1
|
Zhang Y, Gu X, Sun S, Yan P, Fan Y, Xi Y, He S. Trade-off between electrochemical and microbial nutrient eliminations in iron anode-assisted constructed wetlands: The specificity of voltage level. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124623. [PMID: 39983578 DOI: 10.1016/j.jenvman.2025.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Holistic understanding of electrocatalytic behaviors and microbiological mechanisms respond to voltage level (VL) benefits constructing performance-pathway-community linkages in iron anode-assisted constructed wetlands (IACWs). Herein, five solar-driven IACWs at 0, 1, 5, 10, and 15 V were established to treat secondary effluent for 109 days across moderate to low water temperatures (WTs). Results showed that total nitrogen (TN) (4.87-54.42%) and total phosphorus (TP) (20.66-97.35%) removals both ascended as VL raised, which primarily occurred in the cathodic regions and anodic upstream, respectively. More sustainable nitrogen elimination was achieved at lower VLs (≤ 5 V). Electrochemical contribution quantification revealed that electrochemical denitrogenation strengthened as VL improved (144.3-965.7 mg m-2 d-1), whereas severe anodic hardening and cathodic clogging in later operation impaired the dominant electrochemical denitrification at higher VLs (≥ 10 V). In contrast, microbial denitrogenation followed hump-shaped variational pattern with rising VL (peaked at 5 V). Microbial community and function analyses further clarified that despite VL elevation induced denitrifying microbiota evolution and up-regulated functional gene abundance, microbial denitrification function was significantly constrained at higher VLs. Particularly, the highest network complexity (at 1 V) and modularity (at 5 V) bred IACWs to better withstand low WT and high iron concentration. Overall, 5 V balanced electrochemical and microbial denitrogenation to obtain persistently effective TN removal. Additionally, intensified electro-coagulation dephosphorization was verified to remove most TP via adsorption and co-precipitation. This work provided a preferred VL regulation strategy to facilitate in situ sustainable nutrient purification of low-polluted wastewater in IACWs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yang Xi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
2
|
Nie Y, Yuan S, Zhang S, Peng G, Wang Q, Xie Y, Ming T, Wang Z. Microbial interactions elucidate the mechanisms of hydraulic retention time altering denitrification pathway in a sole pyrite-based electrochemical bioreactor (PEBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124467. [PMID: 39923637 DOI: 10.1016/j.jenvman.2025.124467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
In the current context of low-carbon wastewater treatment, pyrite-based autotrophic denitrification (PAD) has gained attention as an energy-efficient and environmentally sustainable method for nitrogen elimination. However, the limited dissolution of pyrite and the associated slow autotrophic denitrification rate restrict its practical application. To tackle this, a pyrite-based electrochemical bioreactor (PEBR) was constructed and the microbial effect of hydraulic retention time (HRT) on denitrification efficiency and sulfide or iron oxidation in the PEBR system was investigated. It was found that upon the conclusion of phase V (HRT = 12 h), the nitrate removal efficiency (NRE) reached 92.53% ± 0.96%, and the concentration of NH4+-N in the effluent reached 2.63 ± 0.57 mg/L with a minimal accumulation of NO2--N (0.03 ± 0.05 mg/L) when the optimal treatment performance was obtained. As the HRT increased, the proportion of heterotrophic denitrification decreased substantially to 1%. Desulfobacterota, a sulfate-reducing bacteria (SRB), became dominant, with a relative abundance ranging from 0.04% to 19.44%. The PAD-related genera, such as Thiobacillus and Ferritrophicum, exhibited a positive correlation with HRT, indicating that PAD was enhanced with the extension of HRT. The functional genes related to Fe2+ intracellular oxidation (e.g., korA/B) positively correlated with HRT. The positive correlation of dsrA/B with HRT highlighted the role of dissimilatory sulfate reduction (DSR) as a primary contributor to reduced sulfate production. Furthermore, the variations in the relative abundance of aprA/B for sulfate reduction with the extension of HRT reflected that HRT affected sulfate reduction probably via the APS→SO32- process. This study might shed light on the optimization of HRT in PEBR for the treatment of nitrogenous wastewater.
Collapse
Affiliation(s)
- Yuhu Nie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Sicheng Yuan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Gang Peng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qinglong Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufan Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Tingzhen Ming
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
3
|
Xia M, Li X, Zhang M, Li Y, Wu J. Effect of root exudation on community structure of rhizosphere microorganism of three macrophytes during treating swine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124551. [PMID: 39954503 DOI: 10.1016/j.jenvman.2025.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Macrophytes not only directly absorb nitrogen (N) from wastewater, but also influence N removal processes. They were achieved by microorganisms in rhizosphere through root exudations and oxygen secretion. However, changes of root exudes and rhizosphere microbial community structure in macrophytes in high N wastewater are still unclear. Objectives of this study were to investigate effects of dissolved organic carbon (DOC) and organic acids (OA) on composition and diversity of microbial communities across three macrophytes during treating swine wastewater. Result showed that secretion rates of DOC and total organic acid (TOA) displayed an increasing trend with extended experimental times in Pontederia cordata and Iris pseudacorus rhizosphere, while it presented a decline trend in Canna indica rhizosphere. Preponderant phyla in rhizosphere were Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Genera Geobacter enriched in I. pseudacorus rhizosphere, while unidentified_Cyanobacteria enriched in P. cordata rhizosphere. Diversity and richness of microbial communities in C. indica and P. cordata rhizosphere at different experimental periods showed no significant differences (P > 0.05). However, diversity of microbial community increased in I. pseudacorus rhizosphere. Although interactions among microorganisms reduced, they became more mutualistic after treating swine wastewater. Concentration of NH4+-N and total nitrogen (TN), pH, dissolved oxygen (DO) in swine wastewater, malonic acid and succinic acid released by roots enhanced N cycle functions of microbial community. The results contribute to further comprehension of the mechanism of N removal in rhizosphere during treating swine wastewater.
Collapse
Affiliation(s)
- Menghua Xia
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.
| | - Miaomiao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Bhaduri S, Behera M. Advancement in constructed wetland microbial fuel cell process for wastewater treatment and electricity generation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50056-50075. [PMID: 39102132 DOI: 10.1007/s11356-024-34574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
The constructed wetland coupled with a microbial fuel cell (CW-MFC) is a wastewater treatment process that combines contaminant removal with electricity production, making it an environmentally friendly option. This hybrid system primarily relies on anaerobic bioprocesses for wastewater treatment, although other processes such as aerobic bioprocesses, plant uptake, and chemical oxidation also contribute to the removal of organic matter and nutrients. CW-MFCs have been successfully used to treat various types of wastewater, including urban, pharmaceutical, paper and pulp industry, metal-contaminated, and swine wastewater. In CW-MFC, macrophytes such as rice plants, Spartina angalica, Canna indica, and Phragmites australis are used. The treatment process can achieve a chemical oxygen demand removal rate of between 80 and 100%. Initially, research focused on enhancing power generation from CW-MFC, but recent studies have shifted towards resource recovery from wastewater. This review paper provides an overview of the development of constructed wetland microbial fuel cell technology, from its early stages to its current applications. The paper also highlights research gaps and potential directions for future research.
Collapse
Affiliation(s)
- Soumyadeep Bhaduri
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India
| | - Manaswini Behera
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
5
|
Wu P, Yang F, Lian J, Chen B, Wang Y, Meng G, Shen M, Wu H. Elucidating distinct roles of chemical reduction and autotrophic denitrification driven by three iron-based materials in nitrate removal from low carbon-to-nitrogen ratio wastewater. CHEMOSPHERE 2024; 361:142470. [PMID: 38810802 DOI: 10.1016/j.chemosphere.2024.142470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Effective nitrate removal is a key challenge when treating low carbon-to-nitrogen ratio wastewater. How to select an effective inorganic electron donor to improve the autotrophic denitrification of nitrate nitrogen has become an area of intense research. In this study, the nitrate removal mechanism of three iron-based materials in the presence and absence of microorganisms was investigated with Fe2+/Fe0 as an electron donor and nitrate as an electron acceptor, and the relationship between the iron materials and denitrifying microorganisms was explored. The results indicated that the nitrogen removal efficiency of each iron-based material coupled sludge systems was higher than that of iron-based material. Furthermore, compared with the sponge iron coupled sludge system (60.6%-70.4%) and magnetite coupled sludge (56.1%-65.3%), the pyrite coupled sludge system had the highest removal efficiency of TN, and the removal efficiency increased from 62.5% to 82.1% with time. The test results of scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction indicated that iron-based materials promoted the attachment of microorganisms and the chemical reduction of nitrate in three iron-based material coupled sludge systems. Furthermore, the pyrite coupled sludge system had the highest nitrite reductase activity and can induce microorganisms to secrete more extracellular polymer substances. Combined with high-throughput sequencing and PICRUSt2 functional predictive analysis software, the total relative abundance of the dominant bacterial in pyrite coupled sludge system was the highest (72.06%) compared with the other iron-based material systems, and the abundance of Blastocatellaceae was relatively high. Overall, these results suggest that the pyrite coupled sludge system was more conducive to long-term stable nitrate removal.
Collapse
Affiliation(s)
- Pei Wu
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Bo Chen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Yulai Wang
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Guanhua Meng
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Maocai Shen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
6
|
Xu D, Huang M, Xu L, Li Z. Salinity-driven nitrogen removal and bacteria community compositions in microbial fuel cell-integrated constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47189-47200. [PMID: 38990258 DOI: 10.1007/s11356-024-34275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The effects of salinity gradients (500-4000 mg·L-1 NaCl) on electricity generation, nitrogen removal, and microbial community were investigated in a constructed wetland-microbial fuel cell (CW-MFC) system. The result showed that power density significantly increased from 7.77 mW m-2 to a peak of 34.27 mW m-2 as salinity rose, indicating enhanced electron transfer capabilities under saline conditions. At a moderate salinity level of 2000 mg·L-1 NaCl, the removal efficiencies of NH4+-N and TN reached their maximum at 77.34 ± 7.61% and 48.45 ± 8.14%, respectively. This could be attributed to increased microbial activity and the presence of critical nitrogen-removal organisms, such as Nitrospira and unclassified Betaproteobacteria at the anode, as well as Bacillus, unclassified Rhizobiales, Sphingobium, and Simplicispira at the cathode. Additionally, this salinity corresponded with the highest abundance of Exiguobacterium (3.92%), a potential electrogenic bacterium, particularly at the cathode. Other microorganisms, including Geobacter, unclassified Planctomycetaceae, and Thauera, adapted well to elevated salinity, thereby enhancing both electricity generation and nitrogen removal.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Mingyi Huang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Linghong Xu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Zebing Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
7
|
Fang F, Yang J, Chen LL, Xu RZ, Luo JY, Ni BJ, Cao JS. Mixotrophic denitrification of waste activated sludge fermentation liquid as an alternative carbon source for nitrogen removal: Reducing N 2O emissions and costs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121348. [PMID: 38824891 DOI: 10.1016/j.jenvman.2024.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 €/m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jie Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ling-Long Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
8
|
Yang Z, Shi S, He X, Cao M, Lin H, Fu J, Zhou J. High-efficient nutrient removal in a single-stage electrolysis-integrated sequencing batch biofilm reactor (E-SBBR) for low C/N sanitary sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119848. [PMID: 38113787 DOI: 10.1016/j.jenvman.2023.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
To efficiently remove nutrients from low C/N sanitary sewage by conventional biological process is challenging due to the lack of sufficient electron donors. A novel electrolysis-integrated sequencing batch biofilm reactor (E-SBBR) was established to promote nitrogen and phosphorus removal for sanitary sewage with low C/N ratios (3.5-1.5). Highly efficient removal of nitrogen (>79%) and phosphorus (>97%) was achieved in the E-SBBR operating under alternating anoxic/electrolysis-anoxic/aerobic conditions. The coexistence of autotrophic nitrifiers, electron transfer-related bacteria, and heterotrophic and autohydrogenotrophic denitrifiers indicated synergistic nitrogen removal via multiple nitrogen-removing pathways. Electrolysis application induced microbial anoxic ammonia oxidation, autohydrogenotrophic denitrification and electrocoagulation processes. Deinococcus enriched on the electrodes were likely to mediate the electricity-driven ammonia oxidation which promoted ammonia removal. PICRUSt2 indicated that the relative abundances of key genes (hyaA and hyaB) associated with hydrogen oxidation significantly increased with the decreasing C/N ratios. The high autohydrogenotrophic denitrification rates during the electrolysis-anoxic period could compensate for the decreased heterotrophic rates resulting from insufficient carbon sources and nitrate removal was dramatically enhanced. Electrocoagulation with iron anode was responsible for phosphorus removal. This study provides insights into mechanisms by which electrochemically assisted biological systems enhance nutrient removal for low C/N sanitary sewage.
Collapse
Affiliation(s)
- Zhi Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hong Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jiahao Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
9
|
Xia J, Li Y, Jiang X, Chen D, Shen J. The humic substance analogue antraquinone-2, 6-disulfonate (AQDS) enhanced zero-valent iron based autotrophic denitrification: Performances and mechanisms. ENVIRONMENTAL RESEARCH 2023; 238:117241. [PMID: 37778602 DOI: 10.1016/j.envres.2023.117241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Zero-valent iron based autotrophic denitrification (ZVI-AD) has attracted increasing attentions in nitrate removal due to saving organic carbon budget in wastewater treatment, but limited by the low reaction speed, poor electron transfer efficiency as well as the compaction/blocking by iron hydrolysis products. Humic substances (HS) were promising to regulate iron cycle and accelerate electron transfer by serving as electron mediators. In this study, HS analogue, antraquinone-2, 6-disulfonate (AQDS), was added to enhance ZVI-AD process. Results showed that the dosage of AQDS led to a NO3--N removal efficiency of 83.37 ± 3.98% within 96 h, which was 32.28 ± 1.25% higher than that in ZVI-AD system. The corrosion of ZVI and microbially nitrate reduction were both improved at the presence of AQDS. The addition of AQDS enriched the functional species, including autotrophic denitrobacteria namely Thauera and Hydrogenophaga, iron redox-related species namely Ferruginibacter and HS respiration related species namely Flavobacterium. The genes napA and napB related to electron transfer, nirK and nosZ related to the accumulation of intermediate products were also enriched by the addition of AQDS. AQDS addition boosted the electrons flowing to both abiotic and biotic nitrate reduction. Nitrate removal mechanism involved in ZVI-AQDS coupled system was proposed. This study provided an alternative strategy for improving ZVI-AD by HS.
Collapse
Affiliation(s)
- Jiaohui Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
10
|
Xiong X, Li Y, Yang X, Huang Z, Zhou T, Wang D, Li Z, Wang X. Long-term effect of light rare earth element neodymium on Anammox process. ENVIRONMENTAL RESEARCH 2023; 235:116686. [PMID: 37467943 DOI: 10.1016/j.envres.2023.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
During the mining of rare earth minerals, the application of neodymium-containing manures, and the treatment of spent neodymium iron boron magnet, the generation of ammonia wastewater containing neodymium is increasing. Thus, the effects of neodymium (Nd(III)) on anaerobic ammonium oxidation (Anammox) were investigated from the aspects of performance, kinetics, statistics, microbial community and sludge morphology, and the recovery strategy of EDTA-2Na wash was discussed. The nitrogen removal efficiency of the Anammox reactor decreased significantly and eventually collapsed at the Nd(III) dosing levels of 20 and 40 mg L-1, respectively. And the toxicity of Nd(III) to AnAOB was determined by the amount internalized into the cells. The EDTA-2Na wash successfully increased the total nitrogen removal rate (TNRR) of Nd(III)-inhibited Anammox to 41.60% of its initial value within 30 days, and the modified Boltzmann model accurately simulated this recovery process. The transient and extended effects of Nd(III), self-recovery, and EDTA-2Na wash on Anammox were effectively assessed using a one-sample t-test. 16S rRNA gene sequencing indicated that Nd(III) remarkably decreased the relative abundance of Planctomycetes and Candidatus Brocadia. The scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) revealed crystal-like neodymium particles on the surface of Anammox sludge. The above-mentioned results demonstrate that the concentration of Nd(III) should be below the toxicity threshold (20 mg L-1) when treating ammonia wastewater containing neodymium by Anammox, and also emphasize the importance of an appropriate recovery strategy.
Collapse
Affiliation(s)
- Xingxing Xiong
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Yun Li
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China.
| | - Xin Yang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Zhiyuan Huang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Tong Zhou
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Dongliang Wang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Zebing Li
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Xiujie Wang
- Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| |
Collapse
|
11
|
Wang S, Li J, Wang W, Zhou C, Chi Y, Wang J, Li Y, Zhang Q. An overview of recent advances and future prospects of three-dimensional biofilm electrode reactors (3D-BERs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118192. [PMID: 37285769 DOI: 10.1016/j.jenvman.2023.118192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
Three-dimensional biofilm electrode reactors (3D-BERs) have attracted extensive attention in recent years due to their wide application range, high efficiency and energy saving. On the basis of traditional bio-electrochemical reactor, 3D-BERs are filled with particle electrodes, also known as the third electrodes, which can not only be used as a carrier for microbial growth, but also improve the electron transfer rate of the whole system. This paper reviews the constitution, advantages and basic principles of 3D-BERs as well as current research status and progress of 3D-BERs in recent years. The selection of electrode materials, including cathode, anode and particle electrode are listed and analyzed. Different constructions of reactors, like 3D-unipolar extended reactor and coupled 3D-BERs are introduced and discussed. Various contaminants degraded by 3D-BERs including nitrogen, azo dyes, antibiotics and the others are calculated and the corresponding degradation effects are described. The influencing factors and mechanisms are also introduced. At the same time, according to the research advances of 3D-BERs, the shortcomings and weakness of this technology in the current research process are analyzed, and the future research direction of this technology is prospected. This review aims to summarize recent studies of 3D-BERs in bio-electrochemical reaction and open a bright window to this booming research theme.
Collapse
Affiliation(s)
- Siyuan Wang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Jianchen Li
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Wenjun Wang
- School of Resources and Environment, Carbon Neutralization Research Institute, Hunan University of Technology and Business, Changsha, 410205, China.
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanfeng Chi
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China.
| | - Jianhui Wang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Youcai Li
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| | - Qingbo Zhang
- CCCC National Engineering Research, Center of Dredging Technology and Equipment Co. Ltd, 1088 Yangshupu Road, Shanghai, 200082, China
| |
Collapse
|
12
|
Zhao X, Xie E. Reclaimed water influences bacterioplankton and bacteriobenthos communities differently in river networks. WATER RESEARCH 2023; 243:120389. [PMID: 37494747 DOI: 10.1016/j.watres.2023.120389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Reclaimed water reuse is a promising strategy for addressing water scarcity; however, its potential ecological impact remains largely unknown. In particular, the differential effects of reclaimed water on microbial communities in various habitats remain poorly understood. Here, we aimed to elucidate the distinct effects of reclaimed water on bacterioplankton and bacteriobenthos communities in reclaimed water-receiving river networks from multiple perspectives, including community structure, co-occurrence patterns, assembly mechanisms, and nitrogen cycle function. Significant differences in microbial composition were observed between the plankton and benthic habitats, and the average numbers of amplicon sequence variants (ASVs) that originated from the wastewater treatment plants (WWTP) sites were 310.0 and 613.3, respectively, indicating a stronger association between WWTP and benthic habitats. Random forest and network co-occurrence analyses identified the genus Clostridium_sensu_stricto as a biomarker and key module hub. The assembly of bacteriobenthos communities was driven primarily by deterministic processes (58.74% for River-S and 58.94% for WWTP-S), whereas for bacterioplankton communities, this proportion was reduced to 18.02% (River-W) and 19.09% (WWTP-W). The qPCR revealed a large difference in abundance between the N cycling related genes of bacteriobenthos (average 2.47 × 106 copies/ng) and bacterioplankton (average 3.11 × 103 copies/ng) communities, and different interaction patterns with functional genes. Variance partitioning analysis (VPA) indicated that nitrogen was the most important pollutant, affecting the structure and ecological functions of microbial communities. Moreover, pathway analysis suggested that the reuse of reclaimed water may have enhanced the N-cycling functions of microbial communities and the emission of nitrous oxide.
Collapse
Affiliation(s)
- Xiaohui Zhao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, PR China; Engineering Research Center of Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
13
|
Shi W, Zhang Z, Xiong J, Zhou J, Liang L, Liu Y. Influence of double-layer filling structure on nitrogen removal and internal microbial distribution in bioretention cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117901. [PMID: 37043914 DOI: 10.1016/j.jenvman.2023.117901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The nitrogen removal effect of traditional bioretention cells on runoff rainwater is not stable. The nitrogen removal effect of bioretention cells can be improved by setting up a layered filling structure, but the effect of changes in filling structure on the nitrogen removal process and microbial community characteristics is still unclear. Two types of porosity fillers were set up in the experiment, and a homogeneous bioretention cell and three bioretention cells with layered fillers were constructed by changing the depth range of the upper and lower layers to analyze the influence of the pore variation of different depth fillers on the nitrogen removal process and microbial community characteristics. The experimental results showed that, compared with the homogeneous filing structure, the layered filling structure can strengthen the adsorption of NH4+-N and the conversion of NO3--N, so as to increase the removal rates of NH4+-N and NO3--N by 20.71-81.56% and 9.25%-78.19%, respectively. Although the low porosity filler structure will reduce the nitrification activity and urease activity by 48.63%-66.68% and 8.00%-20.64% respectively, it can increase the denitrification activity by 19.14%-31.92%, thus significantly reducing the nitrate content in the filler. The low porosity filler structure can affect the growth and reproduction of various phylum bacteria such as Proteobacteria, Chloroflexi, Acidobacteria, and genus bacteria such as Nitrospira, Ellin6067, Rhizobacter, Pseudomonas, which can improve the diversity and richness of microorganisms.
Collapse
Affiliation(s)
- Weipeng Shi
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zinuo Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Lipeng Liang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yanzheng Liu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an University of Architecture and Technology and University of South Australia, An De College, Xi'an, 710055, China
| |
Collapse
|
14
|
Che J, Wu Y, Yang H, Wang S, Wu W, Lyu L, Wang X, Li W. Root Niches of Blueberry Imprint Increasing Bacterial-Fungal Interkingdom Interactions along the Soil-Rhizosphere-Root Continuum. Microbiol Spectr 2023; 11:e0533322. [PMID: 37222589 PMCID: PMC10269492 DOI: 10.1128/spectrum.05333-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Plant root-associated microbiomes play critical roles in promoting plant health, productivity, and tolerance to biotic/abiotic stresses. Blueberry (Vaccinium spp.) is adapted to acidic soils, while the interactions of the root-associated microbiomes in this specific habitat under various root microenvironments remain elusive. Here, we investigated the diversity and community composition of bacterial and fungal communities in various blueberry root niches (bulk soil, rhizosphere soil, and root endosphere). The results showed that blueberry root niches significantly affected root-associated microbiome diversity and community composition compared to those of the three host cultivars. Deterministic processes gradually increased along the soil-rhizosphere-root continuum in both bacterial and fungal communities. The co-occurrence network topological features showed that both bacterial and fungal community complexity and intensive interactions decreased along the soil-rhizosphere-root continuum. Different compartment niches clearly influenced bacterial-fungal interkingdom interactions, which were significantly higher in the rhizosphere, and positive interactions gradually dominated the co-occurrence networks from the bulk soil to the endosphere. The functional predictions showed that rhizosphere bacterial and fungal communities may have higher cellulolysis and saprotrophy capacities, respectively. Collectively, the root niches not only affected microbial diversity and community composition but also enhanced the positive interkingdom interactions between bacterial and fungal communities along the soil-rhizosphere-root continuum. This provides an essential basis for manipulating synthetic microbial communities for sustainable agriculture. IMPORTANCE The blueberry root-associated microbiome plays an essential role in its adaptation to acidic soils and in limiting the uptake of soil nutrients by its poor root system. Studies on the interactions of the root-associated microbiome in the various root niches may deepen our understanding of the beneficial effects in this particular habitat. Our study extended the research on the diversity and composition of microbial communities in different blueberry root compartment niches. Root niches dominated the root-associated microbiome compared to that of the host cultivar, and deterministic processes increased from the bulk soil to the endosphere. In addition, bacterial-fungal interkingdom interactions were significantly higher in the rhizosphere, and those positive interactions progressively dominated the co-occurrence network along the soil-rhizosphere-root continuum. Collectively, root niches dominantly affected the root-associated microbiome and the positive interkingdom interactions increased, potentially providing benefits for the blueberry.
Collapse
Affiliation(s)
- Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shaoyi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Xiaomin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Zhou X, Cheng T, Yu J, Sheng M, Ma X, Cao Y. Responses of sediment nitrogen forms and bacterial communities to different aquatic nitrogen conditions in three submerged macrophyte-type ecological treatment systems. ENVIRONMENTAL RESEARCH 2023:116322. [PMID: 37321338 DOI: 10.1016/j.envres.2023.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Ecological treatment system (ETS) is a promising technology for mitigating agricultural non-point pollution. However, the responses of sediment nitrogen (N) forms and bacterial communities to different aquatic N conditions during the treatment procedure are currently unknown. Therefore, a four-month microcosm experiment was conducted to investigate the effects of three aquatic N conditions (2 mg/L NH4+-N, 2 mg/L NO3--N and 1 mg/L NH4+-N + 1 mg/L NO3--N) on sediment N forms and bacterial communities in three ETSs vegetated by Potamogeton malaianus, Vallisneria natans and artificial aquatic plant, respectively. Four transferable N fractions were monitored, and the valence state of N in ion-exchange and weak acid extractable fractions were mainly determined by aquatic N conditions, while significant N accumulation was observed only in strong oxidant extractable and strong alkali extractable fractions. Sediment N profiles were primarily influenced by time and plant type, with N condition having secondary effect. Moreover, sediment bacterial community structures experienced a significant shift over time and were slightly influenced by plant type. Functional genes related to N fixation, nitrification, assimilable nitrate reduction, dissimilatory nitrite reduction (DNRA) and denitrification were substantially enriched in month 4. Additionally, the sediment bacterial co-occurrence network exhibited less complexity but more stability under NO3- condition compared to others. Furthermore, certain sediment N fractions were found to have strong relationships with specific sediment bacteria, such as nitrifiers, denitrifiers and DNRA bacteria. Our findings highlight the significant influence of aquatic N condition in submerged macrophyte-type ETSs on sediment N forms and bacterial communities.
Collapse
Affiliation(s)
- Xinyan Zhou
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Tiehan Cheng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Jiaming Yu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Mengting Sheng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xuelian Ma
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yucheng Cao
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
16
|
Hou X, Chu L, Wang Y, Song X, Liu Y, Li D, Zhao X. Microelectrolysis-integrated constructed wetland with sponge iron filler to simultaneously enhance nitrogen and phosphorus removal. BIORESOURCE TECHNOLOGY 2023:129270. [PMID: 37290705 DOI: 10.1016/j.biortech.2023.129270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Integrating sponge iron (SI) and microelectrolysis individually into constructed wetlands (CWs) to enhance nitrogen and phosphorus removal are challenged by ammonia (NH4+-N) accumulation and limited total phosphorus (TP) removal efficiency, respectively. In this study, a microelectrolysis-assisted CW using SI as filler surrounding the cathode (e-SICW) was successfully established. Results indicated that e-SICW reduced NH4+-N accumulation and intensified nitrate (NO3--N), the total nitrogen (TN) and TP removal. The concentration of NH4+-N in the effluent from e-SICW was lower than that from SICW in the whole process with 39.2-53.2 % decrease, and as the influent NO3--N concentration of 15 mg/L and COD/N ratio of 3, the removal efficiencies of NO3--N, TN and TP in e-SICW achieved 95.7 ± 1.9 %, 79.8 ± 2.5 % and 98.0 ± 1.3 %, respectively. Microbial community analysis revealed that hydrogen autotrophic denitrifying bacteria of Hydrogenophaga was highly enriched in e-SICW.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Linglong Chu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Yifei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Yingying Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Dongpeng Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
17
|
Zhou M, Cao J, Qiu Y, Lu Y, Guo J, Li C, Wang Y, Hao L, Ren H. Performance and mechanism of sacrificed iron anode coupled with constructed wetlands (E-Fe) for simultaneous nitrogen and phosphorus removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51245-51260. [PMID: 36809628 DOI: 10.1007/s11356-023-25860-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/06/2023] [Indexed: 04/16/2023]
Abstract
Three anodic biofilm electrode coupled CWs (BECWs) with graphite (E-C), aluminum (E-Al), and iron (E-Fe), respectively, and a control system (CK) were constructed to evaluate the removal performance of N and P in the secondary effluent of wastewater treatment plants (WWTPs) under different hydraulic retention time (HRT), electrified time (ET), and current density (CD). Microbial communities, and different P speciation, were analyzed to reveal the potential removal pathways and mechanism of N and P in BECWs. Results showed that the optimal average TN and TP removal rates of CK (34.10% and 55.66%), E-C (66.77% and 71.33%), E-Al (63.46% and 84.93%), and E-Fe (74.93% and 91.22%) were obtained under the optimum conditions (HRT 10 h, ET 4 h, CD 0.13 mA/cm2), which demonstrated that the biofilm electrode could significantly improve N and P removal. Microbial community analysis showed that E-Fe owned the highest abundance of chemotrophic Fe(II) (Dechloromonas) and hydrogen autotrophic denitrifying bacteria (Hydrogenophaga). N was mainly removed by hydrogen and iron autotrophic denitrification in E-Fe. Moreover, the highest TP removal rate of E-Fe was attributed to the iron ion formed on the anode, causing co-precipitation of Fe(II) or Fe(III) with PO43--P. The Fe released from the anode acted as carriers for electron transport and accelerated the efficiency of biological and chemical reactions to enhance the simultaneous removal of N and P. Thus, BECWs provide a new perspective for the treatment of the secondary effluent from WWTPs.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
- Henan Yongze Environmental Technology Co., Ltd, Zhengzhou, 451191, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuanyuan Qiu
- Henan Yongze Environmental Technology Co., Ltd, Zhengzhou, 451191, China
| | - Yanhong Lu
- Henan Yongze Environmental Technology Co., Ltd, Zhengzhou, 451191, China
| | - Jinyan Guo
- Henan Yongze Environmental Technology Co., Ltd, Zhengzhou, 451191, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yantang Wang
- Henan Yongze Environmental Technology Co., Ltd, Zhengzhou, 451191, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Hongqiang Ren
- College of Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
18
|
Wang D, Xu S, Zhou S, Wang S, Jiang C, Sun B, Wang X, Yang D, Zuo J, Wang H, Zhuang X. Partial nitrification in free nitrous acid-treated sediment planting Myriophyllum aquaticum constructed wetland strengthens the treatment of black-odor water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157287. [PMID: 35835191 DOI: 10.1016/j.scitotenv.2022.157287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Black-odor water pollution in rural areas, especially swine wastewater, can lead to the deterioration of water quality and thus seriously affect the daily life of people in the area. However, there is a lack of effective treatment measures with simultaneous attention to carbon, nitrogen and sulfur pollution in rural black-odor water bodies. This study evaluated the feasibility of an in-situ pilot-scale constructed wetland (CW) for the synchronous removal of COD, ammonium, and sulfur compounds in the swine wastewater. In this study, the operation strategy of CW sediment pretreated with free nitrous acid (FNA) and Myriophyllum aquaticum plantation was established. Throughout the 114-day operation, the total removal efficiencies of COD and ammonium nitrogen in experimental groups were 81.2 ± 4.2 % and 72.8 ± 1.8 %, respectively, which were significantly higher than CW without any treatment. Removal efficiencies of Sulfur compounds, i.e. sulfide, sulfate, thiosulfate, and sulfite, were 92.3 ± 1.9 % (61.2 % higher than the no-treatment group), 42.1 ± 3.8 %, 97.9 ± 1.7 %, and 42.7 ± 4.5 % respectively. High-throughput sequencing and qPCR revealed that experimental group significantly increased denitrification genes (nirK, nosZ) and sulfur oxidation genes (soxB, fccAB) and enriched the corresponding microbial taxa (Bacillus, Conexibacter and Clostridium sensu stricto). Moreover, metabolic pathways related to nitrogen and sulfur and the degradation of organic matter were up-regulated. These results indicated that partial nitrification in CW planted with M. aquaticum promoted sulfur oxidation denitrification and heterotrophic denitrification. Overall, the in-situ pilot-scale study revealed that the cultivation of M. aquaticum in FNA-treated CW can be a sustainable approach to treat black-odor water bodies.
Collapse
Affiliation(s)
- Danhua Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sining Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuseng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jialiang Zuo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Puggioni G, Milia S, Unali V, Ardu R, Tamburini E, Balaguer MD, Pous N, Carucci A, Puig S. Effect of hydraulic retention time on the electro-bioremediation of nitrate in saline groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157236. [PMID: 35810909 DOI: 10.1016/j.scitotenv.2022.157236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have proven their capability to treat nitrate-contaminated saline groundwater and simultaneously recover value-added chemicals (such as disinfection products) within a circular economy-based approach. In this study, the effect of the hydraulic retention time (HRT) on nitrate and salinity removal, as well as on free chlorine production, was investigated in a 3-compartment BES working in galvanostatic mode with the perspective of process intensification and future scale-up. Reducing the HRT from 30.1 ± 2.3 to 2.4 ± 0.2 h led to a corresponding increase in nitrate removal rates (from 17 ± 1 up to 131 ± 1 mgNO3--N L-1d-1), although a progressive decrease in desalination efficiency (from 77 ± 13 to 12 ± 2 %) was observed. Nitrate concentration and salinity close to threshold limits indicated by the World Health Organization for drinking water, as well as significant chlorine production were achieved with an HRT of 4.9 ± 0.4 h. At such HRT, specific energy consumption was low (6.8·10-2 ± 0.3·10-2 kWh g-1NO3--Nremoved), considering that the supplied energy supports three processes simultaneously. A logarithmic equation correlated well with nitrate removal rates at the applied HRTs and may be used to predict BES behaviour with different HRTs. The bacterial community of the bio-cathode under galvanostatic mode was dominated by a few populations, including the genera Rhizobium, Bosea, Fontibacter and Gordonia. The results provide useful information for the scale-up of BES treating multi-contaminated groundwater.
Collapse
Affiliation(s)
- Giulia Puggioni
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Stefano Milia
- National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy.
| | - Valentina Unali
- National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy
| | - Riccardo Ardu
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; DiSB, Department of Biomedical Sciences, University of Cagliari, Cittadella universitaria, 09042 Monserrato, CA, Italy
| | - Elena Tamburini
- DiSB, Department of Biomedical Sciences, University of Cagliari, Cittadella universitaria, 09042 Monserrato, CA, Italy
| | - M Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| | - Alessandra Carucci
- University of Cagliari, Department of Civil-Environmental Engineering and Architecture (DICAAR), Via Marengo 2-09123, Cagliari, Italy; National Research Council of Italy, Institute of Environmental Geology and Geoengineering (CNR-IGAG), Via Marengo 2-09123, Cagliari, Italy
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain
| |
Collapse
|
20
|
Yang X, Tang Z, Xiao L, Zhang S, Jin J, Zhang S. Effect of electric current intensity on performance of polycaprolactone/FeS 2-based mixotrophic biofilm-electrode reactor. BIORESOURCE TECHNOLOGY 2022; 361:127757. [PMID: 35952860 DOI: 10.1016/j.biortech.2022.127757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, a bioelectrochemical system consisting of pyrite-based autotrophic denitrification (PAD) and heterotrophic denitrification (HD) was established to polish nitrate wastewater. The loading of electric current (EC) could stimulate the dissolution of pyrite. Appropriate EC (I ≤ 30 mA) was conducive to nitrate removal, too high EC (I = 40 mA) would inhibit nitrate removal and lead to an obvious accumulation of NO2--N and NH4+-N. Microbial analysis revealed that the increase of EC could inhibit the diversity of heterotrophic microbes, but appropriate EC (I = 10 mA) could increase the diversity of autotrophic microbes. The EC loading was conducive to the enrichment of iron autotrophic denitrifiers (Ferritrophicum), pyrite-oxidizing bacteria (Thiobacillus, Sulfurimonas), and sulfur autotrophic denitrifiers (Dechloromonas, Thiobacillus, and Arenimonas). The EC loading enlarged the contribution of PAD, making PAD a dominant pathway in denitrification.
Collapse
Affiliation(s)
- Xin Yang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zhiwei Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Longqu Xiao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Jin
- Yunnan Ningmao Environmental Technology Co., Ltd., Kunming 650000, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
21
|
Che J, Wu Y, Yang H, Wang S, Wu W, Lyu L, Li W. Long-term cultivation drives dynamic changes in the rhizosphere microbial community of blueberry. FRONTIERS IN PLANT SCIENCE 2022; 13:962759. [PMID: 36212276 PMCID: PMC9539842 DOI: 10.3389/fpls.2022.962759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Rhizosphere microbial communities profoundly affect plant health, productivity, and responses to environmental stress. Thus, it is of great significance to comprehensively understand the response of root-associated microbes to planting years and the complex interactions between plants and rhizosphere microbes under long-term cultivation. Therefore, four rabbiteye blueberries (Vaccinium ashei Reade) plantations established in 1988, 2004, 2013, and 2017 were selected to obtain the dynamic changes and assembly mechanisms of rhizosphere microbial communities with the increase in planting age. Rhizosphere bacterial and fungal community composition and diversity were determined using a high-throughput sequencing method. The results showed that the diversity and structure of bacterial and fungal communities in the rhizosphere of blueberries differed significantly among planting ages. A total of 926 operational taxonomic units (OTUs) in the bacterial community and 219 OTUs in the fungal community were identified as the core rhizosphere microbiome of blueberry. Linear discriminant analysis effect size (LEfSe) analysis revealed 36 and 56 distinct bacterial and fungal biomarkers, respectively. Topological features of co-occurrence network analysis showed greater complexity and more intense interactions in bacterial communities than in fungal communities. Soil pH is the main driver for shaping bacterial community structure, while available potassium is the main driver for shaping fungal community structure. In addition, the VPA results showed that edaphic factors and blueberry planting age contributed more to fungal community variations than bacterial community. Notably, ericoid mycorrhizal fungi were observed in cultivated blueberry varieties, with a marked increase in relative abundance with planting age, which may positively contribute to nutrient uptake and coping with environmental stress. Taken together, our study provides a basis for manipulating rhizosphere microbial communities to improve the sustainability of agricultural production during long-term cultivation.
Collapse
Affiliation(s)
- Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shaoyi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
22
|
Yao C, Qingyu W, Zhen L, Renyu C, Qihong C, Shaochun Y, Qiong W, Yinghui T. Nitrogen process in stormwater bioretention: effect of the antecedent dry days on the relative abundance of nitrogen functional genes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1269-1283. [PMID: 36358060 DOI: 10.2166/wst.2022.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we evaluated the relative abundance of nitrogen functional genes (amoA, nirK and nirS) involved in ammonia oxidation and denitrification bacteria in laboratory-scale bioretention columns in response to environmental factors (e.g., moisture content, pH, soil organic matter, soil nitrogen) under different antecedent dry days (ADDs). We observed a decrease tendency of the relative abundance of ammonia-oxidizing bacteria at first and then increased when increasing ADDs from 1 to 22 day, while the relative abundance of denitrifying bacteria showed a downward trend. The abundance of bacteria gene amoA was positively associated with soil ammonia nitrogen concentration (r2 = 0.389, p < 0.05) and soil organic matter concentration (r2 = 0.334, p < 0.05), while the abundance of bacteria gene nirS was positively correlated with soil ammonia nitrogen (r2 = 0.730, p < 0.01), soil organic matter (r2 = 0.901, p < 0.01) and soil total nitrogen (r2 = 0.779, p < 0.01). Furthermore, gene counts for bacteria gene nirS were correlated negatively with plant root length (r2 = 0.364, p < 0.05) and plant biomass (r2 = 0.381, p < 0.05). Taken together, these results suggest that both nitrification and denitrification can occur in bioretention systems, which can be affected by environmental factors.
Collapse
Affiliation(s)
- Chen Yao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Wu Qingyu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Liu Zhen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Chen Renyu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Cheng Qihong
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Yuan Shaochun
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Wu Qiong
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Tang Yinghui
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| |
Collapse
|
23
|
He Q, Liu Y, Wan D, Liu Y, Xiao S, Wang Y, Shi Y. Enhanced biological antimony removal from water by combining elemental sulfur autotrophic reduction and disproportionation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128926. [PMID: 35452992 DOI: 10.1016/j.jhazmat.2022.128926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb), a toxic metalloid, has serious negative effects on human health and its pollution has become a global environmental problem. Bio-reduction of Sb(V) is an effective Sb-removal approach. This work, for the first time, demonstrates the feasibility of autotrophic Sb(V) bio-reduction and removal coupled to anaerobic oxidation of elemental sulfur (S0). In the S0-based biological system, Sb(V) was reduced to Sb(III) via autotrophic bacteria by using S0 as electron donor. Meanwhile, S0 disproportionation reaction occurred under anaerobic condition, generating sulfide and SO42- in the bio-systems. Subsequently, Sb(III) reacted with sulfide and formed Sb(III)-S precipitate, achieving an effective total Sb removal. The precipitate was identified as Sb2S3 by SEM-EDS, XPS, XRD and Raman spectrum analyses. In addition, it was found that co-existing nitrate inhibited the Sb removal, as nitrate is the favored electron acceptor over Sb(V). In contrast, the bio-reduction of co-existing SO42- enhanced sulfide generation, followed by promoting Sb(V) reduction and precipitation. Illumina high-throughput sequencing analysis revealed that Metallibacterium, Citrobacter and Thiobacillus might be responsible for Sb(V) reduction and S0 disproportionation. This study provides a promising approach for the remediation of Sb(V)-contaminated water.
Collapse
Affiliation(s)
- Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Yang Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China.
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shuhu Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiduo Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
24
|
Fang YK, Sun Q, Fang PH, Li XQ, Zeng R, Wang HC, Wang AJ. Integrated constructed wetland and bioelectrochemistry system approach for simultaneous enhancment of p-chloronitrobenzene and nitrogen transformations performance. WATER RESEARCH 2022; 217:118433. [PMID: 35429886 DOI: 10.1016/j.watres.2022.118433] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) integrated with the bioelectrochemical system (BES-CW) to stimulate bio-refractory compounds removal holds particular promise, owing to its inherent greater scale and well-recognized environmentally benign wastewater advanced purification technology. However, the knowledge regarding the feasibility and removal mechanisms, particularly the potential negative effects of biorefractory compounds on nitrogen removal performance for the CWs is far insufficient. This study performed a critical assessment by using BES-CW (ECW) and conventional CW (CW) to investigate the effects of p-Chloronitrobenzene (pCNB) on nitrogen transformations in CWs. The results showed that low concentration (1 mg·L-1) of pCNB would inhibit the ammonia oxidation in CWs, while ECW could improve its tolerance to pCNB to a certain level (8 mg·L-1) due to the high pCNB degradation efficiencies (2.5 times higher than CWs), accordingly, much higher TN and nitrate removal efficiencies were observed in ECWs, 81.71% - 96.82% (TN) higher than CWs, further leading to a lower N2O emission from ECWs than CWs. The main intermediate of pCNB degradation was p-Chloroaniline (pCAN) and the genera Geobacter and Propionimicrobium were consider to be the responsible pCNB degradation bacteria in the present study. However, too high concentration (20 mg·L-1) of pCNB would have a huge impact on ECW and CW, especially microbial biomass. Nevertheless, ECW could improve the 1.87 times higher microbial biomass than CW on the substrate. Accordingly, considerably higher functional gene abundance was observed in ECW. Therefore, the introduction of BES has great potential to ensure CW stability when treating industrial wastewater containing bio-refractory compounds.
Collapse
Affiliation(s)
- Ying-Ke Fang
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Sun
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan-Hao Fang
- China Railway Fifth Survey And Design Institute Group Co., LTD. Zhengzhou Branch, Zhengzhou, 450000, China
| | - Xi-Qi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Ran Zeng
- Nanjing Tech University, College of Civil Engineering, Nanjing, 211816, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Ai-Jie Wang
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Liu W, Chu Y, Tan Q, Chen J, Yang L, Ma L, Zhang Y, Wu Z, He F. Cold temperature mediated nitrate removal pathways in electrolysis-assisted constructed wetland systems under different influent C/N ratios and anode materials. CHEMOSPHERE 2022; 295:133867. [PMID: 35143860 DOI: 10.1016/j.chemosphere.2022.133867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Electrolysis had proven to be useful for the enhanced performance in constructed wetlands (CWs). While at cold temperature, the nitrate removal pathways, plant physiological characteristics and microbial community structure in electrolysis-assisted CWs were unclear. Therefore, the purification performance of three electrolysis-assisted horizontal subsurface-flow constructed wetlands (E-HSCWs) with different anodes and a control system in cold seasons were evaluated in this study. E-HSCWs showed a 2.02-83.21% increase of total nitrogen (TN) removal when compared to control, and the gaps were enlarged with increasing C/N (chemical oxygen demand/total nitrogen, COD/TN) ratios. Nitrite accumulation in E-HSCWs presented a first increase then went down trend with increasing C/N ratios, compared to a steady increase in control system. The optimum C/N ratio was 8 in E-HSCWs for both TN and COD removal. Moreover, Ti|IrO2-Ta2O5 (Ti) anode showed the highest potential for TN and COD removal. Less root weight, shorter root length and reduced TN and total phosphorus (TP) contents in roots were observed in wetland plants (Iris sibirica) of E-HSCWs. In E-HSCWs with Fe and C anodes, the nitrate removal was mainly accomplished by autotrophic denitrifier Hydrogenophaga. While in E-HSCWs with Ti anode, the synergistic effect of autotrophic denitrifier Hydrogenophaga and heterotrophic denitrifiers Acidovorax, Simplicispira, Zoogloea accounted for the nitrate removal. These results showed that E-HSCWs at proper C/N ratio of 8 would be promising for nitrate removal at cold temperature.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yifan Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiyang Tan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinmei Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lingli Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin Ma
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
26
|
Huang X, Duan C, Yu J, Dong W. Transforming heterotrophic to autotrophic denitrification process: Insights into microbial community, interspecific interaction and nitrogen metabolism. BIORESOURCE TECHNOLOGY 2022; 345:126471. [PMID: 34864178 DOI: 10.1016/j.biortech.2021.126471] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
For investigating the microbial community, interspecific interaction and nitrogen metabolism during the transform process from heterotrophic to synergistic and autotrophic denitrification, a filter was built, and carbon source and sulfur concentration were changed to release the transformation process. The results demonstrated that the transformation process was feasible to keep nitrate nitrogen (NO3--N) discharge concentration lower than 15 mg L-1, however, nitrite nitrogen (NO2--N) accumulation and its rate reached 7.85% at initial stages. The dominant denitrification gunes were Methylophilaceae, Thiovulaceae and Hydrogenophilaceae for three processes, respectively, and the microbial interspecific interaction of heterotrophic denitrification was more complex than others. NO2--N accumulation was confirmed by the low abundance of EC1.7.7.1 and EC1.7.2.1, and the dominance degree of dark oxidation of sulfur compounds and dark sulfide oxidation improved in synthesis and autotrophic denitrifications.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Chongsen Duan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
27
|
Zhong L, Yang SS, Ding J, Wang GY, Chen CX, Xie GJ, Xu W, Yuan F, Ren NQ. Enhanced nitrogen removal in an electrochemically coupled biochar-amended constructed wetland microcosms: The interactive effects of biochar and electrochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147761. [PMID: 34051500 DOI: 10.1016/j.scitotenv.2021.147761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The interactive effects of both biochar (BC) and electrochemistry (EC) can affect nitrogen (N) removal process. However, little is known about how this function in constructed wetland (CW) systems. In this study, an electrochemically (EC) coupled BC-amended saturated subsurface vertical flow constructed wetland (BECW) systems were established to enhance nitrogen (N) removal. Other three CW systems: without BC and EC (CW); with EC only (ECW); and with BC only (BCW) were performed as controls. Results indicated that the total nitrogen (59.88%-93.03%) and nitrate‑nitrogen (83.14%-100%) of the BECW system were significantly enhanced (p < 0.05) compared with the control systems. Treated WWTP tail-water could meet Class-IV of the Surface Water Quality Standard (GB3838-2002) in China by the BECW system. The enhanced N removal in the BECW system could be attributed to (1) the autotrophic denitrification process in which H2 and Fe2+ provided by the cathode and anode acted as electron donors; and (2) BC addition acting as substrate could improve the activity, diversity and richness of microorganisms. Microbial community analysis further indicated that high N removal in the BECW system was significantly dependent on the synergy between the heterotrophic and autotrophic denitrifiers, facilitated by BC and EC interaction. Results illustrate that the BECW system is a feasible and eco-sustainable technology for treating low C/N tail-water from WWTPs. This work provides a novel and fundamental understanding of the electrochemically coupled biochar-amended CW system. These results could serve as a theoretical basis for the engineered applications in the deep purification of WWTPs' tail-water.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guang-Yuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
28
|
Zhang M, Xu D, Bai G, Cao T, Liu W, Hu Z, Chen D, Qiu D, Wu Z. Changes of microbial community structure during the initial stage of biological clogging in horizontal subsurface flow constructed wetlands. BIORESOURCE TECHNOLOGY 2021; 337:125405. [PMID: 34166934 DOI: 10.1016/j.biortech.2021.125405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The clogging is a universal problem in constructed wetlands, where microorganisms play an essential role. However, the implication of micro-organism variation due to the clogging is not clear. Four horizontal subsurface flow constructed wetlands (HFCWs) were designed and operated to simulate the process of clogging. The wetland treatment performance and microbial community variation were investigated by regularly monitoring. Results showed the substrate filtration rate and the total phosphorous (TP) removal efficiency consistently decreased and the chemical oxygen demand (COD) and total nitrogen (TN) removal efficiency were at the range of 50%-85% and 10-20%, respectively. The sequencing results indicated that the clogging could affect the richness of bacterial community. The bacterial variation could be attributed to the dissolved oxygen decreasing and organic matter accumulation in the initial clogging period. These findings are expected to provide some theoretical reference for developing the biological methods to indicate the initial clogging in constructed wetlands.
Collapse
Affiliation(s)
- Mingzhen Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Wuhan Research Academy of Environmental Protection Sciences, Wuhan 430015, China.
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Taotao Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Disong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongru Qiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
29
|
Varliero G, Anesio AM, Barker GLA. A Taxon-Wise Insight Into Rock Weathering and Nitrogen Fixation Functional Profiles of Proglacial Systems. Front Microbiol 2021; 12:627437. [PMID: 34621246 PMCID: PMC8491546 DOI: 10.3389/fmicb.2021.627437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The Arctic environment is particularly affected by global warming, and a clear trend of the ice retreat is observed worldwide. In proglacial systems, the newly exposed terrain represents different environmental and nutrient conditions compared to later soil stages. Therefore, proglacial systems show several environmental gradients along the soil succession where microorganisms are active protagonists of the soil and carbon pool formation through nitrogen fixation and rock weathering. We studied the microbial succession of three Arctic proglacial systems located in Svalbard (Midtre Lovénbreen), Sweden (Storglaciären), and Greenland (foreland close to Kangerlussuaq). We analyzed 65 whole shotgun metagenomic soil samples for a total of more than 400 Gb of sequencing data. Microbial succession showed common trends typical of proglacial systems with increasing diversity observed along the forefield chronosequence. Microbial trends were explained by the distance from the ice edge in the Midtre Lovénbreen and Storglaciären forefields and by total nitrogen (TN) and total organic carbon (TOC) in the Greenland proglacial system. Furthermore, we focused specifically on genes associated with nitrogen fixation and biotic rock weathering processes, such as nitrogenase genes, obcA genes, and genes involved in cyanide and siderophore synthesis and transport. Whereas we confirmed the presence of these genes in known nitrogen-fixing and/or rock weathering organisms (e.g., Nostoc, Burkholderia), in this study, we also detected organisms that, even if often found in soil and proglacial systems, have never been related to nitrogen-fixing or rock weathering processes before (e.g., Fimbriiglobus, Streptomyces). The different genera showed different gene trends within and among the studied systems, indicating a community constituted by a plurality of organisms involved in nitrogen fixation and biotic rock weathering, and where the latter were driven by different organisms at different soil succession stages.
Collapse
Affiliation(s)
- Gilda Varliero
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Gary L. A. Barker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
30
|
Hassan M, Zhu G, Yang Z, Lu Y. Simultaneous removal of sulfamethoxazole and enhanced denitrification process from simulated municipal wastewater by a novel 3D-BER system. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:23-38. [PMID: 34150216 PMCID: PMC8172732 DOI: 10.1007/s40201-020-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, at an electric current intensity at 60 mA, more than 90.50 ± 4.76% of Sulfamethoxazole (SMX) was degraded. The strengthening of bacterial metabolisms and the sustainment of electrical stimulation contributed to the rapid removal of SMX and nitrates from simulated wastewater by a novel 3D-BER system. From the literature, very few studies have been performed to investigate the high risk of nitrates and antibiotics SMX found in wastewater treatment. The highest antibiotic SMX and nitrogen removal efficiency was 96.45 ± 2.4% (nitrate-N), 99.5 ± 1.5% (nitrite-N), 88.45 ± 1.4% (ammonia-N), 78.6 ± 1.0% (total nitrogen), and SMX (90.50 ± 4.76%), respectively. These results were significantly higher as compared to control system (p < 0.05). The highest denitrification efficiency was achieved at the pH level of 7.0 ± 0.20 - 7.5 ± 0.31. Lower or higher pH value can effect on an approach of heterotrophic-autotrophic denitrification. Moreover, low current intensity did not show any significant effect on the degradation, however, enhanced the removal rate of nitrate or nitrite as well as antibiotic SMX. Based on the results of HPLC and LC-MS/MS analysis, the intermediate products were proposed after efficient biodegradation of SMX. Finally, these results is expected to provide some new insights towards the high electric currents, changes the bacterial community structure, and the activated sludge which played an important role in the biodegradation of SMX and nitrates removal more efficiently.
Collapse
Affiliation(s)
- Mahdi Hassan
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| | - Guangcan Zhu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
- School of Information Engineering, Xizang Minzu University, Xianyang, 712082 China
| | - Zhonglian Yang
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| | - Yongze Lu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| |
Collapse
|
31
|
Hartl M, García-Galán MJ, Matamoros V, Fernández-Gatell M, Rousseau DPL, Du Laing G, Garfí M, Puigagut J. Constructed wetlands operated as bioelectrochemical systems for the removal of organic micropollutants. CHEMOSPHERE 2021; 271:129593. [PMID: 33460890 DOI: 10.1016/j.chemosphere.2021.129593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The removal of organic micropollutants (OMPs) has been investigated in constructed wetlands (CWs) operated as bioelectrochemical systems (BES). The operation of CWs as BES (CW-BES), either in the form of microbial fuel cells (MFC) or microbial electrolysis cells (MEC), has only been investigated in recent years. The presented experiment used CW meso-scale systems applying a realistic horizontal flow regime and continuous feeding of real urban wastewater spiked with four OMPs (pharmaceuticals), namely carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX). The study evaluated the removal efficiency of conventional CW systems (CW-control) as well as CW systems operated as closed-circuit MFCs (CW-MFCs) and MECs (CW-MECs). Although a few positive trends were identified for the CW-BES compared to the CW-control (higher average CBZ, DCF and NPX removal by 10-17% in CW-MEC and 5% in CW-MFC), these proved to be not statistically significantly different. Mesoscale experiments with real wastewater could thus not confirm earlier positive effects of CW-BES found under strictly controlled laboratory conditions with synthetic wastewaters.
Collapse
Affiliation(s)
- Marco Hartl
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - María Jesús García-Galán
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Victor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/ Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Marta Fernández-Gatell
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Diederik P L Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Marianna Garfí
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Jaume Puigagut
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| |
Collapse
|
32
|
Lin Z, Cheng S, Yu Z, Yang J, Huang H, Sun Y. Enhancing bio-cathodic nitrate removal through anode-cathode polarity inversion together with regulating the anode electroactivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142809. [PMID: 33097251 DOI: 10.1016/j.scitotenv.2020.142809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bio-cathodic nitrate removal uses autotrophic nitrate-reducing bacteria as catalysts to realize the nitrate removal process and has been considered as a cost-effective way to remove nitrate contamination. However, the present bio-cathodic nitrate removal process has problems with long start-up time and low performance, which are urgently required to improve for its application. In this study, we investigated an anode-cathode polarity inversion method for rapidly cultivating high-performance nitrate-reducing bio-cathode by regulating bio-anodic bio-oxidation electroactivities under different external resistances and explored at the first time the correlation between the oxidation performance and the reduction performance of one mixed-bacteria bioelectrode. A high bio-electrochemical nitrate removal rate of 2.74 ± 0.03 gNO3--N m-2 d-1 was obtained at the bioelectrode with high bio-anodic bio-oxidation electroactivity, which was 4.0 times that of 0.69 ± 0.03 gNO3--N m-2 d-1 at the bioelectrode with low bio-oxidation electroactivity, and which was 1.3-7.9 times that of reported (0.35-2.04 gNO3--N m-2 d-1). 16S rRNA gene sequences and bacterial biomass analysis showed higher bio-cathodic nitrate removal came from higher bacterial biomass of electrogenic bacteria and nitrate-reducing bacteria. A good linear correlation between the bio-cathodic nitrate removal performance and the reversed bio-anodic bio-oxidation electroactivity was presented and likely implied that electrogenic biofilm had either action as autotrophic nitrate reduction or promotion to the development of autotrophic nitrate removal system. This study provided a novel strategy not only to rapidly cultivate high-performance bio-cathode but also to possibly develop the bio-cathode with specific functions for substance synthesis and pollutant detection.
Collapse
Affiliation(s)
- Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haobin Huang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
33
|
Wang Y, Zhou J, Shi S, Zhou J, He X, He L. Hydraulic flow direction alters nutrients removal performance and microbial mechanisms in electrolysis-assisted constructed wetlands. BIORESOURCE TECHNOLOGY 2021; 325:124692. [PMID: 33453660 DOI: 10.1016/j.biortech.2021.124692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
In this study, an electrolysis-assisted down-flow constructed wetland (E-DFCW) was successfully established, and achieved simultaneously efficient removal of PO43--P (93.6% ± 3.2%), NO3--N (97.1% ± 2.0%) and TN (80.6% ± 5.4%). When compared with electrolysis-assisted up-flow constructed wetland (E-UFCW), E-DFCW allowed significantly lower concentrations of PO43--P, NO3--N, total Fe and SO42--S in effluents. In addition, microbial community and functional genes prediction results indicated that hydraulic flow direction significantly altered microbial nitrogen, sulfur and carbon metabolisms in electrolysis-assisted constructed wetlands (E-CWs). Specifically, multi-path denitrification facilitated NO3--N reduction in cathodic chamber of E-DFCW, whereas autohydrogenotrophic denitrification might dominate NO3--N reduction in cathodic chamber of E-UFCW. More abundant and diverse denitrifiers in cathodic chamber of E-DFCW contributed to enhanced denitrification performance. Overall, this work provides microbial insights into multi-path nitrogen metabolisms in electrolysis-assisted denitrification systems in response to hydraulic flow direction.
Collapse
Affiliation(s)
- Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fujian 350116, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
34
|
Su JF, Zhang YM, Bai XC, Liang DH, He L, Wang JX. The influence of the novel composite material LiNbO 3@Fe 3O 4 on the denitrification efficiency of bacterium Achromobacter sp. A14. ENVIRONMENTAL TECHNOLOGY 2021; 42:1179-1186. [PMID: 31446888 DOI: 10.1080/09593330.2019.1660413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
The effect of the novel composite material LiNbO3@Fe3O4 on the nitrate removal, and Mn2+ oxidation efficiency by autotrophic denitrification strain Achromobacter sp. A14 was investigated in this study. The optimum conditions were tested by using five levels of initial Mn2+ concentrations (40, 60, 80, 100 and 120 mg/L), initial pH (5.0, 6.0, 7.0, 8.0 and 9.0) and temperature (20, 25, 30, 35 and 40°C). A maximal nitrate removal ratio of nearly 100% and a maximal Mn2+ oxidation ratio of 71.59% were simultaneously achieved at pH 7.0, 80 mg/L Mn2+ and 30°C by bacteria A14 with 300 mg/L LiNbO3@Fe3O4 as catalytic material. Biomaterial cycle testing indicated that the denitrification efficiency of bacteria A14 with LiNbO3@Fe3O4 remained steady after 10 batches.
Collapse
Affiliation(s)
- Jun Feng Su
- State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Yuan Ming Zhang
- State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Xue Chen Bai
- China United Northwest Institute for Engineering Design and Research Co., Ltd. (CUCED), Xi'an, People's Republic of China
| | - Dong Hui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Lei He
- China United Northwest Institute for Engineering Design and Research Co., Ltd. (CUCED), Xi'an, People's Republic of China
| | - Jia Xing Wang
- State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
35
|
Zhang L, Huang S, Peng X, Liu B, Zhang X, Ge F, Zhou Q, Wu Z. Potential ecological implication of Cladophora oligoclora decomposition: Characteristics of nutrient migration, transformation, and response of bacterial community structure. WATER RESEARCH 2021; 190:116741. [PMID: 33341035 DOI: 10.1016/j.watres.2020.116741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
During decay, the sediment microenvironment and water quality are severely affected by excessive proliferation of harmful algae such as filamentous green algae (FGA). The frequency of this FGA is increased through global warming and water eutrophication. In the present study, the degradation processes of a common advantage FGA Cladophora oligoclora and its effect on nitrogen and phosphorus nutrient structure and bacterial community composition at the sediment-water interface were investigated by stable isotope labelling and high-throughput sequencing. The results showed that the decomposition process of C. oligoclona was fast, stable, and difficult to degrade. The changes in sediment δ15N values reached 66.68 ‰ on day 40, which indicated that some of the nitrogen had migrated to the sediment from C. oligoclona litter. TN and NH4+-N in the overlying water rapidly increased between days 0-10, NH4+-N rose to 78.21% of TN on day 40, resulting in severe pollution of ammonia in the overlying water. The nitrogen forms and contents in the sediment are mainly derived from the increasing ammonia nitrogen release. The TP and IP in the overlying water increased to the highest concentrations of 6.68±0.64, 6.59±0.79 mg·L-1 during the decomposition process, respectively, resulting in the migration of phosphate to the sediments with increasing phosphorus content. The abundance of the main dominant bacterial communities, such as Acinetobacter (0.08%-62.48%) and Pseudomonas (0.13%-20.36%) in sediments and overlying water has changed significantly. The correlation analysis results suggested that the phosphorus was mainly related to the bacterial community in the overlying water, while the various forms of nitrogen demonstrated a high relevance with the bacterial community in the sediment. Our research results will be valuable in evaluating the potential ecological risk of FGA decomposition and provide scientific support for shallow lake management and submerged vegetation restoration.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Suzhen Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Xinyi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fangjie Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
36
|
Zhu M, Fan J, Zhang M, Li Z, Yang J, Liu X, Wang X. Current intensities altered the performance and microbial community structure of a bio-electrochemical system. CHEMOSPHERE 2021; 265:129069. [PMID: 33257046 DOI: 10.1016/j.chemosphere.2020.129069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
A novel integrated bio-electrochemical system with sulfur autotrophic denitrification (SAD) and electrocoagulation (BESAD-EC) system was established to remove nitrate (NO3--N) and phosphorus from contaminated groundwater. The impacts of a current intensity gradient on the system's performance and microbial community were investigated. The results showed that NO3--N and total phosphorus (TP) could be effectively removed with maximum NO3--N reduction and TP removal efficiencies of 94.2% and 75.8% at current intensities of 200 and 400 mA, respectively. Lower current intensities could improve the removal efficiencies of NO3--N (≤200 mA) and phosphorus (≤400 mA), while higher current intensity (600 mA) caused the inhibition of nutrients removal in the system. MiSeq sequencing analysis revealed that low electrical stimulation improved the diversity and richness of microbial community, while high electrical stimulation reduced their diversity and richness. The relative abundance of some genus involved in denitrification and phosphorus removal processes such as Rhizobium, Hydrogenophaga, Denitratisoma and Gemmobacter, significantly (P < 0.05) reduced under high current conditions. This could be one of the main reasons for the deterioration of denitrification and phosphorus removal performance. The results of this study could be helpful to enhance the nutrient removal performance of bio-electrochemical systems in groundwater treatment processes.
Collapse
Affiliation(s)
- Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingkai Fan
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhenyang Li
- Airport New City in Xixian New Area Management Commission of Shaanxi Province, Xi'an, 712034, China
| | - Jingdan Yang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaotong Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
37
|
Liu J, Su J, Ali A, Wang Z, Chen C, Xu L. Role of porous polymer carriers and iron-carbon bioreactor combined micro-electrolysis and biological denitrification in efficient removal of nitrate from wastewater under low carbon to nitrogen ratio. BIORESOURCE TECHNOLOGY 2021; 321:124447. [PMID: 33302007 DOI: 10.1016/j.biortech.2020.124447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
In the current research, a novel bioreactor composed of porous polymer carriers and iron-carbon (PPC@FeC) was established through bacterial immobilized technology. The influence of key factors was studied on the nitrate removal performance of the PPC@FeC bioreactor. The experimental results showed that the highest removal rate of nitrate (7.33 mg L-1 h-1) can be obtained with short hydraulic retention times (HRT = 2.0 h) and low carbon-to-nitrogen ratio (C/N = 2.0). The results of high-throughput sequencing revealed that Zoogloea sp. L2 was the dominant strain in bioreactor responsible for nitrate removal. Moreover, the SEM and XRD analyses elucidated that Fe2O3 was the final product produced by the interaction of FeC and strain L2. These findings showed that the PPC@FeC bioreactor successfully combined micro-electrolysis and biological denitrification, which exhibited great potential in removing nitrate effectively from wastewater under low C/N ratio and short HRT conditions.
Collapse
Affiliation(s)
- Jian Liu
- Xi'an University of Architecture and Technology University of South Australia An De College, Xi'an 710055, China
| | - Junfeng Su
- Xi'an University of Architecture and Technology University of South Australia An De College, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Changlun Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
38
|
Pous N, Korth B, Osset-Álvarez M, Balaguer MD, Harnisch F, Puig S. Electrifying biotrickling filters for the treatment of aquaponics wastewater. BIORESOURCE TECHNOLOGY 2021; 319:124221. [PMID: 33254451 PMCID: PMC7547830 DOI: 10.1016/j.biortech.2020.124221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
This work aimed to study the electrification of biotrickling filters by means of Microbial electrochemical technologies (MET) to develop an easy-to-assemble and easy-to-use MET for nitrogen removal without external aeration nor addition of chemicals. Four different designs were tested. The highest ammonium and nitrate removal rates (94 gN·m-3·d-1 and 43 gN·m-3·d-1, respectively) were reached by combining an aerobic zone with an electrified anoxic zone. The standards of effluent quality suitable for hydroponics were met at low energy cost (8.3 × 10-2 kWh·gN-1). Electrified biotrickling filters are a promising alternative for aquaponics and a potential treatment for organic carbon-deficient ammonium-contaminated waters.
Collapse
Affiliation(s)
- Narcís Pous
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Benjamin Korth
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoser Str. 15, 04318 Leipzig, Germany
| | - Miguel Osset-Álvarez
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Maria Dolors Balaguer
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoser Str. 15, 04318 Leipzig, Germany
| | - Sebastià Puig
- Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
39
|
Ma Y, Zheng X, Fang Y, Xu K, He S, Zhao M. Autotrophic denitrification in constructed wetlands: Achievements and challenges. BIORESOURCE TECHNOLOGY 2020; 318:123778. [PMID: 32736968 DOI: 10.1016/j.biortech.2020.123778] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The use of constructed wetlands for wastewater treatment is rapidly increasing worldwide due to their advantages of low operating and maintenance costs. Denitrification in constructed wetlands is dependent on the presence of organic carbon sources, and the shortage of organic carbon is the primary hurdle for nitrate removal. Therefore, the use of inorganic electronic donors has emerged as an alternative. This paper provides a comprehensive review of nitrate removal pathways using various inorganic electron donors and the performance and development of autotrophic denitrification in constructed wetlands. The main environmental parameters and operating conditions for nitrate removal in wetlands are discussed, and the challenges currently faced in the application of enhanced autotrophic denitrification wetlands are emphasized. Overall, this review illustrates the need for a deep understanding of the complex interrelationships among environmental and operational parameters and wetland substrates for improving the wastewater treatment performance of constructed wetlands.
Collapse
Affiliation(s)
- Yuhui Ma
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325600, China
| | - Yunqing Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325600, China.
| |
Collapse
|
40
|
Tang S, Liao Y, Xu Y, Dang Z, Zhu X, Ji G. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. BIORESOURCE TECHNOLOGY 2020; 314:123759. [PMID: 32654809 DOI: 10.1016/j.biortech.2020.123759] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen removal through microorganisms is the most important pathway in constructed wetlands (CWs). In this review, we summarize the microbial coupling mechanisms of nitrogen removal, which are the common methods of nitrogen transformation. The electron pathways are shortened and consumption of oxygen and energy is reduced during the coupling of nitrogen transformation functional microorganisms. The highly efficient nitrogen removal mechanisms are cultivated from the design conditions in CWs, such as intermittent aeration and tidal flow. The coupling of microorganisms and substrates enhances nitrogen removal mainly by supplying electrons, and plants affect nitrogen transformation functional microorganisms by the release of oxygen and exudates from root systems as well as providing carriers for microbial attachment. In addition, inorganic elements such as Fe, S and H act as electron donors to drive the autotrophic denitrification process in CWs.
Collapse
Affiliation(s)
- Shuangyu Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yichan Xu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Wang W, Zhang Y, Li M, Wei X, Wang Y, Liu L, Wang H, Shen S. Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review. BIORESOURCE TECHNOLOGY 2020; 314:123808. [PMID: 32713782 DOI: 10.1016/j.biortech.2020.123808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetland-microbial fuel cells (CWL-MFCs) are eco-friendly and sustainable technology, simultaneously implementing contaminant removal and electricity production. According to intensive research over the last five years, this review on the operation mechanism was conducted for in-depth understanding and application guidance of CWL-MFCs. The electrochemical mechanism based on anodic oxidation and cathodic reduction is the core for improved treatment in CWL-MFCs compared to CWLs. As the dominant bacterial community, the abundance and gene-expression patterns of electro-active bacteria responds to electrode potentials and contaminant loadings, further affecting operational efficiency of CWL-MFCs. Plants benefit COD and N removal by supplying oxygen for aerobic degradation and rhizosphere secretions for microorganisms. Multi-electrode configuration, carbon-based electrodes and rich porous substrates affect transfer resistance and bacterial communities. The possibilities of CWL-MFCs targeting at recalcitrant contaminants like flame retardants and interchain interactions among effect components need systematic research.
Collapse
Affiliation(s)
- Wenjing Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Yu Zhang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Mengxiang Li
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Xiaogang Wei
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Yali Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Ling Liu
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Hongjie Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China.
| | - Shigang Shen
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China
| |
Collapse
|
42
|
Wang H, He X, Nakhla G, Zhu J, Su YK. Performance and bacterial community structure of a novel inverse fluidized bed bioreactor (IFBBR) treating synthetic municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137288. [PMID: 32087585 DOI: 10.1016/j.scitotenv.2020.137288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The performance of a lab-scale integrated anoxic and aerobic inverse fluidized bed bioreactors (IFBBR) for biological nutrient removal from synthetic municipal wastewater was studied at chemical oxygen demand (COD) loading rates of 0.34-2.10 kg COD/(m3-d) and nitrogen loading rates of 0.035-0.213 kg N/(m3-d). Total COD removal efficiencies of >84% were achieved, concomitantly with complete nitrification. The overall nitrogen removal efficiencies were >75%. Low biomass yields of 0.030-0.101 g VSS/g COD were achieved. Compared with other FBBR systems, the energy consumption for this IFBBR system was an average 59% less at organic loading rates (OLRs) of 1.02 and 2.10 kg COD/(m3-d). Bacterial community structures of attached and suspended biomass revealed that the dominant phyla were Proteobacteria, Bacteroidetes, and Epsilonbacteraeota, etc. The relative abundance of ammonia-oxidizing bacteria (AOBs) and nitrite-oxidizing bacteria (NOBs) in the aerobic attached biomass were 0.451% and 0.110%, respectively. COD mass balance in the anoxic zone was closed by consideration of sulfate reduction, which was confirmed by the presence of genus Chlorobium (sulfate-reducing bacteria) in the anoxic attached biofilm with a relative abundance of 0.32%.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Xiaoqin He
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Jesse Zhu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yi-Kai Su
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
43
|
Brandon TA, Stamps BW, Cummings A, Zhang T, Wang X, Jiang D. Poised potential is not an effective strategy to enhance bio-electrochemical denitrification under cyclic substrate limitations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136698. [PMID: 32019036 DOI: 10.1016/j.scitotenv.2020.136698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Bio-electrochemical denitrification (BED) is a promising organic carbon-free nitrate remediation technology. However, the relationship between engineering conditions, biofilm community composition, and resultant functions in BED remains under-explored. This study used deep sequencing and variation partitioning analysis to investigate the compositional shifts in biofilm communities under varied poised potentials in the batch mode, and correlated these shifts to reactor-level functional differences. Interestingly, the results suggest that the proliferation of a key species, Thiobacillus denitrificans, and community diversity (the Shannon index), were almost equally important in explaining the reactor-to-reactor functional variability (e.g. variability in denitrification rates was 51% and 38% attributable to key species and community diversity respectively, with a 30% overlap), but neither was heavily impacted by the poised potential. The findings suggest that while enriching the key species may be critical in improving the functional efficiency of BED, poised potentials may not be an effective strategy to achieve the desired level of enrichment in substrate-limited real-world conditions.
Collapse
Affiliation(s)
- Taymee A Brandon
- Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Blake W Stamps
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Ashton Cummings
- Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA
| | - Tianyu Zhang
- Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Xin Wang
- Department of Civil and Environmental Engineering, Nankai University, Tianjin 300071, China
| | - Daqian Jiang
- Department of Environmental Engineering, Montana Technological University, Butte, MT 59701, USA.
| |
Collapse
|
44
|
Huang W, Gong B, Wang Y, Lin Z, He L, Zhou J, He Q. Metagenomic analysis reveals enhanced nutrients removal from low C/N municipal wastewater in a pilot-scale modified AAO system coupling electrolysis. WATER RESEARCH 2020; 173:115530. [PMID: 32006807 DOI: 10.1016/j.watres.2020.115530] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 01/20/2020] [Indexed: 05/21/2023]
Abstract
The conventional biological nutrients removal process is challenged by insufficient organic carbon in influent. To cross such an organic-dependent barrier, a pilot-scale electrolysis-integrated anaerobic/anoxic/oxic (AAO) process was developed for enhanced removal of nitrogen (N) and phosphorus (P) from low carbon/nitrogen (C/N) municipal wastewater. Average removal efficiencies of total nitrogen (TN) and total phosphorus (TP) in the electrolysis-AAO reached to 77.24% and 95.08% respectively, showing increases of 13.88% and 21.87%, as compared to the control reactor. Spatial variations of N and P showed that NH4+-N removal rate was promoted in aerobic zone of electrolysis-AAO. The intensified TN elimination, which was mostly reflected by abatement of NO3--N with the concomitant slight accumulation of NH4+-N and NO2--N, mainly occurred in anoxic2 compartment as the electrons supplied by electrolysis. Furthermore, minor P contents were measured and remained almost unchanged along the reaction units, indicating that chemical precipitation should be the dominant mechanism of P-removal in electrolysis-AAO. From the metagenomic-based taxonomy, phylum Actinobacteria was dramatically inhibited, and phylum Proteobacteria dominated the electrolysis-AAO. Particularly, nitrifying bacteria and multifarious autotrophic denitrifiers were enriched, meanwhile, a significant evolution of heterotrophic denitrifiers was found in electrolysis-AAO compared to control, which was mostly reflected by the inhibition of genus Candidatus Microthrix. Batch tests further confirmed that autotrophic denitrifiers using H2 and Fe2+ as essential electron sinks were mainly responsible for the electrolysis-induced denitrification. Differential metabolic capacities were revealed from the perspectives of functional enzymes and genes, and network analysis allowed insight of microbial taxa-functional genes associations and shed light on stronger relevance between autotrophic denitrifiers and denitrification-associated genes in the electrolysis-AAO system.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Benzhou Gong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
45
|
Li X, Li Y, Li Y, Wu J. Myriophyllum elatinoides growth and rhizosphere bacterial community structure under different nitrogen concentrations in swine wastewater. BIORESOURCE TECHNOLOGY 2020; 301:122776. [PMID: 31958692 DOI: 10.1016/j.biortech.2020.122776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, Myriophyllum elatinoides growth under different nitrogen (N) concentrations (2, 250, 300, 350 and 400 mg L-1) and changes in rhizosphere bacterial community structure were investigated. High N (>300 mg L-1) concentrations caused reduction in M. elatinoides biomass. Growth tended to stabilize at 49 days. N concentration in roots were higher than that in stems and leaves under high N conditions. TN and NH4+ removal efficiencies reached 84.0% and 87.2%, respectively, in M. elatinoides surface flow constructed wetlands (SFCWs). Rhizosphere bacterial diversity increased over time. Proteobacteria, Firmicutes, Cyanobacteria, and Bacteroidetes dominated at the phylum level. Genera Turicibacter, Allochromatium, and Methylocystis increased at low N (<300 mg L-1) concentrations, while Pseudomonas increased at high N concentrations over the experimental period. Redundancy analysis showed that pH was strongly correlated with changes in rhizosphere bacterial community structure. These findings helped to insight into N removal mechanism in M. elatinoides.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China.
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
46
|
Tian T, Yu HQ. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. BIORESOURCE TECHNOLOGY 2020; 299:122686. [PMID: 31902635 DOI: 10.1016/j.biortech.2019.122686] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 05/21/2023]
Abstract
Denitrification with non-organic electron donors for treating low C/N ratio wastewater has attracted growing interests. Hydrogen, reduced sulfur compounds and ferrous ions are mainly used in autotrophic denitrification, holding promise for achieving practical applications. Recently, the development of autotrophic denitrification-based processes, such as bioelectrochemically-supported hydrogenotrophic denitrification and sulfur-/iron-based denitrification assisted multi-contaminant removal, provide opportunities for applying these processes in wastewater treatment. Exploration of the autotrophic denitrification process in terms of contaminant removal mechanism, interaction among functional microorganisms, and potential full-scale applications is thus of great importance. Here, an overview of the commonly used non-organic electron donors, e.g., hydrogen, reduced sulfur compounds and ferrous ions, in denitrification for treating low C/N ratio wastewater is provided. Also, the feasibility of applying the combined processes based on autotrophic denitrification with the compounds is discussed. Furthermore, challenges and future possibilities as well as concerns about the practical applications are envisaged in this review.
Collapse
Affiliation(s)
- Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
47
|
Liu F, Sun L, Wan J, Shen L, Yu Y, Hu L, Zhou Y. Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. J Environ Sci (China) 2020; 89:252-263. [PMID: 31892397 DOI: 10.1016/j.jes.2019.08.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Plants constitute a major element of constructed wetlands (CWs). In this study, a coupled system comprising an integrated vertical flow CW (IVCW) and a microbial fuel cell (MFC) for swine wastewater treatment was developed to research the effects of macrophytes commonly employed in CWs, Canna indica, Acorus calamus, and Ipomoea aquatica, on decontamination and electricity production in the system. Because of the different root types and amounts of oxygen released by the roots, the rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4+-N) removal from the swine wastewater differed as well. In the unplanted, Canna indica, Acorus calamus, and Ipomoea aquatica systems, the COD removal rates were 80.20%, 88.07%, 84.70%, and 82.20%, respectively, and the NH4+-N removal rates were 49.96%, 75.02%, 70.25%, and 68.47%, respectively. The decontamination capability of the Canna indica system was better than those of the other systems. The average output voltages were 520±42, 715±20, 660±27, and 752±26mV for the unplanted, Canna indica, Acorus calamus, and Ipomoea aquatica systems, respectively, and the maximum power densities were 0.2230, 0.4136, 0.3614, and 0.4964W/m3, respectively. Ipomoea aquatica had the largest effect on bioelectricity generation promotion. In addition, electrochemically active bacteria, Geobacter and Desulfuromonas, were detected in the anodic biofilm by high-throughput sequencing analysis, and Comamonas (Proteobacteria), which is widely found in MFCs, was also detected in the anodic biofilm. These results confirmed the important role of plants in IVCW-MFCs.
Collapse
Affiliation(s)
- Feng Liu
- School of Resources Environmental & Chemical Engineering, Nanchang University, Jiangxi 330031, China; School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China; Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Lei Sun
- School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Jinbao Wan
- School of Resources Environmental & Chemical Engineering, Nanchang University, Jiangxi 330031, China.
| | - Liang Shen
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China; Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Yanhong Yu
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Lingling Hu
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| |
Collapse
|
48
|
Li Y, Wang Y, Wan D, Li B, Zhang P, Wang H. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. BIORESOURCE TECHNOLOGY 2020; 300:122682. [PMID: 31901555 DOI: 10.1016/j.biortech.2019.122682] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to study a pilot-scale sulfur-limestone autotrophic denitrification biofilter (SLADB) to remove nitrogen from municipal tailwater. The capacity of nitrogen removal and spatial distribution of microbial community at low temperature condition were analyzed. Low temperature inhibits nitrogen removal; while prolonging hydraulic retention time (HRT) increased nitrogen removal efficiency. TN and NO3--N removal efficiency reached 81.1% and 85.3%, respectively, with HRT of 18 h at the temperature ranging from 6.4 to 9.8 °C. Proteobacteria and Chloroflexi were two dominant phyla. Along the reactor, class β-proteobacteria and ε-proteobacteria decreased, while γ-proteobacteria and Acidobacteria increased. For genus classification, Thiobacillus, Sulfurimonas, and Ferritrophicum which promote sulfur autotrophic denitrification, decreased significantly. While Anaerolineae promoting heterotrophic denitrification increased obviously. Sphingobacteriia coexisted in SLADB and were beneficial to nitrogen removal. Microbial community spatial distribution patterns were related to nitrogen removal. This study achieved reliable pilot-scale application of SLADB under low temperature for municipal tailwater.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China
| | - Yali Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China
| | - Dongjin Wan
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Bang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Hongjie Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China.
| |
Collapse
|
49
|
Perazzoli S, de Santana Neto JP, Soares HM. Anoxic-biocathode microbial desalination cell as a new approach for wastewater remediation and clean water production. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:550-563. [PMID: 32385209 DOI: 10.2166/wst.2020.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioelectrochemical systems are emerging as a promising and friendly alternative to convert the energy stored in wastewater directly into electricity by microorganisms and utilize it in situ to drive desalination. To better understand such processes, we propose the development of an anoxic biocathode microbial desalination Cell for the conversion of carbon- and nitrogen-rich wastewaters into bioenergy and to perform salt removal. Our results demonstrate a power output of 0.425 W m-3 with desalination, organic matter removal and nitrate conversion efficiencies of 43.69, 99.85 and 92.11% respectively. Microbiological analysis revealed Proteobacteria as the dominant phylum in the anode (88.45%) and biocathode (97.13%). While a relatively higher bacterial abundance was developed in the anode chamber, the biocathode showed a greater variety of microorganisms, with a predominance of Paracoccus (73.2%), which are related to the denitrification process. These findings are promising and provide new opportunities for the development and application of this technology in the field of wastewater treatment to produce cleaner water and conserve natural resources.
Collapse
Affiliation(s)
- Simone Perazzoli
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil E-mail:
| | - José Pedro de Santana Neto
- Department of Mechanical Engineering, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Hugo M Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil E-mail:
| |
Collapse
|
50
|
Jia L, Liu H, Kong Q, Li M, Wu S, Wu H. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. WATER RESEARCH 2020; 169:115285. [PMID: 31722275 DOI: 10.1016/j.watres.2019.115285] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Groundwater, as the most important drinking water source in arid regions of China, has been polluted seriously by accumulated nitrate and heavy metals. An economic alternative with capacity of simultaneous mitigation of nitrate and heavy metals is urgently needed. This study explored the incorporation of iron scraps and biochar into constructed wetlands (CWs) for enhancing purification performance and investigated interactions of effective nitrate reduction and heavy metals mitigation. The results showed that nitrate reduction performance could reach 87% in iron and carbon-based (Fe-C) CWs through Fe-C micro-electrolysis process, with lower nitrous oxide (N2O) emission (4.6-11.75 μg m-2 h-1) due to the complete denitrification process. Moreover, efficient heavy metals mitigation of 75-97% total chromium (Cr) and total lead (Pb) was obtained from Fe-C systems. However, the occurrence of heavy metals (Cr and Pb) in the influent posed an adverse impact on nitrate removal with the reduction rate of 19-43%. Biochemical characteristics of wetland plants indicated that the plants also suffered from the stress which induced from heavy metals. Overall, although the addition of iron and biochar in CWs enhanced nitrate and heavy metals removal in low carbon groundwater, further investigation is still needed to reveal the complex relationships between the removal of nitrate and heavy metals in CWs.
Collapse
Affiliation(s)
- Lixia Jia
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hai Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Ming Li
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shubiao Wu
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, 8000C, Denmark.
| | - Haiming Wu
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Department of Bioscience, Aarhus University, Aarhus, 8000C, Denmark.
| |
Collapse
|