• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4595849)   Today's Articles (2455)   Subscriber (49334)
For: Hu ZC, Tian SY, Ruan LJ, Zheng YG. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor. Bioresour Technol 2017;233:144-149. [PMID: 28279907 DOI: 10.1016/j.biortech.2017.02.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Number Cited by Other Article(s)
1
Sun Y, Liu T, Nie J, Yan J, Tang J, Jin K, Li C, Li H, Liu Y, Bai Z. Continuous catalytic production of 1,3-dihydroxyacetone: Sustainable approach combining perfusion cultures and immobilized cells. BIORESOURCE TECHNOLOGY 2024;401:130734. [PMID: 38670288 DOI: 10.1016/j.biortech.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
2
Zhang K, Li M, Wang J, Huang G, Ma K, Peng J, Lin H, Zhang C, Wang H, Zhan T, Sun Z, Zhang X. Optimizing enzyme properties to enhance dihydroxyacetone production via methylglyoxal biosensor development. Microb Cell Fact 2024;23:153. [PMID: 38796416 PMCID: PMC11127321 DOI: 10.1186/s12934-024-02393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 05/28/2024]  Open
3
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023;65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
4
da Silva GAR, Oliveira SSDS, Lima SF, do Nascimento RP, Baptista ARDS, Fiaux SB. The industrial versatility of Gluconobacter oxydans: current applications and future perspectives. World J Microbiol Biotechnol 2022;38:134. [PMID: 35688964 PMCID: PMC9187504 DOI: 10.1007/s11274-022-03310-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
5
Qin Z, Yu S, Chen J, Zhou J. Dehydrogenases of acetic acid bacteria. Biotechnol Adv 2021;54:107863. [PMID: 34793881 DOI: 10.1016/j.biotechadv.2021.107863] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
6
Improvement of pyrroloquinoline quinone-dependent d-sorbitol dehydrogenase activity from Gluconobacter oxydans via expression of Vitreoscilla hemoglobin and regulation of dissolved oxygen tension for the biosynthesis of 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose. J Biosci Bioeng 2021;131:518-524. [PMID: 33487552 DOI: 10.1016/j.jbiosc.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022]
7
Liu D, Ke X, Hu ZC, Zheng YG. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation. Enzyme Microb Technol 2020;141:109670. [PMID: 33051020 DOI: 10.1016/j.enzmictec.2020.109670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
8
Breeding of Gluconobacter oxydans with high PQQ-dependent D-sorbitol dehydrogenase for improvement of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
9
Repeated production of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose by immobilized Gluconobacter oxydans cells with a strategy of in situ exhaustive cell regeneration. Bioprocess Biosyst Eng 2020;43:1781-1789. [PMID: 32399751 DOI: 10.1007/s00449-020-02368-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
10
Kinetic Modeling of Dihydroxyacetone Production from Glycerol by Gluconobacter oxydans ATCC 621 Resting Cells: Effect of Fluid Dynamics Conditions. Catalysts 2020. [DOI: 10.3390/catal10010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
11
Glutamate addition improves the activity of membrane-bound sorbitol dehydrogenase in a pyrroloquinoline quinone-dependent manner: A feasible strategy for the cost-effective fermentation of Gluconobacter oxydans. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
12
Efficient biosynthesis of 2-keto-D-gluconic acid by fed-batch culture of metabolically engineered Gluconobacter japonicus. Synth Syst Biotechnol 2019;4:134-141. [PMID: 31384676 PMCID: PMC6661466 DOI: 10.1016/j.synbio.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022]  Open
13
2-Phenylethanol biooxidation by Gluconobacter oxydans: influence of cultivation conditions on biomass production and biocatalytic activity of cells. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
14
Ke X, Pan-Hong Y, Hu ZC, Chen L, Sun XQ, Zheng YG. Synergistic improvement of PQQ-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans for the biosynthesis of miglitol precursor 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose. J Biotechnol 2019;300:55-62. [PMID: 31100333 DOI: 10.1016/j.jbiotec.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 01/24/2023]
15
Hu ZC, Bu JL, Wang RY, Ke X, Zheng YG. Enhanced Production of 6-(N-Hydroxyethyl)-Amino-6-Deoxy-α-L-Sorbofuranose by Immobilized Gluconobacter oxydanson Corn Stover with a pH Control Strategy in a Bubble Column Bioreactor. Appl Biochem Biotechnol 2018;188:297-309. [DOI: 10.1007/s12010-018-2924-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/07/2018] [Indexed: 01/25/2023]
16
Zhu J, Xie J, Wei L, Lin J, Zhao L, Wei D. Identification of the enzymes responsible for 3-hydroxypropionic acid formation and their use in improving 3-hydroxypropionic acid production in Gluconobacter oxydans DSM 2003. BIORESOURCE TECHNOLOGY 2018;265:328-333. [PMID: 29913287 DOI: 10.1016/j.biortech.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 05/24/2023]
17
Poljungreed I, Boonyarattanakalin S. Low-cost biotransformation of glycerol to 1,3-dihydroxyacetone through Gluconobacter frateurii in medium with inorganic salts only. Lett Appl Microbiol 2018;67:39-46. [PMID: 29574796 DOI: 10.1111/lam.12881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/28/2022]
18
Biosynthesis of miglitol intermediate 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose by an improved d-sorbitol dehydrogenase from Gluconobacter oxydans. 3 Biotech 2018;8:231. [PMID: 29719773 DOI: 10.1007/s13205-018-1251-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]  Open
19
Sun J, Gao W, Qi L, Song Y, Hui P, Liu Z, Xu G. Detection of 1,3-dihydroxyacetone by tris(2,2'-bipyridine)ruthenium(II) electrochemiluminescence. Anal Bioanal Chem 2018;410:2315-2320. [PMID: 29430601 DOI: 10.1007/s00216-017-0833-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/16/2017] [Accepted: 12/15/2017] [Indexed: 11/26/2022]
20
Covalent immobilization of halohydrin dehalogenase for efficient synthesis of epichlorohydrin in an integrated bioreactor. Biotechnol Prog 2018;34:784-792. [DOI: 10.1002/btpr.2617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/30/2018] [Indexed: 11/07/2022]
21
Dikshit PK, Padhi SK, Moholkar VS. Process optimization and analysis of product inhibition kinetics of crude glycerol fermentation for 1,3-Dihydroxyacetone production. BIORESOURCE TECHNOLOGY 2017;244:362-370. [PMID: 28780271 DOI: 10.1016/j.biortech.2017.07.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA