1
|
Vinzelj J, Nash K, Jones AL, Young RT, Meili CH, Pratt CJ, Wang Y, Elshahed MS, Youssef NH. The anaerobic gut fungal community in ostriches ( Struthio camelus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646006. [PMID: 40196465 PMCID: PMC11974864 DOI: 10.1101/2025.03.28.646006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Anaerobic gut fungi (AGF; Neocallimastigomycota) are essential for plant biomass degradation in herbivores. While extensively studied in mammals, information regarding their occurrence, diversity, and community structure in non-mammalian hosts remains sparse. Here, we report on the AGF community in ostriches (Struthio camelus), herbivorous, flightless, hindgut fermenting members of the class Aves (birds). Culture-independent diversity surveys of fecal samples targeting the D2 region of the large ribosomal subunit (28S rRNA) revealed a uniform community with low alpha diversity. The community was mostly comprised of sequences potentially representing two novel species in the genus Piromyces, and a novel genus in the Neocallimastigomycota. Sequences affiliated with these novel taxa were absent or extremely rare in datasets derived from mammalian and tortoise samples, indicating a strong pattern of AGF-host association. One Piromyces strain (strain Ost1) was successfully isolated. Transcriptomics-enabled molecular dating analysis suggested a divergence time of ≈ 30 Mya, a time frame in line with current estimates for ostrich evolution. Comparative gene content analysis between strain Ost1 and other Piromyces species from mammalian sources revealed a high degree of similarity. Our findings expand the range of AGF animal hosts to include members of the birds (class Aves), highlight a unique AGF community adapted to the ostrich alimentary tract, and demonstrate that - like mammals - coevolutionary phylosymbiosis (i.e. concurrent evolution of AGF and their animal hosts) plays a central role in explaining current AGF distribution patterns in Aves.
Collapse
Affiliation(s)
- Julia Vinzelj
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, U.S.A
| | - Kathryn Nash
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, U.S.A
| | - Adrienne L. Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, U.S.A
| | - R. Ty Young
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, U.S.A
| | - Casey H. Meili
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, U.S.A
| | - Carrie J. Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, U.S.A
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, U.S.A
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, U.S.A
| |
Collapse
|
2
|
McAllister TA, Thomas KD, Gruninger RJ, Elshahed M, Li Y, Cheng Y. INTERNATIONAL SYMPOSIUM ON RUMINANT PHYSIOLOGY: Rumen fungi, archaea and their interactions. J Dairy Sci 2025:S0022-0302(25)00009-8. [PMID: 39824485 DOI: 10.3168/jds.2024-25713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H2 transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO2 to CH4 by methanogens. This symbiotic relationship is bolstered by hydrogensomes, fungal organelles that generate H2 and formate. Interspecies H2 transfer prevents the accumulation of reducing equivalents that would otherwise impede fermentation. The extent to which hydrogenosomes serve as a conduit for H2 flow to methanogens is unknown, but it is likely greater with low quality forages. Strategies that alter the production of CH4 could also have implications for H2 transfer by anaerobic fungi. Understanding the factors that drive these interactions and H2 flow could provide insight into the effect of reducing CH4 production on the activity of ruminal fungi and the digestion of low-quality feeds.
Collapse
Affiliation(s)
- Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1.
| | - Krysty D Thomas
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Mostafa Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74074, USA
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| |
Collapse
|
3
|
Obi LU, Roopnarain A, Tekere M, Zhou J, Li H, Wang Y, Zhang Y, Adeleke RA. Dynamics and Insights into the Unique Ecological Guild of Fungi in Bacteria-Bioaugmented Anaerobic Digesters. J Fungi (Basel) 2025; 11:56. [PMID: 39852475 PMCID: PMC11766663 DOI: 10.3390/jof11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
Anaerobic digesters host a variety of microorganisms, and they work together to produce biogas. While bacterial and archaeal communities have been well explored using molecular techniques, fungal community structures remain relatively understudied. The present study aims to investigate the dynamics and potential ecological functions of the predominant fungi in bacteria-bioaugmented anaerobic digesters. Eight different anaerobic digesters that contained chopped water hyacinth and cow dung as feedstock at 2% total solids were respectively inoculated with eight different bacterial strains and digested anaerobically in controlled conditions. The diversity and dynamics of the fungal community of the digesters before and after digestion were monitored using high-throughput sequencing of the fungal ITS2 sub-region of the ribosomal gene. The functional potential of the fungal community was predicted using ecological guild analysis. The dominant fungal phyla were (with relative abundance ≥1%) Ascomycota and Neocallimastigomycota. Ascomycota exhibited over 90% dominance in all treatments after anaerobic digestion (AD). Aspergillus sp. was consistently dominant across treatments during AD, while prominent anaerobic fungal genera Anaeromyces, Cyllamyces, and Caeomyces decreased. Ecological guild analysis at genus level showed that the majority of the identified fungi were saprophytes, and diversity indices indicated decreased richness and diversity after AD, suggesting a negative impact of AD on fungal communities in the anaerobic digesters. The multivariate structure of the fungal communities showed clustering of treatments with similar fungal taxa. The findings from this study provide insights into the fungal ecological guild of different bacteria-bioaugmented anaerobic digesters, highlighting their potentials in bacteria-augmented systems. Identification of an anaerobic fungal group within the phylum Ascomycota, beyond the well-known fungal phylum Neocallimastigomycota, offers a new perspective in optimizing the AD processes in specialized ecosystems.
Collapse
Affiliation(s)
- Linda U. Obi
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria 0083, South Africa; (L.U.O.); (A.R.)
- Unit for Environment Science and Management, North-West University (Potchefstroom Campus), Private Bag X1290, Potchefstroom 2520, South Africa
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P.O. Box 392, Florida 1710, South Africa;
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria 0083, South Africa; (L.U.O.); (A.R.)
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P.O. Box 392, Florida 1710, South Africa;
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P.O. Box 392, Florida 1710, South Africa;
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Heng Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, China
| | - Yuanpeng Wang
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China;
- Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment & Ecology, Xiamen University, Xiamen 361102, China
- Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen 361102, China
| | - Rasheed A. Adeleke
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria 0083, South Africa; (L.U.O.); (A.R.)
- Unit for Environment Science and Management, North-West University (Potchefstroom Campus), Private Bag X1290, Potchefstroom 2520, South Africa
| |
Collapse
|
4
|
Tamilselvan R, Immanuel Selwynraj A. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi. Anaerobe 2024; 85:102815. [PMID: 38145708 DOI: 10.1016/j.anaerobe.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Biogas production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors. The ruminal microbial community, including anaerobic fungi, bacteria, and protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the bioaugmentation of the rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD. The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production. Optimizing fungal colonization and ligninolytic enzyme production, such as manganese peroxidase and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for bioenergy production.
Collapse
Affiliation(s)
- R Tamilselvan
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - A Immanuel Selwynraj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
5
|
Seid N, Ochsenreither K, Neumann A. Caproate production from Enset fiber in one-pot two-step fermentation using anaerobic fungi (Neocallimastix cameroonii strain G341) and Clostridium kluyveri DSM 555. Microb Cell Fact 2023; 22:216. [PMID: 37864174 PMCID: PMC10588050 DOI: 10.1186/s12934-023-02224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Lignocellulosic biomass plays a crucial role in creating a circular bioeconomy and minimizing environmental impact. Enset biomass is a byproduct of traditional Ethiopian Enset food processing that is thrown away in huge quantities. This study aimed to produce caproate from Enset fiber using Neocallimastix cameroonii strain G341 and Clostridium kluyveri DSM 555 in one-pot two-step fermentation. RESULTS The process started by growing N. cameroonii on Enset fiber as a carbon source for 7 days. Subsequently, the fungal culture was inoculated with active C. kluyveri preculture and further incubated. The results showed that N. cameroonii grew on 0.25 g untreated Enset fiber as the sole carbon source and produced 1.16 mmol acetate, 0.51 mmol hydrogen, and 1.34 mmol formate. In addition, lactate, succinate, and ethanol were detected in small amounts, 0.17 mmol, 0.08 mmol, and 0.7 mmol, respectively. After inoculating with C. kluyveri, 0.3 mmol of caproate and 0.48 mmol of butyrate were produced, and hydrogen production also increased to 0.95 mmol compared to sole N. cameroonii fermentation. Moreover, after the culture was supplemented with 2.18 mmol of ethanol during C. kluyveri inoculation, caproate, and hydrogen production was further increased to 1.2 and 1.36 mmol, respectively, and the consumption of acetate also increased. CONCLUSION A novel microbial cell factory was developed to convert untreated lignocellulosic Enset fiber into the medium chain carboxylic acid caproate and H2 by a co-culture of the anaerobic fungi N. cameroonii and C. kluyveri. This opens a new value chain for Enset farmers, as the process requires only locally available raw materials and low-price fermenters. As the caproate production was mainly limited by the available ethanol, the addition of locally produced ethanol-containing fermentation broth ("beer") would further increase the titer.
Collapse
Affiliation(s)
- Nebyat Seid
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, P.O.B: 1176, Addis Ababa, Ethiopia.
| | - Katrin Ochsenreither
- Department of Chemical and Process Engineering, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Anke Neumann
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
| |
Collapse
|
6
|
Yang X, Zhang Z, Li S, He Q, Peng X, Du X, Feng K, Wang S, Deng Y. Fungal dynamics and potential functions during anaerobic digestion of food waste. ENVIRONMENTAL RESEARCH 2022; 212:113298. [PMID: 35430281 DOI: 10.1016/j.envres.2022.113298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Fungi could play an important role during anaerobic digestion (AD), but have received less attention than prokaryotes. Here, AD bioreactors of food waste were performed to explore fungal succession and their potential ecological and engineering value. We found that similar patterns in fungal biomass and diversity, decreasing from the initial time point (Day 0) to the lowest value within 3-6 days and then started to rise and stabilized between 9 and 42 days. Throughout the entire AD process, variations in fungal community composition were observed and dominant fungal taxa have the potential ability to degrade complex organic matter and alleviate fatty acid and ammonia accumulation. Furthermore, we found that deterministic processes gradually dominated fungal assembly succession (up to 84.85% at the final stage), suggesting changing environmental status responsible for fungal community dynamics and specifically, fungal community structure, diversity and biomass were regulated by different environmental variables or the same variables with opposite effects. AD bioreactors could directionally select specific fungal taxa over time, but some highly abundant fungi could not be mapped to any fungal species with defined function in the reference database, so function prediction relying on PICRUSt2 may underestimate fungal function in AD systems. Collectively, our study confirmed fungi have important ecological and engineering values in AD systems.
Collapse
Affiliation(s)
- Xingsheng Yang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaojing Zhang
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Shuzhen Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Peng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongfeng Du
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Feng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China.
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Young D, Joshi A, Huang L, Munk B, Wurzbacher C, Youssef NH, Elshahed MS, Moon CD, Ochsenreither K, Griffith GW, Callaghan TM, Sczyrba A, Lebuhn M, Flad V. Simultaneous Metabarcoding and Quantification of Neocallimastigomycetes from Environmental Samples: Insights into Community Composition and Novel Lineages. Microorganisms 2022; 10:1749. [PMID: 36144352 PMCID: PMC9504928 DOI: 10.3390/microorganisms10091749] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Anaerobic fungi from the herbivore digestive tract (Neocallimastigomycetes) are primary lignocellulose modifiers and hold promise for biotechnological applications. Their molecular detection is currently difficult due to the non-specificity of published primer pairs, which impairs evolutionary and ecological research with environmental samples. We developed and validated a Neocallimastigomycetes-specific PCR primer pair targeting the D2 region of the ribosomal large subunit suitable for screening, quantifying, and sequencing. We evaluated this primer pair in silico on sequences from all known genera, in vitro with pure cultures covering 16 of the 20 known genera, and on environmental samples with highly diverse microbiomes. The amplified region allowed phylogenetic differentiation of all known genera and most species. The amplicon is about 350 bp long, suitable for short-read high-throughput sequencing as well as qPCR assays. Sequencing of herbivore fecal samples verified the specificity of the primer pair and recovered highly diverse and so far unknown anaerobic gut fungal taxa. As the chosen barcoding region can be easily aligned and is taxonomically informative, the sequences can be used for classification and phylogenetic inferences. Several new Neocallimastigomycetes clades were obtained, some of which represent putative novel lineages such as a clade from feces of the rodent Dolichotis patagonum (mara).
Collapse
Affiliation(s)
- Diana Young
- Micro and Molecular Biology, Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| | - Akshay Joshi
- Biocatalysis, Environment and Process Technology Unit, Life Science and Facility Management, ZHAW, 8820 Wadenswil, Switzerland
- Department of Microbiology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Liren Huang
- Center for Biotechnology (CeBiTec), University of Bielefeld, 33615 Bielefeld, Germany
| | - Bernhard Munk
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics (OSU), Oklahoma State University, Stillwater, OK 74074, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics (OSU), Oklahoma State University, Stillwater, OK 74074, USA
| | - Christina D. Moon
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Katrin Ochsenreither
- Process Engineering in Life Sciences 2: Technical Biology (KIT), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Gareth W. Griffith
- Department of Life Sciences (DoLS), Aberystwyth University, Aberystwyth SY23 3DD, Wales, UK
| | | | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), University of Bielefeld, 33615 Bielefeld, Germany
| | - Michael Lebuhn
- Micro and Molecular Biology, Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| | - Veronika Flad
- Micro and Molecular Biology, Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, 85354 Freising, Germany
| |
Collapse
|
8
|
Kazemi Shariat Panahi H, Dehhaghi M, Guillemin GJ, Gupta VK, Lam SS, Aghbashlo M, Tabatabaei M. A comprehensive review on anaerobic fungi applications in biofuels production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154521. [PMID: 35292323 DOI: 10.1016/j.scitotenv.2022.154521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic fungi (Neocallimastigomycota) are promising lignocellulose-degrading microorganisms that can be exploited by the biofuel industry. While natural production of ethanol by these microorganisms is very low, there is a greater potential for their use in the biogas industry. More specifically, anaerobic fungi can contribute to biogas production by either releasing holocellulose or reducing sugars from lignocelluloses that can be used as a substrate by bacteria and methanogens involved in the anaerobic digestion (AD) process or by metabolizing acetate and formate that can be directly consumed by methanogens. Despite their great potential, the appropriate tools for engineering anaerobic fungi have not been established yet. The first section of this review justifies how the biofuel industry can benefit from using anaerobic fungi and is followed by their taxonomy. In the third section, the possibility of using anaerobic fungi for the consolidated production of bioethanol is briefly discussed. Nevertheless, the main focus of this review is on the upstream and mainstream effects of bioaugmentation with anaerobic fungi on the AD process. The present review also scrutinizes the constraints on the way of efficient engineering of anaerobic rumen fungi. By providing this knowledge, this review aims to help research in this field with identifying the challenges that must be addressed by future experiments to achieve the full potentials of these promising microorganisms. To sum up, the pretreatment of lignocelluloses by anaerobic fungi can prevent carbohydrate loss due to respiration (compared to white-rot fungi). Following fungal mixed acid fermentation, the obtained slurry containing sugars and more susceptible holocellulose can be directly consumed by AD microorganisms (bacteria, methanogens). The bioaugmentation of anaerobic fungi into the AD process can increase methane biosynthesis by >3.3 times. Despite this, for the commercial AD process, novel genetic engineering techniques and kits must be developed to efficiently improve anaerobic fungi viability throughout the AD process.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia
| | - Mona Dehhaghi
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; PANDIS.org, Australia
| | - Gilles J Guillemin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.org, Australia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia.
| |
Collapse
|
9
|
Gallardo-Altamirano MJ, Maza-Márquez P, Montemurro N, Pérez S, Rodelas B, Osorio F, Pozo C. Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147869. [PMID: 34051504 DOI: 10.1016/j.scitotenv.2021.147869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/22/2021] [Accepted: 05/14/2021] [Indexed: 05/23/2023]
Abstract
The removal efficiencies (REs) of twenty-seven pharmaceutically active compounds (PhACs) (eight analgesic/anti-inflammatories, six antibiotics, four β-blockers, two antihypertensives/diuretics, three lipid regulators and four psychiatric drugs) were evaluated in a pilot-scale two-stage mesophilic anaerobic digestion (MAD) system treating thickened sewage sludge from a pilot-scale A2O™ wastewater treatment plant (WWTP) which was fed with wastewater from the pre-treatment of the full-scale WWTP Murcia Este (Murcia, Spain). The MAD system was long-term operated using two different sets of sludge retention times (SRTs) for the acidogenic (AcD) and methanogenic (MD) digesters (phase I, 2 and 12 days; and phase II, 5 and 24 days, in AcD and MD, respectively). Quantitative PCR (qPCR) and Illumina MiSeq sequencing were used to estimate the absolute abundance of Bacteria, Archaea, and Fungi and investigate the structure, diversity and population dynamics of their communities in the AcD and MD effluents. The extension of the SRT from 12 (phase I) to 24 days (phase II) in the MD was significantly linked with an improved removal of carbamazepine, clarithromycin, codeine, gemfibrozil, ibuprofen, lorazepam, and propranolol. The absolute abundances of total Bacteria and Archaea were higher in the MD regardless of the phase, while the diversity of bacterial and archaeal communities was lower in phase II, in both digesters. Non-metric multidimensional scaling (MDS) plots showed strong negative correlations among phyla Proteobacteria and Firmicutes and between genera Methanosaeta and Methanosarcina throughout the full experimental period. Strong positive correlations were revealed between the relative abundances of Methanospirillum and Methanoculleus and the methanogenesis performance parameters (volatile solids removal, CH4 recovery rate and %CH4 in the biogas), which were also related to longer SRT. The REs of several PhACs (naproxen, ketoprofen, ofloxacin, fenofibrate, trimethoprim, and atenolol) correlated positively (r > 0.75) with the relative abundances of specific bacterial and archaeal groups, suggesting their participation in biodegradation/biotransformation pathways.
Collapse
Affiliation(s)
- M J Gallardo-Altamirano
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Civil Engineering, University of Granada, Granada, Spain
| | - P Maza-Márquez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain
| | - N Montemurro
- Water, Environmental and Food Chemistry (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - S Pérez
- Water, Environmental and Food Chemistry (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - B Rodelas
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain.
| | - F Osorio
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Civil Engineering, University of Granada, Granada, Spain
| | - C Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
10
|
Saye LMG, Navaratna TA, Chong JPJ, O’Malley MA, Theodorou MK, Reilly M. The Anaerobic Fungi: Challenges and Opportunities for Industrial Lignocellulosic Biofuel Production. Microorganisms 2021; 9:694. [PMID: 33801700 PMCID: PMC8065543 DOI: 10.3390/microorganisms9040694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose is a promising feedstock for biofuel production as a renewable, carbohydrate-rich and globally abundant source of biomass. However, challenges faced include environmental and/or financial costs associated with typical lignocellulose pretreatments needed to overcome the natural recalcitrance of the material before conversion to biofuel. Anaerobic fungi are a group of underexplored microorganisms belonging to the early diverging phylum Neocallimastigomycota and are native to the intricately evolved digestive system of mammalian herbivores. Anaerobic fungi have promising potential for application in biofuel production processes due to the combination of their highly effective ability to hydrolyse lignocellulose and capability to convert this substrate to H2 and ethanol. Furthermore, they can produce volatile fatty acid precursors for subsequent biological conversion to H2 or CH4 by other microorganisms. The complex biological characteristics of their natural habitat are described, and these features are contextualised towards the development of suitable industrial systems for in vitro growth. Moreover, progress towards achieving that goal is reviewed in terms of process and genetic engineering. In addition, emerging opportunities are presented for the use of anaerobic fungi for lignocellulose pretreatment; dark fermentation; bioethanol production; and the potential for integration with methanogenesis, microbial electrolysis cells and photofermentation.
Collapse
Affiliation(s)
- Luke M. G. Saye
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Tejas A. Navaratna
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - James P. J. Chong
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; (T.A.N.); (M.A.O.)
| | - Michael K. Theodorou
- Department of Agriculture and the Environment, Harper Adams University, Newport TF10 8NB, UK
| | - Matthew Reilly
- Department of Biology, University of York, York YO10 5DD, UK; (L.M.G.S.); (J.P.J.C.)
| |
Collapse
|
11
|
Coelho JJ, Prieto ML, Hennessy A, Casey I, Woodcock T, Kennedy N. Determination of microbial numbers in anaerobically digested biofertilisers. ENVIRONMENTAL TECHNOLOGY 2021; 42:753-763. [PMID: 31314692 DOI: 10.1080/09593330.2019.1645214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to quantity total numbers of bacteria, fungi and archaea in different types of commercial liquid anaerobic digestates, and to identify common patterns in their microbial numbers post-digestion and possible implications of their use as biofertiliser. Relationships between microbial numbers and physical-chemical traits of the digestates were also investigated. Quantification was performed using culturable and molecular (quantitative PCR) approaches. Bacterial and fungal CFUs ranged up to five orders of magnitude (105-1010; 0-105 g-1 DW, respectively) between different types of anaerobic digestates. Bacterial, archaeal and fungal gene copy numbers (GCN) varied by two orders of magnitude (108-1010; 107-109; 104-106 g-1 DW, respectively) between digestates. All microbial variables analysed showed significant differences between the different types of anaerobic digestate investigated (p < 0.05). Culturable microbial numbers for fungi (6.43 × 104 CFU g-1 DW) were much lower than for bacteria (2.23 × 109 CFU g-1 DW). Gene copy numbers were highest for bacteria (16S) (1.09 × 1010 g-1 DW), followed by archaea (16S) (5.87 × 108 g-1 DW), and fungi (18S) (1.77 × 106 g-1 DW). Liquid anaerobic digestates were predominantly dominated by bacteria, followed by archaeal and fungal populations. At 50% similarity level, the microbial profiles of the eleven anaerobic digestates tested separated into just two groups, indicating a broad relative degree of similarity in terms of microbial numbers. Higher bacterial (16S) GCN was associated with low OM and C/N ratio in digestates.
Collapse
Affiliation(s)
- Janerson Jose Coelho
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Maria Luz Prieto
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Aoife Hennessy
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Imelda Casey
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Tony Woodcock
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Nabla Kennedy
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
12
|
Cut-Lengths of Perennial Ryegrass Leaf-Blades Influences In Vitro Fermentation by the Anaerobic Fungus Neocallimastix frontalis. Microorganisms 2020; 8:microorganisms8111774. [PMID: 33187375 PMCID: PMC7696013 DOI: 10.3390/microorganisms8111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Anaerobic fungi in the gut of domesticated and wild mammalian herbivores play a key role in the host's ability to utilize plant biomass. Due to their highly effective ability to enzymatically degrade lignocellulose, anaerobic fungi are biotechnologically interesting. Numerous factors have been shown to affect the ability of anaerobic fungi to break down plant biomass. However, methods to reduce the non-productive lag time in batch cultures and the effect of leaf-blade cut-length and condition on the fungal fermentation are not known. Therefore, experimentation using a novel gas production approach with pre-grown, axenic cultures of Neocallimastix frontalis was performed using both fresh and air-dried perennial ryegrass leaf-blades of different cut-lengths. The methodology adopted removed the lag-phase and demonstrated the digestion of un-autoclaved leaf-blades. Fermentation of leaf-blades of 4.0 cm cut-length produced 18.4% more gas yet retained 11.2% more apparent DM relative to 0.5 cm cut-length leaf-blades. Drying did not affect fermentation by N. frontalis, although an interaction between drying and leaf-blade cut-length was noted. Removal of the lag phase and the use of un-autoclaved substrates are important when considering the biotechnological potential of anaerobic fungi. A hypothesis based upon sporulation at cut surfaces is proposed to describe the experimental results.
Collapse
|
13
|
Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, Fliegerová K. Anaerobic Fungi: Past, Present, and Future. Front Microbiol 2020; 11:584893. [PMID: 33193229 PMCID: PMC7609409 DOI: 10.3389/fmicb.2020.584893] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.
Collapse
Affiliation(s)
- Matthias Hess
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shyam S. Paul
- Gut Microbiome Lab, ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Hyderabad, India
| | - Anil K. Puniya
- Anaerobic Microbiology Lab, ICAR-National Dairy Research Institute, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Claire Shaw
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Kateřina Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
14
|
Edwards JE, Schennink A, Burden F, Long S, van Doorn DA, Pellikaan WF, Dijkstra J, Saccenti E, Smidt H. Domesticated equine species and their derived hybrids differ in their fecal microbiota. Anim Microbiome 2020; 2:8. [PMID: 33499942 PMCID: PMC7807894 DOI: 10.1186/s42523-020-00027-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Compared to horses and ponies, donkeys have increased degradation of dietary fiber. The longer total mean retention time of feed in the donkey gut has been proposed to be the basis of this, because of the increased time available for feed to be acted upon by enzymes and the gut microbiota. However, differences in terms of microbial concentrations and/or community composition in the hindgut may also underpin the increased degradation of fiber in donkeys. Therefore, a study was conducted to assess if differences existed between the fecal microbiota of pony, donkey and hybrids derived from them (i.e. pony × donkey) when fed the same forage diet. RESULTS Fecal community composition of prokaryotes and anaerobic fungi significantly differed between equine types. The relative abundance of two bacterial genera was significantly higher in donkey compared to both pony and pony x donkey: Lachnoclostridium 10 and 'probable genus 10' from the Lachnospiraceae family. The relative abundance of Piromyces was significantly lower in donkey compared to pony × donkey, with pony not significantly differing from either of the other equine types. In contrast, the uncultivated genus SK3 was only found in donkey (4 of the 8 animals). The number of anaerobic fungal OTUs was also significantly higher in donkey than in the other two equine types, with no significant differences found between pony and pony × donkey. Equine types did not significantly differ with respect to prokaryotic alpha diversity, fecal dry matter content or fecal concentrations of bacteria, archaea and anaerobic fungi. CONCLUSIONS Donkey fecal microbiota differed from that of both pony and pony × donkey. These differences related to a higher relative abundance and diversity of taxa with known, or speculated, roles in plant material degradation. These findings are consistent with the previously reported increased fiber degradation in donkeys compared to ponies, and suggest that the hindgut microbiota plays a role. This offers novel opportunities for pony and pony × donkey to extract more energy from dietary fiber via microbial mediated strategies. This could potentially decrease the need for energy dense feeds which are a risk factor for gut-mediated disease.
Collapse
Affiliation(s)
- J. E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
| | - A. Schennink
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
- Present address: Micreos Human Health B.V, Bilthoven, Netherlands
| | - F. Burden
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - S. Long
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - D. A. van Doorn
- Division of Nutrition, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, Netherlands
- Department of Equine Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, Netherlands
| | - W. F. Pellikaan
- Animal Nutrition Group, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - J. Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - E. Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - H. Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, Netherlands
| |
Collapse
|
15
|
Vinzelj J, Joshi A, Insam H, Podmirseg SM. Employing anaerobic fungi in biogas production: challenges & opportunities. BIORESOURCE TECHNOLOGY 2020; 300:122687. [PMID: 31926794 DOI: 10.1016/j.biortech.2019.122687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 05/24/2023]
Abstract
Anaerobic fungi (AF, phylum Neocallimastigomycota) are best known for their ability to efficiently break down lignocellulosic biomass. Their unique combination of mechanical and enzymatic attacks on recalcitrant plant structures bears great potential for enhancement of the anaerobic digestion (AD) process. Although scientists in this field have long agreed upon the potential of AF for biotechnology, research is only recently gaining traction. This delay was largely due to difficulties in culture-dependent and culture-independent analysis of those high-maintenance organisms with their still unknown complex growth requirements. In this review, we will summarize current research efforts on bioaugmentation with AF and further point out, how the lack of basic knowledge on AF nutritional needs hampers their implementation on an industrial scale. Through this, we hope to further kindle interest into basic research on AF in order to advance their stable integration into biotechnological processes.
Collapse
Affiliation(s)
- Julia Vinzelj
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| | - Akshay Joshi
- ZHAW School of Life Sciences and Facility Management, Einsiedlerstrasse 31, CH-8820 Wädenswil, Switzerland
| | - Heribert Insam
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| | - Sabine Marie Podmirseg
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
16
|
Edwards JE, Shetty SA, van den Berg P, Burden F, van Doorn DA, Pellikaan WF, Dijkstra J, Smidt H. Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub)species. Anim Microbiome 2020; 2:6. [PMID: 33499982 PMCID: PMC7807809 DOI: 10.1186/s42523-020-0023-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Equine gut microbiology studies to date have primarily focused on horses and ponies, which represent only one of the eight extant equine species. This is despite asses and mules comprising almost half of the world's domesticated equines, and donkeys being superior to horses/ponies in their ability to degrade dietary fiber. Limited attention has also been given to commensal anaerobic fungi and archaea even though anaerobic fungi are potent fiber degrading organisms, the activity of which is enhanced by methanogenic archaea. Therefore, the objective of this study was to broaden the current knowledge of bacterial, anaerobic fungal and archaeal diversity of the equine fecal microbiota to multiple species of equines. Core taxa shared by all the equine fecal samples (n = 70) were determined and an overview given of the microbiota across different equine types (horse, donkey, horse × donkey and zebra). RESULTS Equine type was associated with differences in both fecal microbial concentrations and community composition. Donkey was generally most distinct from the other equine types, with horse and zebra not differing. Despite this, a common bacterial core of eight OTUs (out of 2070) and 16 genus level groupings (out of 231) was found in all the fecal samples. This bacterial core represented a much larger proportion of the equine fecal microbiota than previously reported, primarily due to the detection of predominant core taxa belonging to the phyla Kiritimatiellaeota (formerly Verrucomicrobia subdivision 5) and Spirochaetes. The majority of the core bacterial taxa lack cultured representation. Archaea and anaerobic fungi were present in all animals, however, no core taxon was detected for either despite several taxa being prevalent and predominant. CONCLUSIONS Whilst differences were observed between equine types, a core fecal microbiota existed across all the equines. This core was composed primarily of a few predominant bacterial taxa, the majority of which are novel and lack cultured representation. The lack of microbial cultures representing the predominant taxa needs to be addressed, as their availability is essential to gain fundamental knowledge of the microbial functions that underpin the equine hindgut ecosystem.
Collapse
Affiliation(s)
- J. E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE Netherlands
| | - S. A. Shetty
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE Netherlands
| | - P. van den Berg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE Netherlands
| | - F. Burden
- The Donkey Sanctuary, Sidmouth, Devon EX10 ONU UK
| | - D. A. van Doorn
- Division of Nutrition, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CM Netherlands
- Department of Equine Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL Netherlands
| | - W. F. Pellikaan
- Animal Nutrition Group, Wageningen University & Research, Wageningen, 6708 WD Netherlands
| | - J. Dijkstra
- Animal Nutrition Group, Wageningen University & Research, Wageningen, 6708 WD Netherlands
| | - H. Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, 6708 WE Netherlands
| |
Collapse
|
17
|
Langer SG, Gabris C, Einfalt D, Wemheuer B, Kazda M, Bengelsdorf FR. Different response of bacteria, archaea and fungi to process parameters in nine full-scale anaerobic digesters. Microb Biotechnol 2019; 12:1210-1225. [PMID: 30995692 PMCID: PMC6801161 DOI: 10.1111/1751-7915.13409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2019] [Accepted: 03/29/2019] [Indexed: 01/20/2023] Open
Abstract
Biogas production is a biotechnological process realized by complex bacterial, archaeal and likely fungal communities. Their composition was assessed in nine full-scale biogas plants with distinctly differing feedstock input and process parameters. This study investigated the actually active microbial community members by using a comprehensive sequencing approach based on ribosomal 16S and 28S rRNA fragments. The prevailing taxonomical units of each respective community were subsequently linked to process parameters. Ribosomal rRNA of bacteria, archaea and fungi, respectively, showed different compositions with respect to process parameters and supplied feedstocks: (i) bacterial communities were affected by the key factors temperature and ammonium concentration; (ii) composition of archaea was mainly related to process temperature; and (iii) relative abundance of fungi was linked to feedstocks supplied to the digesters. Anaerobic digesters with a high methane yield showed remarkably similar bacterial communities regarding identified taxonomic families. Although archaeal communities differed strongly on genus level from each other, the respective digesters still showed high methane yields. Functional redundancy of the archaeal communities may explain this effect. 28S rRNA sequences of fungi in all nine full-scale anaerobic digesters were primarily classified as facultative anaerobic Ascomycota and Basidiomycota. Since the presence of ribosomal 28S rRNA indicates that fungi may be active in the biogas digesters, further research should be carried out to examine to which extent they are important players in anaerobic digestion processes.
Collapse
MESH Headings
- Anaerobiosis
- Archaea/classification
- Archaea/genetics
- Archaea/growth & development
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Biofuels
- Bioreactors/microbiology
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fungi/classification
- Fungi/genetics
- Fungi/growth & development
- Manure/microbiology
- Metagenomics
- Microbiota
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 28S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
| | - Christina Gabris
- Institute of Microbiology and BiotechnologyUlm UniversityUlmGermany
- Present address:
Bühlmann Laboratories AGSchönenbuchSwitzerland
| | - Daniel Einfalt
- Institute of Systematic Botany and EcologyUlm UniversityUlmGermany
- Present address:
Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| | - Bernd Wemheuer
- Genomic and Applied Microbiology & Göttingen Genomics LaboratoryGeorg‐August University GöttingenGöttingenGermany
| | - Marian Kazda
- Institute of Systematic Botany and EcologyUlm UniversityUlmGermany
| | | |
Collapse
|
18
|
Edwards JE, Hermes GDA, Kittelmann S, Nijsse B, Smidt H. Assessment of the Accuracy of High-Throughput Sequencing of the ITS1 Region of Neocallimastigomycota for Community Composition Analysis. Front Microbiol 2019; 10:2370. [PMID: 31681229 PMCID: PMC6813465 DOI: 10.3389/fmicb.2019.02370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022] Open
Abstract
Anaerobic fungi (Neocallimastigomycota) are common inhabitants of the digestive tract of large mammalian herbivores, where they make an important contribution to plant biomass degradation. The internal transcribed spacer 1 (ITS1) region is currently the molecular marker of choice for anaerobic fungal community analysis, despite its known size polymorphism and heterogeneity. The aim of this study was to assess the accuracy of high-throughput sequencing of the ITS1 region of anaerobic fungi for community composition analysis. To this end, full-length ITS1 clone libraries from five pure cultures, representing the ITS1 region size range, were Sanger sequenced to generate a reference dataset. Barcoded amplicons of the same five pure cultures, and four different mock communities derived from them, were then sequenced using Illumina HiSeq. The resulting sequences were then assessed in relation to either the reference dataset (for the pure cultures) or the corresponding theoretical mock communities. Annotation of sequences obtained from individual pure cultures was not always consistent at the clade or genus level, irrespective of whether data from clone libraries or high-throughput sequencing were analyzed. The detection limit of the high-throughput sequencing method appeared to be influenced by factors other than the parameters used during data processing, as some taxa with theoretical values >0.6% were not detected in the mock communities. The high number of PCR cycles used was considered to be a potential explanation for this observation. Accuracy of two of the four mock communities was limited, and this was speculated to be due to preferential amplification of smaller sized ITS1 regions. If this is true, then this is predicted to be an issue with only six of the 32 named anaerobic fungal clades. Whilst high-throughput sequencing of the ITS1 region from anaerobic fungi can be used for environmental sample analysis, we conclude that the accuracy of the method is influenced by sample community composition. Furthermore, ambiguity in the annotation of sequences within pure cultures due to ITS1 heterogeneity reinforces the limitations of the ITS1 region for the taxonomic assignment of anaerobic fungi. In order to overcome these issues, there is a need to develop an alternative taxonomic marker for anaerobic fungi.
Collapse
Affiliation(s)
- Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Gerben D A Hermes
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Sandra Kittelmann
- WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
19
|
Cao X, Zhang M, Chitrakar B, Mujumdar AS, Zhong Q, Wang Z, Wang L. Radiofrequency heating for powder pasteurization of barley grass: antioxidant substances, sensory quality, microbial load and energy consumption. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4460-4467. [PMID: 30868590 DOI: 10.1002/jsfa.9683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Young barley grass powder contains abundant nutrition and its antioxidant substances are severely impaired by radiation (60 Co) sterilization. To overcome product quality degradation, radiofrequency pasteurization was conducted using pilot-scale radiofrequency equipment (27 MHz, 6 kW) with electrode gaps of 12, 14 and 16 cm, while hot-air (80 °C) pasteurization was used for comparison. RESULTS Assessment suggested that uneven radiofrequency heating was improved for the 14 cm electrode gap. With an increase of electrode gap, microbial inactivation needs more energy consumption. A minimum energy consumption of 970 J g-1 was required for 1 log-reduction of colonies. Radiofrequency pasteurization retained better antioxidant substances, lightness (L*), green color (a*) and odors in barley grass powder, compared with hot-air sterilization. Contents of flavonoid and chlorophyll were 5.82 and 4.87 g kg-1 respectively, using the 14 cm electrode gap. Additionally, radiofrequency pasteurization led to an improvement in sourness, bitterness and umami tastes. CONCLUSIONS Radiofrequency pasteurization would be a superior alternative for the pasteurization of barley grass powder. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaohuang Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi city, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi city, Jiangsu Province, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi city, Jiangsu Province, China
| | - Bimal Chitrakar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Sainte-Anne-e de Bellevue, Canada
| | | | | | - Liping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Nagler M, Kozjek K, Etemadi M, Insam H, Podmirseg SM. Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants. J Biotechnol 2019; 300:1-10. [PMID: 31082412 DOI: 10.1016/j.jbiotec.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023]
Abstract
In biogas plants, lignocellulose-rich biomass (LCB) is particularly slowly degraded, causing high hydraulic retention times. This fact lowers the interests for such substrates. To enhance LCB-degradation, cattle rumen fluid, a highly active microbial resource accruing in the growing meat industry, might be used as a potential source for bioaugmentation. This study compares 0%, 20% and 40% rumen liquid in a batch anaerobic digestion approach. Moreover, it determines the biogas- and methane-potentials as well as degradation-speeds of corn straw, co-digested with cattle manure. It inspects microbial communities via marker-gene sequencing, qPCR and RNA-DGGE and draws attention on possible beneficial effects of rumen addition on the biogas-producing community. Bioaugmentation with 20% and 40% v/v rumen liquid accelerated methane yields by 5 and 6 days, respectively (i.e. reaching 90% of total methane production). It also enhanced LCB- as well as (hemi)cellulose- and volatile fatty acid degradation. These results are supported by increased abundances of bacteria, methanogens and anaerobic fungi in treatments with rumen liquid amendment, and point towards the persistence of specific rumen-borne microorganisms especially during the first phase of the experiment. The results suggest that rumen liquid addition is a promising strategy for enhanced and accelerated exploitation of LCB for biomethanisation.
Collapse
Affiliation(s)
- Magdalena Nagler
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Katja Kozjek
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Mohammad Etemadi
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Heribert Insam
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Sabine Marie Podmirseg
- Institute of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; ACIB Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
21
|
Akyol Ç, Ince O, Bozan M, Ozbayram EG, Ince B. Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: What to expect from anaerobic fungus Orpinomyces sp. BIORESOURCE TECHNOLOGY 2019; 277:1-10. [PMID: 30654102 DOI: 10.1016/j.biortech.2019.01.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Energy-efficient biogas reactors are often designed and operated mimicking natural microbial ecosystems such as the digestive tracts of ruminants. Anaerobic fungi play a crucial role in the degradation of lignocellulose-rich fiber thanks to their high cellulolytic activity. Fungal bioaugmentation is therefore at the heart of our understanding of enhancing anaerobic digestion (AD). The efficiency of bioaugmentation with anaerobic fungus Orpinomyces sp. was evaluated in lignocellulose-based AD configurations. Fungal bioaugmentation increased the methane yield by 15-33% during anaerobic co-digestion of cow manure and selected cereal crops/straws. Harvesting stage of the crops was a decisive parameter to influence methane production together with fungal bioaugmentation. A more efficient fermentation process in the bioaugmented digesters was distinguished by relatively-higher abundance of Synergistetes, which was mainly represented by the genus Anaerobaculum. On the contrary, the composition of the methanogenic archaea did not change, and the majority of methanogens was assigned to Methanosarcina.
Collapse
Affiliation(s)
- Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Mahir Bozan
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - E Gozde Ozbayram
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
22
|
Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review. ENERGIES 2019. [DOI: 10.3390/en12030365] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Disturbances of the anaerobic digestion process reduce the economic and environmental performance of biogas systems. A better understanding of the highly complex process is of crucial importance in order to avoid disturbances. This review defines process disturbances as significant changes in the functionality within the microbial community leading to unacceptable and severe decreases in biogas production and requiring an active counteraction to be overcome. The main types of process disturbances in agricultural biogas production are classified as unfavorable process temperatures, fluctuations in the availability of macro- and micronutrients (feedstock variability), overload of the microbial degradation potential, process-related accumulation of inhibiting metabolites such as hydrogen (H2), ammonium/ammonia (NH4+/NH3) or hydrogen sulphide (H2S) and inhibition by other organic and inorganic toxicants. Causes, mechanisms and effects on the biogas microbiome are discussed. The need for a knowledge-based microbiome management to ensure a stable and efficient production of biogas with low susceptibility to disturbances is derived and an outlook on potential future process monitoring and control by means of microbial indicators is provided.
Collapse
|
23
|
Young D, Dollhofer V, Callaghan TM, Reitberger S, Lebuhn M, Benz JP. Isolation, identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- and two-phase biogas plants. BIORESOURCE TECHNOLOGY 2018; 268:470-479. [PMID: 30114666 DOI: 10.1016/j.biortech.2018.07.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Aerobic and anaerobic fungi are among the most effective plant biomass degraders known and have high potential to increase the efficiency of lignocellulosic biomass utilization, such as for biogas generation. However, limited information is available on their contribution to such industrial processes. Therefore, the presence of fungi along the biogas production chain of one-phase and two-phase biogas plants in Germany was analyzed. Seventeen aerobic species of Zygomycota, Ascomycota and Basidiomycota were identified, including efficient producers of lignocellulases, such as Trichoderma capillare isolated from a hydrolysis tank and Coprinopsis cinerea from fibers separated from pressed digestate. Five anaerobic fungal species of the phylum Neocallimastigomycota (comprising two novel clades) were present in an slightly acidic fermenter of a biogas plant fed with cow manure displaying endoglucanase transcriptional activity. The broad fungal presence demonstrated in this study can serve developing bioaugmentation systems with relevant lignocellulolytic fungi to improve biogas production from recalcitrant fiber material.
Collapse
Affiliation(s)
- Diana Young
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, Holzforschung München, 85354 Freising, Germany
| | - Veronika Dollhofer
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - Tony Martin Callaghan
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - Stefan Reitberger
- INNOVAS GbR Innovative Energie- und Umwelttechnik, 80939 Munich, Germany
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - J Philipp Benz
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Holzforschung München, 85354 Freising, Germany.
| |
Collapse
|
24
|
Dollhofer V, Dandikas V, Dorn-In S, Bauer C, Lebuhn M, Bauer J. Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis. BIORESOURCE TECHNOLOGY 2018; 264:219-227. [PMID: 29807329 DOI: 10.1016/j.biortech.2018.05.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Two Neocallimastix frontalis strains, isolated from rumen fluid of a cow and of a chamois, were assessed for their ability to degrade lignocellulosic biomass. Two independent batch experiments were performed. Each experiment was split into two phases: hydrolysis phase and batch fermentation phase. The hydrolysis process during the N. frontalis incubation led to an initial increase of biogas production, an accelerated degradation of dry matter and an increased concentration of volatile fatty acids. As monitored by quantitative PCR, the applied N. frontalis strains were present and transcriptionally active during the hydrolysis phase but were fading during the batch fermentation phase. Thus, a separate hydrolytic pretreatment phase with anaerobic fungi, such as N. frontalis, represents a feasible strategy to improve biogas production from lignocellulosic substrates.
Collapse
Affiliation(s)
- Veronika Dollhofer
- Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany.
| | - Vasilis Dandikas
- Institute for Agricultural Engineering and Animal Husbandry, Bavarian State Research Center for Agriculture, Am Staudengarten 3, 85354 Freising, Germany
| | - Samart Dorn-In
- School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Christoph Bauer
- Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany
| | - Michael Lebuhn
- Central Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354 Freising, Germany
| | - Johann Bauer
- School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
25
|
Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S, Fliegerova K, Puniya AK, Henske JK, Gilmore SP, O'Malley MA, Griffith GW, Smidt H. PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Front Microbiol 2017; 8:1657. [PMID: 28993761 PMCID: PMC5622200 DOI: 10.3389/fmicb.2017.01657] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.
Collapse
Affiliation(s)
- Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| | - Robert J. Forster
- Lethbridge Research and Development Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Tony M. Callaghan
- Department for Quality Assurance and Analytics, Bavarian State Research Center for AgricultureFreising, Germany
| | - Veronika Dollhofer
- Department for Quality Assurance and Analytics, Bavarian State Research Center for AgricultureFreising, Germany
| | | | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural UniversityNanjing, China
| | - Jongsoo Chang
- Department of Agricultural Science, Korea National Open UniversitySeoul, South Korea
| | - Sandra Kittelmann
- Grasslands Research Centre, AgResearch Ltd.Palmerston North, New Zealand
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics, Czech Academy of SciencesPrague, Czechia
| | - Anil K. Puniya
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
- Dairy Microbiology Division, ICAR-National Dairy Research InstituteKarnal, India
| | - John K. Henske
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Sean P. Gilmore
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Gareth W. Griffith
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|