake flask at 37 °C, or 1124.38 and 948.32 mg/L at 37 °C and 42 °C, respectively, in a 5 L bioreactor, using Jerusalem artichoke tubers as the sole carbon source. This study establishes a platform for ergosterol biosynthesis using inexpensive materials.
Collapse
Affiliation(s)
- Yanyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Junyi Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yitong Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Zhiyang Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xuyang Guan
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Sirui Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Qiong Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Jing Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Zijun Yu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
6
|
Enhancement of β-Alanine Biosynthesis in Escherichia coli Based on Multivariate Modular Metabolic Engineering. BIOLOGY 2021; 10:biology10101017. [PMID: 34681116 PMCID: PMC8533518 DOI: 10.3390/biology10101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
β-alanine is widely used as an intermediate in industrial production. However, the low production of microbial cell factories limits its further application. Here, to improve the biosynthesis production of β-alanine in Escherichia coli, multivariate modular metabolic engineering was recruited to manipulate the β-alanine biosynthesis pathway through keeping the balance of metabolic flux among the whole metabolic network. The β-alanine biosynthesis pathway was separated into three modules: the β-alanine biosynthesis module, TCA module, and glycolysis module. Global regulation was performed throughout the entire β-alanine biosynthesis pathway rationally and systematically by optimizing metabolic flux, overcoming metabolic bottlenecks and weakening branch pathways. As a result, metabolic flux was channeled in the direction of β-alanine biosynthesis without huge metabolic burden, and 37.9 g/L β-alanine was generated by engineered Escherichia coli strain B0016-07 in fed-batch fermentation. This study was meaningful to the synthetic biology of β-alanine industrial production.
Collapse
|
7
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
8
|
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021; 11:biom11050725. [PMID: 34065948 PMCID: PMC8151747 DOI: 10.3390/biom11050725] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.
Collapse
|
9
|
Leonel LV, Arruda PV, Chandel AK, Felipe MGA, Sene L. Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Crit Rev Biotechnol 2021; 41:1131-1152. [PMID: 33938342 DOI: 10.1080/07388551.2021.1917505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Kluyveromyces marxianus is an ascomycetous yeast which has shown promising results in cellulosic ethanol and renewable chemicals production. It can survive on a variety of carbon sources under industrially favorable conditions due to its fast growth rate, thermotolerance, and acid tolerance. K. marxianus, is generally regarded as a safe (GRAS) microorganism, is widely recognized as a powerhouse for the production of heterologous proteins and is accepted by the US Food and Drug Administration (USFDA) for its pharmaceutical and food applications. Since lignocellulosic hydrolysates are comprised of diverse monomeric sugars, oligosaccharides and potential metabolism inhibiting compounds, this microorganism can play a pivotal role as it can grow on lignocellulosic hydrolysates coping with vegetal cell wall derived inhibitors. Furthermore, advancements in synthetic biology, for example CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats with Cas9)-mediated genome editing, will enable development of an engineered yeast for the production of biochemicals and biopharmaceuticals having a myriad of industrial applications. Genetic engineering companies such as Cargill, Ginkgo Bioworks, DuPont, Global Yeast, Genomatica, and several others are actively working to develop designer yeasts. Given the important traits and properties of K. marxianus, these companies may find it to be a suitable biocatalyst for renewable chemicals and fuel production on the large scale. This paper reviews the recent progress made with K. marxianus biotechnology for sustainable production of ethanol, and other products utilizing lignocellulosic sugars.
Collapse
Affiliation(s)
- L V Leonel
- Center of Exact and Technological Sciences - CCET, State University of West Paraná, Cascavel, Brazil
| | - P V Arruda
- Department of Bioprocess Engineering and Biotechnology - COEBB/TD, Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - A K Chandel
- Department of Biotechnology, School of Engineering of Lorena - EEL, University of São Paulo, Lorena, Brazil
| | - M G A Felipe
- Department of Biotechnology, School of Engineering of Lorena - EEL, University of São Paulo, Lorena, Brazil
| | - L Sene
- Center of Exact and Technological Sciences - CCET, State University of West Paraná, Cascavel, Brazil
| |
Collapse
|
10
|
Ding R, Luo L, Han R, Zhang M, Li T, Tang J, Huang S, Hong J. Rapid Production of a Novel Al(III) Dependent Bioflocculant Isolated From Raoultella ornithinolytica 160-1 and Its Application Combined With Inorganic Salts. Front Microbiol 2021; 11:622365. [PMID: 33510736 PMCID: PMC7835285 DOI: 10.3389/fmicb.2020.622365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
An efficient bioflocculant-producing strain, Raoultella ornithinolytica 160-1, was identified by 16S rRNA and mass spectrometry analyses. Rapid production of bioflocculant EPS-160 was obtained with 10.01 g/(L⋅d) after optimized by response surface methodology. With the aid of Al(III), more than 90% flocculation activity of EPS-160 at 8 mg/L dosage was achieved in 5 min. Thus, this novel Al(III) dependent bioflocculant was used in combined with chemical coagulants AlCl3 to remove kaolin suspensions and wastewater treatment. The results indicated that the addition of EPS-160 in aggregation system not only largely improved the flocculation ability than the individual use of chemical flocculant (over 30 percent), but also overcome the decrease of flocculation activity due to the overdose of AlCl3 and maintained the optimum dosage of AlCl3 in a wide range (11-23 mg/L). The zeta potentials and EPS-160 structure indicated that both charge neutralization and bridging were the flocculation mechanism with kaolin. During the wastewater treatment, this composite flocculants consisted of EPS-160 and AlCl3 also had great performance for turbidity elimination. Moreover, with the properties of high flocculation activity, hyperthermal stability, pH tolerance and non-toxicity, EPS-160 shows great potential applications.
Collapse
Affiliation(s)
- Rui Ding
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Laipeng Luo
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Ruixiang Han
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Meiling Zhang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Tingting Li
- Laboratory Department of Anhui Medical University, Hefei, China
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shenghai Huang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, China
| |
Collapse
|
11
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang B, Ren L, Zhao Z, Zhang S, Xu D, Zeng X, Li F. High temperature xylitol production through simultaneous co-utilization of glucose and xylose by engineered Kluyveromyces marxianus. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Kwon DH, Kim SB, Park, JB, Ha SJ. Overexpression of Mutant Galactose Permease ( ScGal2_N376F) Effective for Utilization of Glucose/Xylose or Glucose/ Galactose Mixture by Engineered Kluyveromyces marxianus. J Microbiol Biotechnol 2020; 30:1944-1949. [PMID: 33046681 PMCID: PMC9728301 DOI: 10.4014/jmb.2008.08035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Mutant sugar transporter ScGAL2-N376F was overexpressed in Kluyveromyces marxianus for efficient utilization of xylose, which is one of the main components of cellulosic biomass. K. marxianus ScGal2_N376F, the ScGAL2-N376F-overexpressing strain, exhibited 47.04 g/l of xylose consumption and 26.55 g/l of xylitol production, as compared to the parental strain (24.68 g/l and 7.03 g/l, respectively) when xylose was used as the sole carbon source. When a mixture of glucose and xylose was used as the carbon source, xylose consumption and xylitol production rates were improved by 195% and 360%, respectively, by K. marxianus ScGal2_N376F. Moreover, the glucose consumption rate was improved by 27% as compared to that in the parental strain. Overexpression of both wild-type ScGAL2 and mutant ScGAL2-N376F showed 48% and 52% enhanced sugar consumption and ethanol production rates, respectively, when a mixture of glucose and galactose was used as the carbon source, which is the main component of marine biomass. As shown in this study, ScGAL2-N376F overexpression can be applied for the efficient production of biofuels or biochemicals from cellulosic or marine biomass.
Collapse
Affiliation(s)
- Deok-Ho Kwon
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 2434, Republic of Korea,Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon 2441, Republic of Korea
| | - Saet-Byeol Kim
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 2434, Republic of Korea
| | - Jae-Bum Park,
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 2434, Republic of Korea
| | - Suk-Jin Ha
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 2434, Republic of Korea,Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 4341, Republic of Korea,Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon 2441, Republic of Korea,Corresponding author Phone: +82-33-250-6278 Fax: +82-33-243-6350 E-mail:
| |
Collapse
|
14
|
Cao M, Jiang T, Li P, Zhang Y, Guo S, Meng W, Lü C, Zhang W, Xu P, Gao C, Ma C. Pyruvate Production from Whey Powder by Metabolic Engineered Klebsiella oxytoca. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15275-15283. [PMID: 33300786 DOI: 10.1021/acs.jafc.0c06724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyruvate is an important platform material widely used in food, pharmaceutical, and chemical industries. Pyruvate-tolerant Klebsiella oxytoca PDL-0 was chosen as a chassis for pyruvate production via metabolic engineering. Genes related to by-product generation were knocked out to decrease the production of 2,3-butantediol, acetate, ethanol, and succinate. The NADH oxidase encoding gene nox was inserted into the locus of the lactate dehydrogenase encoding gene ldhD in the genome of K. oxytoca to simultaneously block lactate production and regenerate NAD+. The pyruvate importers CstA and YjiY were identified, and their encoding genes were deleted to increase pyruvate accumulation. The engineered strain K. oxytoca PDL-YC produced 71.0 g/L pyruvate from glucose. Furthermore, K. oxytoca PDL-YC can use whey powder, an abundant by-product of the cheese making process, as substrate for pyruvate production. Pyruvate production with a concentration of 62.3 g/L and a productivity of 1.60 g/[L·h] was realized using whey powder as substrate.
Collapse
Affiliation(s)
- Menghao Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Tongtong Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
- Tumen Inspection and Testing Center, Tumen, Jilin 133100, People's Republic of China
| | - Ping Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Yipeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Shiting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan 250033, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
15
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
16
|
Zhang B, Ren L, Wang H, Xu D, Zeng X, Li F. Glycerol uptake and synthesis systems contribute to the osmotic tolerance of Kluyveromyces marxianus. Enzyme Microb Technol 2020; 140:109641. [PMID: 32912693 DOI: 10.1016/j.enzmictec.2020.109641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022]
Abstract
The accumulation of glycerol is essential for yeast viability upon hyperosmotic stress. In this study, the STL1 homolog KmSTL1, encoding a putative glycerol transporter contributing to cell osmo-tolerance, was identified in Kluyveromyces marxianus NBRC1777. We constructed the KmSTL1, KmGPD1, and KmFPS1 single-deletion mutants and the KmSTL1/KmGPD1 and KmSTL1/KmFPS1 double-deletion mutants of K. marxianus. Deletion of KmSTL1 or KmGPD1 resulted in K. marxianus cell sensitization to hyperosmotic stress, whereas deletion of KmFPS1 improved stress tolerance. The expression of KmSTL1 was osmotically induced, whereas that of KmFPS1 was osmotically inhibited. The expression of KmGPD1 was constitutive and continuous in the ΔKmSTL1 mutant strain but inhibited in the ΔKmFPS1 mutant strain due to feedback suppression by glycerol. In summary, our findings indicated that K. marxianus would increase glycerol synthesis by increasing GPD1 expression, increase glycerol import from the extracellular environment by increasing STL1 expression, and reduce glycerol efflux by reducing FPS1 expression under hyperosmotic stress.
Collapse
Affiliation(s)
- Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Haonan Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xin Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
17
|
Zhang B, Ren L, Wang Y, Xu D, Zhang S, Wang H, Wang H, Zeng X, Xin B, Li F. Glycerol production through TPI1 defective Kluyveromyces marxianus at high temperature with glucose, fructose, and xylose as feedstock. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Zhang B, Ren L, Xu D, Wang H, Chen Z, Zhang B, Zeng X, Sun L, Li F. Directed evolution of RhlI to generate new and increased quorum sensing signal molecule catalytic activities. Enzyme Microb Technol 2020; 134:109475. [DOI: 10.1016/j.enzmictec.2019.109475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023]
|
19
|
Luo Q, Lu T, Xu J, Yang X, Zhou L. Conversion of Dihydroxyacetone to Methyl Pyruvate Catalyzed by Hybrid Molecular Sieves at Low Temperature: A Strategy for the Green Utilization of Glycerol. Catal Letters 2019. [DOI: 10.1007/s10562-019-03064-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Perpetuini G, Tittarelli F, Mattarelli P, Modesto M, Cilli E, Suzzi G, Tofalo R. Intraspecies polymorphisms of Kluyveromyces marxianus strains from Yaghnob valley. FEMS Microbiol Lett 2019; 365:4834011. [PMID: 29401260 DOI: 10.1093/femsle/fny028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, 29 strains of Kluyveromyces marxianus with peculiar genetic and phenotypic traits previously isolated from a fermented goat milk of Yaghnob valley were investigated for chromosome length polymorphism (CLP) by PFGE, adhesion properties and carbon usage by Biolog analysis. Obtained data showed that strains differed in terms of number and size of chromosome bands. The number of bands ranged from 5 to 7, suggesting a probable genome size from 1.4 to 2.6 Mb. Strains showed a certain level of cell surface hydrophobicity ranging from 32% to 77.7%. Strains were also tested for their ability to form a biofilm on polystyrene plates: planktonic cells ranged from 6.3 cfu/mL to 7.95 cfu/mL, while sessile from 7.11 cfu/mL to 8.6 cfu/mL. The strains able to adhere to polystyrene plates were also able to form a mature MAT. Biolog analysis revealed that almost all strains were able to use putrescine, malic acid, α-D lactose, phenylethylamine, β-methyl D-gucoside and xylose; 5 strains were able to grow on cellobiose and 3 were able to catabolise α-ketobutyric. The obtained data highlighted a number of interesting features underlying the peculiar capacities of these strains for industrial applications.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy.,Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Fabrizia Tittarelli
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy
| | - Paola Mattarelli
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Monica Modesto
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 42, I-40127 Bologna, Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, I-48121 Ravenna, Italy
| | | | - Rosanna Tofalo
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, Teramo 64100, Italy
| |
Collapse
|
21
|
Heo W, Kim JH, Kim S, Kim KH, Kim HJ, Seo JH. Enhanced production of 3-hydroxypropionic acid from glucose and xylose by alleviation of metabolic congestion due to glycerol flux in engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2019; 285:121320. [PMID: 30978585 DOI: 10.1016/j.biortech.2019.121320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Among platform chemicals obtained from renewable biomass, 3-hydroxypropionic acid (3-HP) has attracted considerable attention. A GC/TOF-MS study revealed that the intracellular metabolites of the TCA cycle and fatty acid synthesis increased in JHS01302, a galP-overexpressing strain of Escherichia coli, during glucose and xylose co-fermentation. Decreased intracellular glycerol levels and increased intracellular biosynthesis of 3-HP were also detected in the strain. Based on these results, the yeast GPD1 gene was replaced with the endogenous gpsA gene to modulate the rate of glycerol metabolism. In flask cultures, JHS01304 containing the gpsA gene displayed 43% lower glycerol accumulation and 52% higher 3-HP production than the control. JHS01304 produced 37.6 g/L 3-HP with a productivity rate of 0.63 g/L/h and yield of 0.17 g/g in the fed-batch fermentation. The metabolome analysis provided valuable information for alleviating the metabolic burden of glycerol flux to improve the production of 3-HP during glucose and xylose co-fermentation.
Collapse
Affiliation(s)
- Woong Heo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Hee Kim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Kyong Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyo Jin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
22
|
Kong X, Zhang B, Hua Y, Zhu Y, Li W, Wang D, Hong J. Efficient l-lactic acid production from corncob residue using metabolically engineered thermo-tolerant yeast. BIORESOURCE TECHNOLOGY 2019; 273:220-230. [PMID: 30447623 DOI: 10.1016/j.biortech.2018.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 05/26/2023]
Abstract
Lactic acid is an important industrial product and the production from inexpensive and renewable lignocellulose can reduce the cost and environmental pollution. In this study, a Kluyveromyces marxianus strain which produced lactic acid efficiently from corncob was constructed. Firstly, two of six different lactate dehydrogenases, which from Plasmodium falciparum and Bacillus subtilis, respectively, were proved to be effective for l-lactic acid production. Then, five single genetic modifications were conducted. The overexpression of Saccharomyces cerevisiae proton-coupled monocarboxylate transporter, K. marxianus 6-phosphofructokinase, or disruption of K. marxianus putative d-lactate dehydrogenase enhanced the l-lactic acid accumulation. Finally, the strain YKX071, obtained via combination of above effective genetic engineering, produced 103.00 g/L l-lactic acid at 42 °C with optical purity of 99.5% from corncob residue via simultaneous saccharification and co-fermentation. This study first developed an effective platform for high optical purity l-lactic acid production from lignocellulose using yeast with inexpensive nitrogen sources.
Collapse
Affiliation(s)
- Xin Kong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yan Hua
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Wenjie Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China.
| |
Collapse
|
23
|
Kamzolova SV, Morgunov IG. Biosynthesis of pyruvic acid from glycerol-containing substrates and its regulation in the yeast Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2018; 266:125-133. [PMID: 29960242 DOI: 10.1016/j.biortech.2018.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The ability of different yeasts to synthesize pyruvic acid (PA) from glycerol-containing substrates has been studied. The selected strain Yarrowia lipolytica VKM Y-2378 synthesized PA with α-ketoglutaric acid (KGA) as a byproduct. The content of KGA greatly depended on cultivation conditions. The minimal formation of the byproduct was provided by the limitation of yeast growth by thiamine (0.6 µg/g biomass); the use of ammonium sulfate (0.6%) as a nitrogen source; addition of glycerol to cultivation medium in 20 g/L portions; maintaining the cultivation temperature at 28 °C, pH of the cultivation medium at 4.5, and medium aeration between 55 and 60% of saturation; the optimal cultivation time was 48 h. The selected strain cultivated under such conditions in a fermenter with a waste glycerol from biodiesel production process synthesized 41 g/L PA with a yield of 0.82 g/g. The mechanism of PA production from glycerol-containing substrates in Y. lipolytica is discussed.
Collapse
Affiliation(s)
- Svetlana V Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Igor G Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia.
| |
Collapse
|
24
|
Yarrowia lipolytica application as a prospective approach for biosynthesis of pyruvic acid from glycerol. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0513-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Molecular and functional characterization of two pyruvate decarboxylase genes, PDC1 and PDC5, in the thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2018; 102:3723-3737. [DOI: 10.1007/s00253-018-8862-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
|
26
|
Lu T, Zou J, Zhan Y, Yang X, Wen Y, Wang X, Zhou L, Xu J. Highly Efficient Oxidation of Ethyl Lactate to Ethyl Pyruvate Catalyzed by TS-1 Under Mild Conditions. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03558] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tianliang Lu
- School
of Chemical Engineering and Energy, Zhengzhou University, 100 Kexue
Road, Zhengzhou 450001, People’s Republic of China
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, People’s Republic of China
| | - Junpeng Zou
- School
of Chemical Engineering and Energy, Zhengzhou University, 100 Kexue
Road, Zhengzhou 450001, People’s Republic of China
| | - Yuzhong Zhan
- School
of Chemical Engineering and Energy, Zhengzhou University, 100 Kexue
Road, Zhengzhou 450001, People’s Republic of China
| | - Xiaomei Yang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, People’s Republic of China
| | - Yiqiang Wen
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, People’s Republic of China
| | - Xiangyu Wang
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, People’s Republic of China
| | - Lipeng Zhou
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, People’s Republic of China
| | - Jie Xu
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| |
Collapse
|
27
|
Jin YS, Cate JHD. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr Opin Chem Biol 2017; 41:99-106. [DOI: 10.1016/j.cbpa.2017.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023]
|
28
|
Zeng W, Zhang H, Xu S, Fang F, Zhou J. Biosynthesis of keto acids by fed-batch culture of Yarrowia lipolytica WSH-Z06. BIORESOURCE TECHNOLOGY 2017; 243:1037-1043. [PMID: 28764105 DOI: 10.1016/j.biortech.2017.07.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Both α-ketoglutarate (α-KG) and pyruvate (PYR) are important organic acids with promising applications in the food, pharmaceutical and chemical industries. During the production of α-KG by different microorganisms, PYR is always present as a by-product. Strategies have been applied to eliminate PYR accumulation since it can bring difficulties to the downstream separation process. However, modern separation technologies have already conquered this problem. Therefore, this study was aimed at simultaneously enhancing α-KG and PYR production by Yarrowia lipolytica WSH-Z06. Using a fed-batch strategy, in which the initial glycerol concentration was 50g·L-1, the residual glycerol concentration was maintained 20-30g·L-1 by constant feeding at a rate of 1.25g·L-1·h-1. The titers of α-KG and PYR were increased by 9.6% and 176.8%, and reached 67.4g·L-1 and 39.1g·L-1, respectively. The final yield of keto acids was 0.71g·g-1 glycerol, which is 42.0% higher than that of the optimal batch fermentation.
Collapse
Affiliation(s)
- Weizhu Zeng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hailin Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Fang Fang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
29
|
Maleki N, Safari M, Eiteman MA. Conversion of glucose-xylose mixtures to pyruvate using a consortium of metabolically engineered Escherichia coli. Eng Life Sci 2017; 18:40-47. [PMID: 32624859 DOI: 10.1002/elsc.201700109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 11/12/2022] Open
Abstract
Two strains of Escherichia coli were engineered to accumulate pyruvic acid from two sugars found in lignocellulosic hydrolysates by knockouts in the aceE, ppsA, poxB, and ldhA genes. Additionally, since glucose and xylose are typically consumed sequentially due to carbon catabolite repression in E. coli, one strain (MEC590) was engineered to grow only on glucose while a second strain (MEC589) grew only on xylose. On a single substrate, each strain generated pyruvate at a yield of about 0.60 g/g in both continuous culture and batch culture. In a glucose-xylose mixture under continuous culture, a consortium of both strains maintained a pyruvate yield greater than 0.60 g/g when three different concentrations of glucose and xylose were sequentially fed into the system. In a fed-batch process, both sugars in a glucose-xylose mixture were consumed simultaneously to accumulate 39 g/L pyruvate in less than 24 h at a yield of 0.59 g/g.
Collapse
Affiliation(s)
- Neda Maleki
- Department of Food Science Engineering and Technology University of Tehran Karaj Iran.,School of Chemical, Materials and Biomedical Engineering University of Georgia Athens GA USA
| | - Mohammad Safari
- Department of Food Science Engineering and Technology University of Tehran Karaj Iran
| | - Mark A Eiteman
- School of Chemical, Materials and Biomedical Engineering University of Georgia Athens GA USA
| |
Collapse
|
30
|
|