1
|
Mat Husin MA, Mohd Yasin NH, Takriff MS, Jamar NH. A review on pretreatment methods for lipid extraction from microalgae biomass. Prep Biochem Biotechnol 2024; 54:159-174. [PMID: 37220018 DOI: 10.1080/10826068.2023.2214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microalgal lipids are promising and sustainable sources for the production of third-generation biofuels, foods, and medicines. A high lipid yield during the extraction process in microalgae could be influenced by the suitable pretreatment and lipid extraction methods. The extraction method itself could be attributed to the economic and environmental impacts on the industry. This review summarizes the pretreatment methods including mechanical and non-mechanical techniques for cell lysis strategy before lipid extraction in microalgae biomass. The multiple strategies to achieve high lipid yields via cell disruption techniques are discussed. These strategies include mechanical (shear forces, pulse electric forces, waves, and temperature shock) and non-mechanical (chemicals, osmotic pressure, and biological) methods. At present, two techniques of the pretreatment method can be combined to increase lipid extraction from microalgae. Therefore, the extraction strategy for a large-scale application could be further strengthened to optimize lipid recovery by microalgae.
Collapse
Affiliation(s)
- Muhammad Azreen Mat Husin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mohd Sobri Takriff
- Chemical & Water Desalination Program, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environmnent, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Hidayah Jamar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
2
|
Oh YK, Kim S, Ilhamsyah DPA, Lee SG, Kim JR. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent advances. BIORESOURCE TECHNOLOGY 2022; 366:128183. [PMID: 36307027 DOI: 10.1016/j.biortech.2022.128183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Chlorella is a promising microalga for CO2-neutral biorefinery that co-produces drop-in biofuels and multiple biochemicals. Cell disruption and selective lipid extraction steps are major technical bottlenecks in biorefinement because of the inherent robustness and complexity of algal cell walls. This review focuses on the state-of-the-art achievements in cell disruption and lipid extraction methods for Chlorella species within the last five years. Various chemical, physical, and biological approaches have been detailed theoretically, compared, and discussed in terms of the degree of cell wall disruption, lipid extractability, chemical toxicity, cost-effectiveness, energy use, scalability, customer preferences, environment friendliness, and synergistic combinations of different methods. Future challenges and prospects of environmental-friendly and efficient extraction technologies are also outlined for practical applications in sustainable Chlorella biorefineries. Given the diverse industrial applications of Chlorella, this review may provide useful information for downstream processing of the advanced biorefineries of other algae genera.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Sangui Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | | | - Sun-Gu Lee
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Anto S, Premalatha M, Mathimani T. Tertiary amine as an efficient CO 2 switchable solvent for extracting lipids from hypersaline microalgae. CHEMOSPHERE 2022; 288:132442. [PMID: 34606898 DOI: 10.1016/j.chemosphere.2021.132442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Considering the momentous cost drivers in energy efficient algal biorefinery processes, a green alternative in extracting lipid from microalgae is anticipated. Switchable solvent system using tertiary amines namely DMBA (Dimethylbenzylamine), DMCHA (Dimethylcyclohexylamine), and DIPEA (Diisopropylethylamine) for lipid extraction from wet hypersaline microalgae was investigated in this study. Interestingly, present study showed that at 1:1 (v/v of fresh DMBA solvent: microalgal biomass), and for 1 h extraction time, the lipid yield was 41.9, 26.6, and 33.3% for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04, respectively and for recovered DMBA solvent, at 1:1 (v/v) and for 1 h extraction time, the lipid yield was 40.8, 25.97, and 32%, respectively. Similarly, lipid extraction using DMCHA solvent for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04 at 1:1 (v/v of solvent: microalgal biomass) and 1 h extraction time showed 34.28, 24.24 and 23.33% lipids, respectively for fresh solvent and 34.01, 24.24 and 23.18% for recovered solvent respectively; while DIPEA was not competent in lipid extraction from three tested microalgae. FAME profile revealed the presence of saturated fatty acids as 43.04%, 40.98%, 38.45% and monounsaturated fatty acids as 28.38%, 27.05%, 23.3% for Chlorella sp. NITT05, Picochlorum sp. NITT04, Chlorella sp. NITT02, respectively. This study attributes Chlorella sp. NITT05 and Picochlorum sp. NITT04 to be ideal algal species for biodiesel production.
Collapse
Affiliation(s)
- Susaimanickam Anto
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| |
Collapse
|
4
|
Patel AK, Singhania RR, Sim SJ, Dong CD. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. BIORESOURCE TECHNOLOGY 2021; 320:124421. [PMID: 33246239 DOI: 10.1016/j.biortech.2020.124421] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Recently, microalgal biomass has become an attractive and sustainable feedstock for renewable production of various biochemicals and biofuels. However, attaining required productivity remains a key challenge to develop industrial applications. Fortunately, mixotrophic cultivation strategy (MCS) is leading to higher productivity due to the metabolic ability of some microalgal strain to utilise both photosynthesis and organic carbon compared to phototrophic or heterotrophic processes. The potential of MCS is being explored by researchers for maximized biochemicals and biofuels production however it requires further development yet to reach commercialization stage. In this review, recent developments in the MCS bioprocess for selective value-added (carotenoids) products have been reviewed; synergistic mechanism of carbon and energy was conferred. Moreover, the metabolic regulation of microalgae under MCS for utilized carbon forms and carbon recycling was demonstrated; Additionally, the opportunities and challenges of large-scale MCS have been discussed.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| | | | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
5
|
Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:112-128. [PMID: 31229809 DOI: 10.1016/j.scitotenv.2019.06.181] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
The rapid depletion of fossil fuels and ever-increasing environmental pollution have forced humankind to look for a renewable energy source. Microalgae, a renewable biomass source, has been proposed as a promising feedstock to generate biofuels due to their fast growth rate with high lipid content. However, literatures have indicated that sustainable production of microalgae biofuels are only viable with a highly optimized production system. In the present study, a cradle-to-gate approach was used to provide expedient insights on the effect of different cultivation systems and biomass productivity toward life cycle energy (LCEA), carbon balance (LCCO2) and economic (LCC) of microalgae biodiesel production pathways. In addition, a co-production of bioethanol from microalgae residue was proposed in order to improve the economic sustainability of the overall system. The results attained in the present work indicated that traditional microalgae biofuels processing pathways resulted to several shortcomings, such as dehydration and lipid extraction of microalgae biomass required high energy input and contributed nearly 21 to 30% and 39 to 57% of the total energy requirement, respectively. Besides, the microalgae biofuels production system also required a high capital investment, which accounted for 47 to 86% of total production costs that subsequently resulted to poor techno-economic performances. Moreover, current analysis of environmental aspects of microalgae biorefinery had revealed negative CO2 balance in producing microalgae biofuels.
Collapse
Affiliation(s)
- Yaleeni Kanna Dasan
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Suzana Yusup
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Jun Wei Lim
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Behera B, Acharya A, Gargey IA, Aly N, P B. Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Pan Y, Alam MA, Wang Z, Huang D, Hu K, Chen H, Yuan Z. One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. BIORESOURCE TECHNOLOGY 2017; 238:157-163. [PMID: 28433903 DOI: 10.1016/j.biortech.2017.04.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
One-step and Two-step methods were studied for lipid extraction from wet and unbroken (water content is 65-67%) Chlorella sp. and Chlorococcum sp. (GN38) using deep eutectic solvent (DES) treated microalgae cells. Further we optimized the extraction process and studied on its underlying mechanism. Among all DES, Choline chloride-Acetic acid (Ch-Aa) DES treatment showed optimal conditions at the mass ratio of DES: methanol-H2SO4 (2.00%) mixture: algae biomass was 60:40:3 with reaction time was 60min, and the optimum temperature was 110°C (Chlorococcum sp.) and 130°C (Chlorella sp.) respectively. The total content of FAME by One-step method with DES treatment was improved by 30% compared with Two-step method. This process is effective on wet and unbroken paste of microalgae biomass, so the FAME extracted using one-step with DES process is feasible for microalgae based biodiesel production.
Collapse
Affiliation(s)
- Ying Pan
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Nano Science and Technology Institute, University of Science and Technology China, Suzhou 215123, China
| | - Md Asraful Alam
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhongming Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Dalong Huang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Keqin Hu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Hongxuan Chen
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhenhong Yuan
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; Collaborative Innovation Centre of Biomass Energy, Henan Province, Zhengzhou 450002, China
| |
Collapse
|
8
|
Chen Q, Liu D, Wu C, Xu A, Xia W, Wang Z, Wen F, Yu D. Influence of a facile pretreatment process on lipid extraction from Nannochloropsis sp. through an enzymatic hydrolysis reaction. RSC Adv 2017. [DOI: 10.1039/c7ra11483d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A wall-breaking technology for algal cell composed of swelling by weak alkali and decomposition by enzyme was developed.
Collapse
Affiliation(s)
- Qingtai Chen
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- China
| | - Dong Liu
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- China
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering
- University of Calgary
- Calgary
- Canada
| | - Airong Xu
- School of Chemical Engineering and Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- China
| | - Wei Xia
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- China
| | - Zhaowen Wang
- Dongying Environmental Protection Bureau
- Dongying
- China
| | - Fushan Wen
- College of Science
- China University of Petroleum
- Qingdao
- China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- China
| |
Collapse
|