1
|
Wang J, Li X, Jin H, Cui Y, Jiang L, Huang S, Shi K, Yan J. Enhanced resilience to oxygen exposure and toxicity of chlorinated solvents in immobilized Dehalococcoides mccartyi. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137769. [PMID: 40022933 DOI: 10.1016/j.jhazmat.2025.137769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Members of Dehalococcoides mccartyi (Dhc) are strictly anaerobic and play crucial roles in the restoration of many industrial sites impacted by chlorinated solvents, such as tetrachloroethene (PCE) and trichloroethene (TCE). In situ bioremediation with Dhc involves intricate procedures intended to minimize oxygen intrusion, and achieving optimal dechlorination performance in aquifers near the dense non-aqueous phase liquids source zone is challenging. Here, we respectively embedded Dhc strain 195 and the biomass of a Dhc-containing, PCE-dechlorinating consortium in poly(vinyl alcohol)-alginate hydrogel beads. The ethene-forming potential was well-retained in immobilized Dhc following a prolonged oxygen exposure spanning from 12 hours to 7 days, with dechlorination rates ranging from 54.6 ± 4.2-101.9 ± 13.5 µM Cl- released day-1. In contrast, suspended strain 195 and the Dhc-containing biomass exposed to oxygen for a shorter duration were completely deactivated, or suffered a substantial reduction in dechlorination potential. Cell immobilization also significantly improved the ability of Dhc to tolerate the toxic effects of chlorinated solvents. When exposed to 300 mg L-1 TCE or free-phase PCE, an immobilized Dhc inoculum enabled more rapid recovery of dechlorination activity with shorter lag phases and up to 2.1-fold higher dechlorination rate compared to the use of their suspended counterparts. Our results demonstrate the effectiveness of cell immobilization for shielding Dhc from various environmental stresses (e.g., oxygen exposure).
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, Liaoning 110044, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yiru Cui
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Lisi Jiang
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Siqi Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Chen J, Wang R, Wang C, Wang P, Gao H, Hu Y, Nie Q, Zhang S. Enhanced microbial degradation of hexabromocyclododecane in riparian sediments through regulating flooding regimes. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137406. [PMID: 40098214 DOI: 10.1016/j.jhazmat.2025.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Hexabromocyclododecane (HBCD), a persistent halogenated organic pollutant, has been commonly detected in river sediments, especially in riparian zones, but strategies for promoting its microbial degradation remain insufficiently explored. This study hypothesized that regulating the flooding regime of sediments could accelerate microbial degradation of HBCD in riparian zones and evaluated the underlying mechanisms. Results showed that, compared with high-frequency flooding-drying or no alternations, the low-frequency flooding-drying alternation (6 weeks of flooding and 6 weeks of drying, 6F:6D) significantly promoted microbial degradation of HBCD. This may be due to changes in sediment redox potential under the 6F:6D regime, facilitating the sequential reductive debromination and aerobic degradation process of HBCD. The abundances of organohalide-respiring bacteria (Dehalococcoides spp. and Dehalogenimonas spp.) were always high in the 6F:6D regime, irrespective of flooding or drying periods. Furthermore, the complex bacterial co-occurrence patterns, specific ecological clusters, and potential keystone species including the genera Methylibium, Nitrospira, and Dehalococcoides, may play important degradative roles of HBCD in the 6F:6D regime. Overall, microbial degradation of HBCD can be promoted under low-frequency flooding-drying alternation regulated by hydraulic structures, providing an effective and eco-friendly strategy for ecological restoration.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Qihao Nie
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shunqing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
3
|
Zhang Z, Ali M, Tang Z, Sun Q, Wang Q, Liu X, Yin L, Yan S, Xu M, Coulon F, Song X. Unveiling complete natural reductive dechlorination mechanisms of chlorinated ethenes in groundwater: Insights from functional gene analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134034. [PMID: 38521036 DOI: 10.1016/j.jhazmat.2024.134034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Monitored natural attenuation (MNA) of chlorinated ethenes (CEs) has proven to be a cost-effective and environment-friendly approach for groundwater remediation. In this study, the complete dechlorination of CEs with formation of ethene under natural conditions, were observed at two CE-contaminated sites, including a pesticide manufacturing facility (PMF) and a fluorochemical plant (FCP), particularly in the deeply weathered bedrock aquifer at the FCP site. Additionally, a higher abundance of CE-degrading bacteria was identified with heightened dechlorination activities at the PMF site, compared to the FCP site. The reductive dehalogenase genes and Dhc 16 S rRNA gene were prevalent at both sites, even in groundwater where no CE dechlorination was observed. vcrA and bvcA was responsible for the complete dechlorination at the PMF and FCP site, respectively, indicating the distinct contributions of functional microbial species at each site. The correlation analyses suggested that Sediminibacterium has the potential to achieve the complete dechlorination at the FCP site. Moreover, the profiles of CE-degrading bacteria suggested that dechlorination occurred under Fe3+/sulfate-reducing and nitrate-reducing conditions at the PMF and FCP site, respectively. Overall these findings provided multi-lines of evidence on the diverse mechanisms of CE-dechlorination under natural conditions, which can provide valuable guidance for MNA strategies implementation.
Collapse
Affiliation(s)
- Zhuanxia Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mukhtiar Ali
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Tang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qing Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Liu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lipu Yin
- China State Science Dingshi Environmental Engineering CO., LTD, Beijing, China
| | - Song Yan
- China State Science Dingshi Environmental Engineering CO., LTD, Beijing, China
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD, Jinan 250013, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Xin Song
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Li ZT, Song X, Yuan S, Zhao HP. Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: Kinetics and microbial responses. WATER RESEARCH 2024; 253:121328. [PMID: 38382292 DOI: 10.1016/j.watres.2024.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Chromium and organochlorine solvents, particularly trichloroethene (TCE), are pervasive co-existing contaminants in subsurface aquifers due to their extensive industrial use and improper disposal practices. In this study, we investigated the microbial dechlorination kinetics under different TCE-Cr(Ⅲ/VI) composite pollution conditions and elucidated microbial response mechanisms based on community shift patterns and metagenomic analysis. Our results revealed that the reductive dechlorinating consortium had high resistance to Cr(III) but extreme sensitivity to Cr(VI) disturbance, resulting in a persistent inhibitory effect on subsequent dechlorination. Interestingly, the vinyl chloride-respiring organohalide-respiring bacteria (OHRB) was notably more susceptible to Cr(III/VI) exposure than the trichloroethene-respiring one, possibly due to inferior competition for growth substrates, such as electron donors. In terms of synergistic non-OHRB populations, Cr(III/VI) exposure had limited impacts on lactate fermentation but significantly interfered with H2-producing acetogenesis, leading to inhibited microbial dechlorination due to electron donor deficiencies. However, this inhibition can be effectively mitigated by the amendment of exogenous H2 supply. Furthermore, being the predominant OHRB, Dehalococcoides have inherent Cr(VI) resistance defects and collaborate with synergistic non-OHRB populations to achieve concurrent bio-detoxication of Cr(VI) and TCE. Our findings expand the understanding of the response patterns of different functional populations towards Cr(III/VI) stress, and provide valuable insights for the development of in situ bioremediation strategies for sites co-contaminated with chloroethene and chromium.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
5
|
Chen SH, Li ZT, Zhao HP. Bioelectrochemical system accelerates reductive dechlorination through extracellular electron transfer networks. ENVIRONMENTAL RESEARCH 2023; 235:116645. [PMID: 37442263 DOI: 10.1016/j.envres.2023.116645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Bioelectrochemical system is considered as a promising approach for enhanced bio-dechlorination. However, the mechanism of extracellular electron transfer in the dechlorinating consortium is still a controversial issue. In this study, bioelectrochemical systems were established with cathode potential settings at -0.30 V (vs. SHE) for trichloroethylene reduction. The average dechlorination rate (102.0 μM Cl·d-1) of biocathode was 1.36 times higher than that of open circuit (74.7 μM Cl·d-1). Electrochemical characterization via cyclic voltammetry illustrated that electrostimulation promoted electrochemical activity for redox reactions. Moreover, bacterial community structure analyses indicated electrical stimulation facilitated the enrichment of electroactive and dechlorinating populations on cathode. Metagenomic and quantitative polymerase chain reaction (qPCR) analyses revealed that direct electron transfer (via electrically conductive pili, multi-heme c-type cytochromes) between Axonexus and Desulfovibrio/cathode and indirect electron transfer (via riboflavin) for Dehalococcoides enhanced dechlorination process in BES. Overall, this study verifies the effectiveness of electrostimulated bio-dechlorination and provides novel insights into the mechanisms of dechlorination process enhancement in bioelectrochemical systems through electron transfer networks.
Collapse
Affiliation(s)
- Su-Hao Chen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Chen WY, Wu JH, Wang BN. Intermittent Oxygen Supply Facilitates Codegradation of Trichloroethene and Toluene by Anaerobic Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37422855 DOI: 10.1021/acs.est.3c02481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Biodegradation is commonly employed for remediating trichloroethene- or toluene-contaminated sites. However, remediation methods using either anaerobic or aerobic degradation are inefficient for dual pollutants. We developed an anaerobic sequencing batch reactor system with intermittent oxygen supply for the codegradation of trichloroethylene and toluene. Our results showed that oxygen inhibited anaerobic dechlorination of trichloroethene, but dechlorination rates remained comparable to that at dissolved oxygen levels of 0.2 mg/L. Intermittent oxygenation engendered reactor redox fluctuations (-146 to -475 mV) and facilitated rapid codegradation of targeting dual pollutants, with trichloroethene degradation constituting only 27.5% of the noninhibited dechlorination. Amplicon sequencing analysis revealed the predominance of Dehalogenimonas (16.0% ± 3.5%) over Dehalococcoides (0.3% ± 0.2%), with ten times higher transcriptomic activity in Dehalogenimonas. Shotgun metagenomics revealed numerous genes related to reductive dehalogenases and oxidative stress resistance in Dehalogenimonas and Dehalococcoides, as well as the enrichment of diversified facultative populations with functional genes related to trichloroethylene cometabolism and aerobic and anaerobic toluene degradation. These findings suggested that the codegradation of trichloroethylene and toluene may involve multiple biodegradation mechanisms. Overall results of this study demonstrate the effectiveness of intermittent micro-oxygenation in aiding trichloroethene-toluene degradation, suggesting the potential for the bioremediation of sites with similar organic pollutants.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., East District, Tainan City 70101, Taiwan
| | - Bing Nan Wang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., East District, Tainan City 70101, Taiwan
- Environmental Laboratory and Research, Sinotech Environmental Technology, Ltd., No. 351, Sanzhong Rd., Dashe District, Kaohsiung City 815040, Taiwan
| |
Collapse
|
7
|
Wu Z, Man Q, Niu H, Lyu H, Song H, Li R, Ren G, Zhu F, Peng C, Li B, Ma X. Recent advances and trends of trichloroethylene biodegradation: A critical review. Front Microbiol 2022; 13:1053169. [PMID: 36620007 PMCID: PMC9813602 DOI: 10.3389/fmicb.2022.1053169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Trichloroethylene (TCE) is a ubiquitous chlorinated aliphatic hydrocarbon (CAH) in the environment, which is a Group 1 carcinogen with negative impacts on human health and ecosystems. Based on a series of recent advances, the environmental behavior and biodegradation process on TCE biodegradation need to be reviewed systematically. Four main biodegradation processes leading to TCE biodegradation by isolated bacteria and mixed cultures are anaerobic reductive dechlorination, anaerobic cometabolic reductive dichlorination, aerobic co-metabolism, and aerobic direct oxidation. More attention has been paid to the aerobic co-metabolism of TCE. Laboratory and field studies have demonstrated that bacterial isolates or mixed cultures containing Dehalococcoides or Dehalogenimonas can catalyze reductive dechlorination of TCE to ethene. The mechanisms, pathways, and enzymes of TCE biodegradation were reviewed, and the factors affecting the biodegradation process were discussed. Besides, the research progress on material-mediated enhanced biodegradation technologies of TCE through the combination of zero-valent iron (ZVI) or biochar with microorganisms was introduced. Furthermore, we reviewed the current research on TCE biodegradation in field applications, and finally provided the development prospects of TCE biodegradation based on the existing challenges. We hope that this review will provide guidance and specific recommendations for future studies on CAHs biodegradation in laboratory and field applications.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Quanli Man
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Hanyu Niu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Honghong Lyu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Haokun Song
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Rongji Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Fujie Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China,*Correspondence: Xiaodong Ma,
| |
Collapse
|
8
|
Xu G, He J. Resilience of organohalide-detoxifying microbial community to oxygen stress in sewage sludge. WATER RESEARCH 2022; 224:119055. [PMID: 36126627 DOI: 10.1016/j.watres.2022.119055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Organohalide pollutants are prevalent in the environment, causing harms to wildlife and human. Organohalide-respiring bacteria (OHRB) could detoxify these pollutants in anaerobic environments, but the most competent OHRB (i.e., Dehalococcoides) is susceptible to oxygen. This study reports exceptional resistance and resilience of sewage sludge microbial communities to oxygen stress for attenuation of structurally distinct organohalide pollutants, including tetrachloroethene, tetrabromobisphenol A, and polybrominated diphenyl ethers. The dehalogenation rate constant of these organohalide pollutants in oxygen-exposed sludge microcosms was maintained as 74-120% as that in the control without oxygen exposure. Subsequent top-down experiments clarified that sludge flocs and non-OHRB contributed to alleviating oxygen stress on OHRB. In the dehalogenating microcosms, multiple OHRB (Dehahlococcoides, Dehalogenimonas, and Sulfurospirillum) harboring distinct reductive dehalogenase genes (pceA, pteA, tceA, vcrA, and bdeA) collaborated to detoxify organohalide pollutants but responded differentially to oxygen stress. Comprehensive microbial community analyses (taxonomy, diversity, and structure) demonstrated certain resilience of the sludge-derived dehalogenating microbial communities to oxygen stress. Additionally, microbial co-occurrence networks were intensified by oxygen stress in most microcosms, as a possible stress mitigation strategy. Altogether the mechanistic and ecological findings in this study contribute to remediation of organohalide-contaminated sites encountering oxygen disturbance.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore.
| |
Collapse
|
9
|
Li H, Wei S, Liu N, Du Y, Ding G. Interspecies transfer of biosynthetic cobalamin for complete dechlorination of trichloroethene by Dehalococcoides mccartyi. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1335-1350. [PMID: 35290215 DOI: 10.2166/wst.2022.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Complete dechlorination of trichloroethene (TCE) by Dehalococcoides mccartyi is catalyzed by reductive dehalogenases (RDases), which possess cobalamin as the crucial cofactor. However, virtually all D. mccartyi isolated thus far are corrinoid auxotrophs. The exogenous addition of commercially available cobalamin for TCE-contaminated site decontamination is costly. In this study, TCE reduction by a D. mccartyi-containing microbial consortium utilizing biosynthetic cobalamin generated by interior corrinoid-producing organisms within this microbial consortium was studied. The results confirmed that subcultures without exogenous cobalamin in the medium were apparently unaffected and were able to successively metabolize TCE to nonchlorinated ethene. The 2-bromoethanesulfonate and ampicillin resistance tests results suggested that ampicillin-sensitive bacteria rather than methanogenic archaea within this microbial consortium were responsible for biosynthesizing cobalamin. Moreover, relatively stable carbon isotopic enrichment factor (ɛ-carbon) values of TCE were obtained regardless of whether exogenous cobalamin or selective inhibitors existed in the medium, indicating that the cobalamin biosynthesized by these organisms was absorbed and utilized by D. mccartyi for RDase synthesis and eventually participated in TCE reduction. Finally, the Illumina MiSeq sequencing analysis indicated that Desulfitobacterium and Acetobacterium in this microbial consortium were responsible for the de novo cobalamin biosynthesis to fulfill the requirements of D. mccartyi for TCE metabolism.
Collapse
Affiliation(s)
- Haijun Li
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, Shandong, China E-mail: ; College of Chemical and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 64300, Sichuan, China
| | - Shanming Wei
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, Shandong, China E-mail:
| | - Na Liu
- Institute of Groundwater and Earth Science, Jinan University, 510632 Guangzhou, China
| | - Yalu Du
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, Shandong, China E-mail:
| | - Guantao Ding
- 801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, Shandong, China E-mail:
| |
Collapse
|
10
|
Meng Q, Li P, Qu J, Liu Y, Wang Y, Chen Z, Zhang Y. Study on the community structure and function of anaerobic granular sludge under trichloroethylene stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1408-1418. [PMID: 33471269 DOI: 10.1007/s10646-020-02343-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Trichloroethylene (TCE) is one of the most common groundwater pollutants. It is carcinogenic, teratogenic, mutagenic and poses a serious threat to human health and the environment. Therefore, reducing the environmental toxicity of TCE is of great significance. Anaerobic sludge was cultured and acclimated in an upflow anaerobic sludge blanket (UASB) reactor in this study. The Chemical Oxygen Demand (COD) concentration of the influent was approximately 2500 mg L-1, and the TCE concentration of the influent ranged from 1.46 mg L-1 to 73 mg L-1. After biodegradation of the anaerobic microflora, the COD removal rate was approximately 85%, and the TCE removal rate was over 85%. The microbial community of anaerobic sludge was analysed by 16 S rDNA clone libray and 454 high-throughput sequencing. Through analysis of the sequencing results, we found that there were a variety of acid-forming bacteria, anaerobic dechlorinating bacteria, and methanogenic bacteria. Based on the analysis of microflora function, it was speculated that the TCE metabolic pathway took place in UASB reactors. Desulfovibrio and Syntrophobacter provided an anaerobic environment, and acid-forming bacteria metabolise organic compounds into hydrogen. With Dehalobacter and Geobacter, TCE as an electron acceptor is dechlorinated and reduced under the anaerobic environment, in which hydrogen acts as an electron donor. By this, we clarified the metabolic pathway for improving TCE bioremediation.
Collapse
Affiliation(s)
- Qingjuan Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhua Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Li F, Deng D, Zeng L, Abrams S, Li M. Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145118. [PMID: 33610989 DOI: 10.1016/j.scitotenv.2021.145118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Chlorinated solvents, notably trichloroethene (TCE), and the cyclic ether stabilizer, 1,4-dioxane (dioxane), have been frequently detected commingling in contaminated aquifers. Here we developed a sequential anaerobic and aerobic treatment strategy effective to mitigate the co-contamination of TCE and dioxane, particularly when dioxane is present at ppb levels relevant to many impacted sites. After the primary anaerobic treatment by a halorespiring consortium SDC-9, TCE was effectively removed, though lingering less-chlorinated metabolites, vinyl chloride (VC) and cis-dichloroethene (cDCE). Subsequent aerobic bioaugmentation with Azoarcus sp. DD4, a cometabolic dioxane degrader, demonstrated the ability of DD4 to degrade dioxane at an initial concentration of 20 μg/L to below 0.4 μg/L and its dominance (~7%) in microcosms fed with propane. Even better, DD4 can also transform VC and cDCE in tandem, though cDCE and VC at relatively high concentrations (e.g., 1 mg/L) posed inhibition to propane assimilation and cell growth of DD4. Mutagenesis of DD4 revealed group-2 toluene monooxygenase and group-5 propane monooxygenase are responsible for cDCE and VC co-oxidation, respectively. Overall, we demonstrated the feasibility of a treatment train combining reductive dehalogenation and aerobic co-oxidation processes in tandem to not only effectively clean up prevalent co-contamination of TCE and dioxane at trace levels but also mitigate persistent products (e.g., cDCE and VC) when complete reductive dehalogenation of less-chlorinated ethenes occurs slowly in the field.
Collapse
Affiliation(s)
- Fei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Daiyong Deng
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Lingke Zeng
- Langan Engineering, Parsippany, NJ 07054, USA
| | | | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
12
|
Ismaeil M, Yoshida N, Katayama A. Bacteroides sedimenti sp. nov., isolated from a chloroethenes-dechlorinating consortium enriched from river sediment. J Microbiol 2018; 56:619-627. [DOI: 10.1007/s12275-018-8187-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
|
13
|
Liu N, Ding L, Li H, Zhang P, Zheng J, Weng CH. Stable carbon isotope fractionation of chlorinated ethenes by a microbial consortium containing multiple dechlorinating genes. BIORESOURCE TECHNOLOGY 2018; 261:133-141. [PMID: 29656226 DOI: 10.1016/j.biortech.2018.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
The study aimed to determine the possible contribution of specific growth conditions and community structures to variable carbon enrichment factors (Ɛ-carbon) values for the degradation of chlorinated ethenes (CEs) by a bacterial consortium with multiple dechlorinating genes. Ɛ-carbon values for trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride were -7.24% ± 0.59%, -14.6% ± 1.71%, and -21.1% ± 1.14%, respectively, during their degradation by a microbial consortium containing multiple dechlorinating genes including tceA and vcrA. The Ɛ-carbon values of all CEs were not greatly affected by changes in growth conditions and community structures, which directly or indirectly affected reductive dechlorination of CEs by this consortium. Stability analysis provided evidence that the presence of multiple dechlorinating genes within a microbial consortium had little effect on carbon isotope fractionation, as long as the genes have definite, non-overlapping functions.
Collapse
Affiliation(s)
- Na Liu
- College of Environment and Resources, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Longzhen Ding
- College of Environment and Resources, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haijun Li
- Sichuan University of Science & Engineering, Sichuan, China
| | - Pengpeng Zhang
- College of Environment and Resources, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Jixing Zheng
- College of Environment and Resources, Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Chih-Huang Weng
- Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung City 84008, Taiwan.
| |
Collapse
|
14
|
Identification of Multiple Dehalogenase Genes Involved in Tetrachloroethene-to-Ethene Dechlorination in a Dehalococcoides-Dominated Enrichment Culture. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9191086. [PMID: 28894752 PMCID: PMC5574268 DOI: 10.1155/2017/9191086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/03/2017] [Indexed: 11/17/2022]
Abstract
Chloroethenes (CEs) are widespread groundwater toxicants that are reductively dechlorinated to nontoxic ethene (ETH) by members of Dehalococcoides. This study established a Dehalococcoides-dominated enrichment culture (designated “YN3”) that dechlorinates tetrachloroethene (PCE) to ETH with high dechlorination activity, that is, complete dechlorination of 800 μM PCE to ETH within 14 days in the presence of Dehalococcoides species at 5.7 ± 1.9 × 107 copies of 16S rRNA gene/mL. The metagenome of YN3 harbored 18 rdhA genes (designated YN3rdhA1–18) encoding the catalytic subunit of reductive dehalogenase (RdhA), four of which were suggested to be involved in PCE-to-ETH dechlorination based on significant increases in their transcription in response to CE addition. The predicted proteins for two of these four genes, YN3RdhA8 and YN3RdhA16, showed 94% and 97% of amino acid similarity with PceA and VcrA, which are well known to dechlorinate PCE to trichloroethene (TCE) and TCE to ETH, respectively. The other two rdhAs, YN3rdhA6 and YN3rdhA12, which were never proved as rdhA for CEs, showed particularly high transcription upon addition of vinyl chloride (VC), with 75 ± 38 and 16 ± 8.6 mRNA copies per gene, respectively, suggesting their possible functions as novel VC-reductive dehalogenases. Moreover, metagenome data indicated the presence of three coexisting bacterial species, including novel species of the genus Bacteroides, which might promote CE dechlorination by Dehalococcoides.
Collapse
|