1
|
Xiao J, Lin G, Cao Z, Chu S, Cui L, Yang Y, Wu X. A shallow constructed wetland combining porous filter material and Rotala rotundifolia for advanced treatment of municipal sewage at low HRT. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27593-27602. [PMID: 36383319 DOI: 10.1007/s11356-022-24111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Water scarcity is a worldwide problem. Recycled municipal wastewater is considered a useful alternative to the conventional types of water resources. In this study, a shallow constructed wetland (SCW) with porous filter material and Rotala rotundifolia was used for advanced municipal sewage treatment. The wetland without plant was set as the control (SCW-C). The pollutant removal performance of the system at different hydraulic retention times (HRTs) was investigated. The diversity of the microbial community was analyzed, and the fate of nutrients, mainly N and P, in the system was discussed. Results showed that SCW was efficient in pollutant removal. Effluent concentrations of chemical oxygen demand (COD), total phosphorus (TP), and ammonium nitrogen (NH4+-N) were 15.0-23.6, 0.19-0.28, and 0.83-1.16 mg/L, separately, with average removal efficiencies of 61.2%, 46.3%, and 88.1% at HRT 18 h, which met the requirements of type [Formula: see text] water set by the environmental quality standards for surface water in China. The richness and evenness of the bacterial community were significantly higher in the plant-rooted SCW. They increased along with the system. The dominant genera in the system were phosphate-solubilizing bacteria, nitrifying bacteria, and denitrifying bacteria. The P in the influent mainly flowed to the substrate and plant. At the same time, most N was removed by nitrification and denitrification. These findings suggested that the SCW could remove pollutants from the municipal sewage effluent and meet the standard requirement at low HRT.
Collapse
Affiliation(s)
- Jibo Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Guo Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhuangzhuang Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Shuyi Chu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325000, China.
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Yunlong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Xiangting Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
2
|
Chang HM, Chen SS, Chang WS, Nguyen TXQ, Nguyen NC. Exploration of the dynamic osmotic membrane bioreactor in low-speed rolling motion for membrane fouling mitigation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo DVN, Mahlia TMI. Strategies to improve membrane performance in wastewater treatment. CHEMOSPHERE 2022; 306:135527. [PMID: 35780994 DOI: 10.1016/j.chemosphere.2022.135527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Membrane technology has rapidly gained popularity in wastewater treatment due to its cost-effectiveness, environmentally friendly tools, and elevated productivity. Although membrane performance in wastewater treatment has been reviewed in several past studies, the key techniques for improving membrane performance, as well as their challenges, and solutions associated with the membrane process, were not sufficiently highlighted in those studies. Also, very few studies have addressed hybrid techniques to improve membrane performance. The present review aims to fill those gaps and achieve public health benefits through safe water processing. Despite its higher cost, membrane performance can result in a 36% reduction in flux degradation. The issue with fouling has been identified as one of the key challenges of membrane technology. Chemical cleaning is quite effective in removing accumulated foulant. Fouling mitigation techniques have also been shown to have a positive effect on membrane photobioreactors that handle wastewater effluent, resulting in a 50% and 60% reduction in fouling rates for backwash and nitrogen bubble scouring techniques. Membrane hybrid approaches such as hybrid forward-reverse osmosis show promise in removing high concentrations of phosphorus, ammonium, and salt from wastewater. The incorporation of the forward osmosis process can reject 99% of phosphorus and 97% of ammonium, and the reverse osmosis approach can achieve a 99% salt rejection rate. The control strategies for membrane fouling have not been successfully optimized yet and more research is needed to achieve a realistic, long-term direct membrane filtering operation.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh.
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Adiba Momtahin
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nuzaba Tasannum
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Nishat Tasnim Faria
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Dai-Viet N Vo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia; Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Selangor, Malaysia
| |
Collapse
|
4
|
Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125912. [PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 05/25/2023]
Abstract
Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
Collapse
Affiliation(s)
- S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Samiha Nuzhat
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh; Water and Life Bangladesh, Dhaka, Bangladesh
| | | | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Md Alhaz Uddin
- Department of Civil Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Li J, Zheng L, Ye C, Ni B, Wang X, Liu H. Evaluation of an intermittent-aeration constructed wetland for removing residual organics and nutrients from secondary effluent: Performance and microbial analysis. BIORESOURCE TECHNOLOGY 2021; 329:124897. [PMID: 33657501 DOI: 10.1016/j.biortech.2021.124897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 05/16/2023]
Abstract
This study proposed a novel intermittent-aeration constructed wetland (CW) to resolve the vertical loss of oxygen in tertiary treatment. Compared to the non-aeration CW, the intermittent-aeration CW presented a better removal performance (90.8% chemical oxygen demand, 94.3% ammonia nitrogen, 91.5% total nitrogen and 94.1% total phosphorus) at a dissolved oxygen of 3 mg L-1 and hydraulic retention time of 2 days. It was mainly attributed to the higher abundance and greater diversity of bacterial community due to the oxygen supply. High-throughput sequencing indicated that high abundance of phyla Proteobacteria (35.34%) and Bacteroidetes (18.20%) in intermittent-aeration CW were responsible for simultaneous nitrogen and phosphorus removal. Besides, the dominant families Burkholderiaceae (11.16%), Microtrichales (6.88%) and Saprospiraceae (6.50%) were also detected, which was vital to hydrolyze and utilize complex organic matters. In general, oxygen supply upregulated the metabolism pathways of amino acid and carbohydrate, bringing a greater biodegradation potential for removing contaminants.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Research Center for Pollution Control and Ecological Restoration, Yuxi Normal University, Yuxi 653100, Yunnan, PR China
| | - Lei Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Changbing Ye
- Research Center for Pollution Control and Ecological Restoration, Yuxi Normal University, Yuxi 653100, Yunnan, PR China
| | - Baosen Ni
- Research Center for Pollution Control and Ecological Restoration, Yuxi Normal University, Yuxi 653100, Yunnan, PR China
| | - Xingzhu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
6
|
Hosseinzadeh A, Zhou JL, Navidpour AH, Altaee A. Progress in osmotic membrane bioreactors research: Contaminant removal, microbial community and bioenergy production in wastewater. BIORESOURCE TECHNOLOGY 2021; 330:124998. [PMID: 33757679 DOI: 10.1016/j.biortech.2021.124998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Renewable energy, water conservation, and environmental protection are the most important challenges today. Osmotic membrane bioreactor (OMBR) is an innovative process showing superior performance in bioenergy production, eliminating contaminants, and low fouling tendency. However, salinity build-up is the main drawback of this process. Identifying the microbial community can improve the process in bioenergy production and contaminant treatment. This review aims to study the recent progress and challenges of OMBRs in contaminant removal, microbial communities and bioenergy production. OMBRs are widely reported to remove over 80% of total organic carbon, PO43-, NH4+ and emerging contaminants from wastewater. The most important microbial phyla for both hydrogen and methane production in OMBR are Firmicutes, Proteobacteria and Bacteroidetes. Firmicutes' dominance in anaerobic processes is considerably increased from usually 20% at the beginning to 80% under stable condition. Overall, OMBR process has great potential to be applied for simultaneous bioenergy production and wastewater treatment.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Amir H Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Cai Y, Wu Y, Yang YL, Lu YX, Song HL. Minimizing salinity accumulation via regulating draw solute concentration in a bioelectrochemically assisted osmotic membrane bioreactor. CHEMOSPHERE 2021; 272:129613. [PMID: 33465614 DOI: 10.1016/j.chemosphere.2021.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
A suitable draw solute (DS) concentration in bioelectrochemically assisted osmotic membrane bioreactor (BEA-OMBR) can convert the "negative effect" of salinity accumulation into a "beneficial effect" by using the reverse-fluxed DS as a buffer agent or a carbon source supplement. Herein, the effect of DS concentration from acid buffer solution (i.e., ammonium chloride, NH4Cl), alkaline buffer solution (i.e., sodium bicarbonate, NaHCO3), and organic solution (i.e., sodium acetate, NaOAc) on salinity accumulation was systematically investigated. Salinity accumulation with NaHCO3 DS mainly derived from reversal fluxed sodium ion (Na+, major contributor with DS concentration ≤0.25 M) and bicarbonate ion (main contributor with DS concentration ≥0.50 M): Na+ accumulation could be mitigated by Na+ transport dominant by electrically driven migration (i.e., 21.3-62.1% of reverse-fluxed Na+), and bicarbonate accumulation could be reduced by buffer system. A medium-low concentration of 0.25 M NH4Cl DS had a better performance on current density of 165.0 ± 23.0 A m-3 and COD removal efficiency of 91.5 ± 3.4% by taking advantage that 77.7 ± 1.3% of reverse-fluxed ammonium could be removed by biological treatment and ammonium transport. A high NaOAc DS concentration (i.e., ≥0.05 M) exhibited a higher current density of 145.3-146.0 A m-3 but a lower COD removal efficiency due to the limited carbon source utilization capacity of anaerobic bacteria. Both concentration diffusion (20.9-28.3%) and electrically driven migration (29.5-39.4%) promoted reverse-fluxed Na+ transport to catholyte and thus mitigated Na+ accumulation in the feed/anolyte. These findings have provided an optimal DS concentration for BEA-OMBR operation and thus encourage its further development.
Collapse
Affiliation(s)
- Yun Cai
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
8
|
Yang YL, Wu Y, Lu YX, Cai Y, He Z, Yang XL, Song HL. A comprehensive review of nutrient-energy-water-solute recovery by hybrid osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 320:124300. [PMID: 33129093 DOI: 10.1016/j.biortech.2020.124300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 05/26/2023]
Abstract
Hybrid osmotic membrane bioreactor (OMBR) takes advantage of the cooperation of varying biological or desalination processes and can achieve NEWS (nutrient-energy-water-solute) recovery from wastewater. However, a lack of universal parameters hinders our understanding. Herein, system configurations and new parameters are systematically investigated to help better evaluate recovery performance. High-quality water can be produced in reverse osmosis/membrane distillation-based OMBRs, but high operation cost limits their application. Although bioelectrochemical system (BES)/electrodialysis-based OMBRs can effectively achieve solute recovery, operation parameters should be optimized. Nutrients can be recovered from various wastewater by porous membrane-based OMBRs, but additional processes increase operation cost. Electricity recovery can be achieved in BES-based OMBRs, but energy balances are negative. Although anaerobic OMBRs are energy-efficient, salinity accumulation limits methane productions. Additional efforts must be made to alleviate membrane fouling, control salinity accumulation, optimize recovery efficiency, and reduce operation cost. This review will accelerate hybrid OMBR development for real-world applications.
Collapse
Affiliation(s)
- Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yun Cai
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
9
|
Ab Hamid NH, Wang DK, Smart S, Ye L. Achieving stable operation and shortcut nitrogen removal in a long-term operated aerobic forward osmosis membrane bioreactor (FOMBR) for treating municipal wastewater. CHEMOSPHERE 2020; 260:127581. [PMID: 32758787 DOI: 10.1016/j.chemosphere.2020.127581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Forward osmosis membrane bioreactor (FOMBR) is an integrated physical-biological treatment process that has received increased awareness in treating municipal wastewater for its potential to produce high effluent quality coupled with its low propensity for fouling formation. However, reverse salt diffusion (RSD) is a major issue and so far limited studies have reported long-term FOMBR operation under the elevated salinity conditions induced by RSD. This study investigated the performance of a FOMBR in treating municipal wastewater under a controlled saline environment (6-8 g L-1 NaCl) using two separate sodium chloride draw solution (NaCl DS) concentrations (35 and 70 g L-1) over 243 days. At 35 g L-1 NaCl DS, the water flux performance dropped from 6.75 L m-2 h-1 (LMH) to 2.07 LMH after 72 days of operation in the first experimental stage, when no cleaning procedure was implemented. In the subsequent stage, the DS concentration was increased to 70 g L-1 and a weekly physical cleaning regime introduced. Under stable operation, the water flux performance recovery was 67% after 21 cycles of physical cleaning. For the first time in FOMBR studies, a shortcut nitrogen removal via the nitrite pathway was also achieved under the elevated salinity conditions. At the end of operation (day 243), the ammonia-oxidising bacteria (Nitrosomonas sp.) was the only nitrifier species in the system and no nitrite oxidising bacteria was detected. The above study proves that a FOMBR system is a feasible process for treating municipal wastewater.
Collapse
Affiliation(s)
- Nur Hafizah Ab Hamid
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - David K Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Smart
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Removal of Organic Micro-Pollutants by Conventional Membrane Bioreactors and High-Retention Membrane Bioreactors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ubiquitous presence of organic micropollutants (OMPs) in the environment as a result of continuous discharge from wastewater treatment plants (WWTPs) into water matrices—even at trace concentrations (ng/L)—is of great concern, both in the public and environmental health domains. This fact essentially warrants developing and implementing energy-efficient, economical, sustainable and easy to handle technologies to meet stringent legislative requirements. Membrane-based processes—both stand-alone or integration of membrane processes—are an attractive option for the removal of OMPs because of their high reliability compared with conventional process, least chemical consumption and smaller footprint. This review summarizes recent research (mainly 2015–present) on the application of conventional aerobic and anaerobic membrane bioreactors used for the removal of organic micropollutants (OMP) from wastewater. Integration and hybridization of membrane processes with other physicochemical processes are becoming promising options for OMP removal. Recent studies on high retention membrane bioreactors (HRMBRs) such as osmotic membrane bioreactor (OMBRs) and membrane distillation bioreactors (MDBRs) are discussed. Future prospects of membrane bioreactors (MBRs) and HRMBRs for improving OMP removal from wastewater are also proposed.
Collapse
|
11
|
Huy Tran V, Lim S, Jun Park M, Suk Han D, Phuntsho S, Park H, Matsuyama H, Kyong Shon H. Fouling and performance of outer selective hollow fiber membrane in osmotic membrane bioreactor: Cross flow and air scouring effects. BIORESOURCE TECHNOLOGY 2020; 295:122303. [PMID: 31675518 DOI: 10.1016/j.biortech.2019.122303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
This study assessed impacts of cross-flow velocity (CFV) and air scouring on the performance and membrane fouling mitigation of a side-stream module containing outer-selective hollow fiber thin film composite forward osmosis membrane in osmosis membrane bioreactor (OMBR) system for urban wastewater treatment. CFV of draw solution was optimized, followed by the impact assessment of three CFVs on feed solution (FS) stream and periodic injection of air scouring into the side-stream module. Overall, the OMBR system exhibited high and stable performance with initial water flux of approximately 15 LMH, high removal efficiencies of bulk organic matter and nutrients. While FS's CFVs insignificantly affected the performance and membrane fouling, regular air scouring showed substantial impact with better performance and high efficiency in mitigating membrane fouling. These results indicated that periodic air scouring can be applied into the side-stream membrane module for efficient fouling mitigation without interruption the operation of the OMBR system.
Collapse
Affiliation(s)
- Van Huy Tran
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Sungil Lim
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Myoung Jun Park
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Dong Suk Han
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia.
| |
Collapse
|
12
|
Lee DJ, Hsieh MH. Forward osmosis membrane processes for wastewater bioremediation: Research needs. BIORESOURCE TECHNOLOGY 2019; 290:121795. [PMID: 31326216 DOI: 10.1016/j.biortech.2019.121795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Increasing research and development works have been made to develop forward osmosis (FO) processes as a cost-effective substitute for energy intensive water vacuum suction facility in submerged membrane bioreactor (MBR) applications. Perceived to be a spontaneous water driven process without external applied pressures, the FO has been applied in lab and pilot scales for wastewater bioremediation. This paper reviewed the state-of-the-art developments on the FO unit, the process, and ways of enhancing process performance, particularly on the aspects of flux enhancement, flow resistance reduction, and draw solute with low reverse salt diffusion, which are relevant to enhanced osmotic MBR performance. The perspective to realize the use of FO processes in revision of currently existing energy intensive osmotic MBR processes is discussed with research needs being highlighted.
Collapse
Affiliation(s)
- Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan.
| | - Meng-Huan Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Tran VH, Lim S, Han DS, Pathak N, Akther N, Phuntsho S, Park H, Shon HK. Efficient fouling control using outer-selective hollow fiber thin-film composite membranes for osmotic membrane bioreactor applications. BIORESOURCE TECHNOLOGY 2019; 282:9-17. [PMID: 30849738 DOI: 10.1016/j.biortech.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
This paper investigates the efficiency of fouling mitigation methods using a novel outer selective hollow fiber thin-film composite forward osmosis (OSHF TFC FO) membrane for osmosis membrane bioreactor (OMBR) system treating municipal wastewater. Two home-made membrane modules having similar transport properties were used. Two operation regimes with three different fouling mitigation strategies were utilized to test the easiness of membrane for fouling cleaning. These two membrane modules demonstrated high performance with high initial water flux of 14.4 LMH and 14.1 LMH and slow increase rate of mixed liquor's salinity in the bioreactor using 30 g/L NaCl as draw solution. OMBR system showed high removals of total organic carbon and NH4 + -N (>98%). High fouling cleaning efficiency was achieved using OSHF TFC FO membrane with different fouling control methods. These results showed that this membrane is suitable for OMBR applications due to its high performance and its simplicity for fouling mitigation.
Collapse
Affiliation(s)
- Van Huy Tran
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Sungil Lim
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Dong Suk Han
- Center for Advanced Materials (CAM), Research Complex H10, Qatar University, Doha, Qatar
| | - Nirenkumar Pathak
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Nawshad Akther
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia.
| |
Collapse
|
15
|
Yao M, Woo YC, Ren J, Tijing LD, Choi JS, Kim SH, Shon HK. Volatile fatty acids and biogas recovery using thermophilic anaerobic membrane distillation bioreactor for wastewater reclamation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:833-842. [PMID: 30419439 DOI: 10.1016/j.jenvman.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/16/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The effects of bioreactor temperatures and salinities of an anaerobic membrane distillation bioreactor (anMDBR) on the permeation performance and their potential recovery of bioresources were fully examined in this study. To the best of our knowledge, this is the first study of a lab-scale anMDBR process utilizing sub-merged hollow fiber membranes. The hybrid system utilizing both membrane distillation (MD) and anaerobic bioreactors achieved 99.99% inorganic salt rejection regardless the operation temperatures and high initial flux from (2-4 L m-2 h-1) at 45-65 °C. However, after 7-day operation, the flux dropped by 16-50% proportional to the bioreactor temperatures. It was found that the effects of bioreactor temperatures had strong impacts on both the permeation performance and fouling behavior while salinity had insignificant effect. A compact non-porous fouling layer was observed on the membrane surface from the bioreactor operated at 65 °C while only a few depositions was found on the membrane from 45 °C bioreactor. In the present study, the optimal anMDBR temperature was found to be 45 °C, showing a balanced biogas production and membrane permeation performance including less fouling formation. At this bioreactor temperature (45 °C), the biogas yield was 0.14 L/g CODremoval, while maintaining a methane recovery of 42% in the biogas, similar recovery to those at bioreactor temperatures of 55 and 65 °C. The potential recovery of volatile fatty acids made anMDBR a more economically efficient system, in addition to its lower operation cost and smaller footprint compared with most other technologies for on-site wastewater treatment.
Collapse
Affiliation(s)
- Minwei Yao
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), P. O. Box 123, 15, Broadway, NSW, 2007, Australia
| | - Yun Chul Woo
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Jiawei Ren
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), P. O. Box 123, 15, Broadway, NSW, 2007, Australia
| | - Leonard D Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), P. O. Box 123, 15, Broadway, NSW, 2007, Australia
| | - June-Seok Choi
- Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Seung-Hyun Kim
- Civil Engineering Department, Kyungnam University, Wolyoung-dong, Changwon, 631-701, Republic of Korea
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), P. O. Box 123, 15, Broadway, NSW, 2007, Australia.
| |
Collapse
|
16
|
Pathak N, Fortunato L, Li S, Chekli L, Phuntsho S, Ghaffour N, Leiknes T, Shon HK. Evaluating the effect of different draw solutes in a baffled osmotic membrane bioreactor-microfiltration using optical coherence tomography with real wastewater. BIORESOURCE TECHNOLOGY 2018; 263:306-316. [PMID: 29753932 DOI: 10.1016/j.biortech.2018.04.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor for real sewage employing baffles in the reactor. To study the biofouling development on forward osmosis membranes optical coherence tomography (OCT) technique was employed. On-line monitoring of biofilm growth on a flat sheet cellulose triacetate forward osmosis (CTA-FO) membrane was conducted for 21 days. Further, the process performance was evaluated in terms of water flux, organic and nutrient removal, microbial activity in terms of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and floc size. The measured biofouling layer thickness was in the order sodium chloride (NaCl) > ammonium sulfate (SOA) > potassium dihydrogen phosphate (KH2PO4). Very high organic removal (96.9 ± 0.8%) and reasonably good nutrient removal efficiency (85.2 ± 1.6% TN) was achieved. The sludge characteristics and biofouling layer thickness suggest that less EPS and higher floc size were the governing factors for less fouling.
Collapse
Affiliation(s)
- Nirenkumar Pathak
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Luca Fortunato
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Laura Chekli
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia.
| |
Collapse
|
17
|
Pathak N, Li S, Kim Y, Chekli L, Phuntsho S, Jang A, Ghaffour N, Leiknes T, Shon HK. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system. BIORESOURCE TECHNOLOGY 2018; 262:98-106. [PMID: 29702422 DOI: 10.1016/j.biortech.2018.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
A novel approach was employed to study removal of organic micropollutants (OMPs) in a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system under oxicanoxic conditions. The performance of OMBR-MF system was examined employing three different draw solutes (DS), and three model OMPs. The highest forward osmosis (FO) membrane rejection was attained with atenolol (100%) due to its higher molar mass and positive charge. With inorganic DS caffeine (94-100%) revealed highest removal followed by atenolol (89-96%) and atrazine (16-40%) respectively. All three OMPs exhibited higher removal with organic DS as compared to inorganic DS. Significant anoxic removal was observed for atrazine under very different redox conditions with extended anoxic cycle time. This can be linked with possible development of different microbial consortia responsible for diverse enzymes secretion. Overall, the OMBR-MF process showed effective removal of total organic carbon (98%) and nutrients (phosphate 97% and total nitrogen 85%), respectively.
Collapse
Affiliation(s)
- Nirenkumar Pathak
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Youngjin Kim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Laura Chekli
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-Gu, Suwon, Gyeonggi-Do 16419, Republic of Korea
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia.
| |
Collapse
|
18
|
Li S, Kim Y, Chekli L, Phuntsho S, Shon HK, Leiknes T, Ghaffour N. Impact of reverse nutrient diffusion on membrane biofouling in fertilizer-drawn forward osmosis. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|