1
|
Su C, Jiang C, Sun X, Cao Z, Mu Y, Cong X, Qiu K, Lin J, Chen X, Feng C. Diatomite hemostatic particles with hierarchical porous structure for rapid and effective hemostasis. Colloids Surf B Biointerfaces 2022; 219:112809. [PMID: 36067680 DOI: 10.1016/j.colsurfb.2022.112809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
The development of fast, safe and effective hemostatic materials is crucial for pre-hospital first aid. In this study, diatomite hemostatic granules (Dhp) were developed by rotating granulation method using silica sol as binder. During rotating granulation process, the Pre-Dhp were prepared by rolling snowball effect, in which nano-silica in silica sol uniformly distributed on the surface of diatomite and polymerized through hydrogen bond to produce strong adhesion. After high-temperature calcination, the hydrogen bond transformed to silica oxygen bond and the three-dimensional gel network formed by silica sol was destroyed to exposed the pores of diatomite. Dhp retained the porous structure of diatomite with hierarchical porous structure (from nano to micro scale). Dhp could quickly adsorb the tangible components in the blood, exhibited rapid hemostatic ability (clotting time was shortened by 43 % than that of control group), and good biocompatibility (hemolysis rate < 7 %, no cytotoxicity). Dhp residue was not found in the wound of rat tail amputation model, indicating that the adhesion of silica sol and high-temperature curing treatment enhanced the stability of Dhp and reduced the hidden danger of micro thrombosis caused by residual substances entering blood vessels. Our study proved that Dhp prepared by silica sol bonding and rotary granulation was excellent hemostatic material with non-toxic side effects and rapid coagulation promotion.
Collapse
Affiliation(s)
- Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Changqing Jiang
- Qingdao Municipal Hospital, Qingdao 266003, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Zheng Cao
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xin Cong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Kaijin Qiu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jiawen Lin
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Qingdao National Laboratory for Marine Science and Technology, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
2
|
Qiu Z, Li M, Zhang L, Zhao R, Li M. Effect of waste compaction density on stabilization of aerobic bioreactor landfills. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4528-4535. [PMID: 31788730 DOI: 10.1007/s11356-019-06902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Landfill stabilization contributes to the safe operation and maintenance of landfills. This study used a simulated aerobic bioreactor landfill to investigate the impact of different compaction densities on its stabilization to provide a basis for optimal parameter selection during landfill design. Samples of municipal solid waste were tested with compaction densities of 450, 500, 550, 600, and 650 kg/m3 during the experiment. The optimum compaction density was obtained by periodically monitoring the temperature of the waste pile, the water quality of leachate, and the composition of the waste. The impacts of waste compaction density on waste pile temperature and leachate were investigated and coupled with the analysis of waste composition to discuss the possible reaction mechanism. Results showed that the most complete waste degradation occurred at 550 kg/m3 compaction density, which was effective at accelerating stabilization of the simulated aerobic bioreactor landfill. Limitations of the experiment are given to lay foundations for further study.
Collapse
Affiliation(s)
- Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Mingxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Luziping Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Rui Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Min Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|