1
|
Kim JY, Kim HB, Kwon D, Tsang YF, Nam IH, Kwon EE. Establishment of circular economy by utilising textile industry waste as an adsorbent for textile dye removal. ENVIRONMENTAL RESEARCH 2024; 262:119987. [PMID: 39270961 DOI: 10.1016/j.envres.2024.119987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
This study explored the use of waste from the textile industry (silkworm byproducts) as a promising raw feedstock for the production of carbon-based adsorbents (biochar). The silk excreta biochar generated at 600 and 700 °C (referred to as SEB-600 and SEB-700, respectively) were evaluated in terms of their efficacy in adsorbing cationic (methylene blue) and anionic (Congo red) textile dyes. Although the functional groups on the surfaces of SEB-600 and SEB-700 were not significantly different, the specific surface area of SEB-700 was greater than that of SEB-600. The dye adsorption capacity of SEB-700 was higher than that of SEB-600. The adsorption of methylene blue and Congo red on SEB-700 followed Freundlich isotherms (R2 ≥ 0.963) and pseudo-second-order kinetics (R2 = 0.999), indicating chemisorption with multilayer characteristics. The mechanism for the adsorption of methylene blue on SEB-700 may involve interactions with the negatively charged functional groups on the surface and the mesopores of SEB-700. For the adsorption of Congo red, the mesopores in the biochar and the electrostatic interaction between biochar (positively charged because of the dye solution pH < pHzpc) and the anionic dye could affect adsorption. The maximum adsorption capacities of SEB-700 for methylene blue and Congo red were determined to be 168.23 and 185.32 mg g-1, respectively. Utilising the waste generated from the textile industry to remove pollutants will build a sustainable loop in the industry by minimising waste generation and pollutant emissions.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hye-Bin Kim
- Department of Animal Environment, National Institute of Animal Science (NIAS), Wanju, 55365, Republic of Korea
| | - Dohee Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong
| | - In-Hyun Nam
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Kabakci Y, Kosar S, Dogan O, Uctug FG, Arikan OA. Enhancement of methane production by electrohydrolysis pretreatment for anaerobic digestion of OFMSW. ENVIRONMENTAL RESEARCH 2023; 240:117534. [PMID: 39491104 DOI: 10.1016/j.envres.2023.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Hydrolysis is the most critical rate-limiting step in the anaerobic digestion (AD) process for most types of substrates. The organic fraction of municipal solid waste (OFMSW) is a rich source for the AD process because of its high degradability. In this study, electrohydrolysis pretreatment was investigated for the OFMSW to overcome the rate-limiting step of hydrolysis. Electrohydrolysis pretreatment was applied to the OFMSW for 30 and 60 min in a custom-made reactor. In the untreated, 30-min. Treated, and 60-min. Treated OFMSW methane production was observed as 225 ± 2 mL CH4/g VSadded, 231 ± 4 mL CH4/g VSadded, and 248 ± 7 mL CH4/g VSadded, respectively. By increasing the treatment time, the lag phase, during which hydrolysis occurs, was reduced by 40-43%. 3-10% more methane was produced by applying electrohydrolysis pretreatment. These results suggest that electrohydrolysis pretreatment is a promising method to improve the efficiency of AD for the OFMSW by reducing the time required for hydrolysis and increasing methane production. More investigation is required to better comprehend the effects of electrohydrolysis on the OFMSW.
Collapse
Affiliation(s)
- Yagmur Kabakci
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Ayazaga, 34469, Turkey; Department of Climate Change and Sustainability, TUBITAK Marmara Research Center, Kocaeli, Gebze, 41400, Turkey.
| | - Sadiye Kosar
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Ayazaga, 34469, Turkey; Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Ozgur Dogan
- Department of Climate Change and Sustainability, TUBITAK Marmara Research Center, Kocaeli, Gebze, 41400, Turkey
| | - Fehmi Gorkem Uctug
- Department of Mechanical Engineering, Izmir University of Economy, Izmir, Balcova, 35330, Turkey
| | - Osman Atilla Arikan
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Ayazaga, 34469, Turkey
| |
Collapse
|
3
|
Nyang'au JO, Møller HB, Sørensen P. Effects of electrokinetic and ultrasonication pre-treatment and two-step anaerobic digestion of biowastes on the nitrogen fertiliser value by injection or surface banding to cereal crops. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116699. [PMID: 36395644 DOI: 10.1016/j.jenvman.2022.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Biogas production from anaerobic digestion (AD) of biowastes is restricted by the recalcitrant nature of many substrates, and this may also reduce the fertiliser value of the produced digestate. The degradability of substrates can potentially be enhanced by physico-chemical pre-treatments before AD, and/or the degradation can be increased by a longer digestion time. In this study, we evaluated the effects of electrokinetic (high voltage) and ultrasonication pre-treatments of biowastes in a two-step AD process on nitrogen fertiliser replacement value (NFRV) of digestates obtained from two biogas plants with contrasting hydraulic retention time (HRT) in the primary AD step. The fertiliser value was tested by direct injection to spring barley and surface-banding to winter wheat, and the ammonium N was 15N-labelled to evaluate ammonia losses. The electrokinetic pre-treatment step significantly (p < 0.05) increased the NH4+-N/total N in the digestates before the second AD step but had an insignificant effect on the fertiliser value in winter wheat and spring barley. Ultrasonication pre-treatment had also no significant effect on the fertiliser value. The two-step AD significantly (p < 0.001) increased 15N recoveries and mineral fertiliser equivalence of labelled ammonium-N in winter wheat and reduced ammonia losses, with a significant effect (p < 0.001) observed in digestates sourced from a shorter HRT biogas reactor. The fertiliser equivalence of labelled ammonium-N in the digestates was 80-88% after injection, indicating relatively low N immobilisation with all the digestates. NFRV in the crops was mainly explained by the NH4+-N/total N ratio, C/N ratio and dry matter content of the digestates. The findings suggest that electrokinetic and ultrasonication pre-treatments combined with a second AD step have no considerable impact on the fertiliser value of digestates, whereas a second AD step significantly reduced ammonia losses after application by surface-banding in winter wheat.
Collapse
Affiliation(s)
| | - Henrik Bjarne Møller
- Department of Biological and Chemical Engineering, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Peter Sørensen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
4
|
Mechanism of Electron Acceptor Promoting Propionic Acid Transformation in Anaerobic Fermentation. ENERGIES 2022. [DOI: 10.3390/en15113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To improve the conversion efficiency of propionic acid in the post-anaerobic fermentation of biogas slurry, the anaerobic fermentation process using biogas slurry with a high acid content was simulated in an anaerobic reactor at 35 ± 0.5 °C using sodium propionate as the sole substrate. The effects of different electron acceptors (NO3−, SO42− and Fe3+) on propionic acid conversion and the succession of microbial community structures were investigated. The results showed that the experimental group with the electron acceptor NO3− exhibited the best anaerobic fermentation effect, with a maximum propionate removal rate of 94%, which was 36% higher than the control group without an electron acceptor. The maximum methane production rate was 307.6 mL/g COD, an increase of 30% compared with the control group. Thauera, Aquabacterium, Desulfomicrobium, Clostridium_sensu_stricto_1, and other functional microorganisms were all enriched. The dominant functional genes related to redox reactions, such as K03711, K00384, and K03406, were highly enriched in the reactor when Fe3+ and NO3− were added. The study shows that adding an electron acceptor can enhance interactions between microorganisms, achieve efficient propionate conversion, and improve methane production in the system.
Collapse
|
5
|
Yang Z, Sun H, Zhou L, Arhin SG, Papadakis VG, Goula MA, Liu G, Zhang Y, Wang W. Bioaugmentation with well-constructed consortia can effectively alleviate ammonia inhibition of practical manure anaerobic digestion. WATER RESEARCH 2022; 215:118244. [PMID: 35259562 DOI: 10.1016/j.watres.2022.118244] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Bioaugmentation is an attractive method to improve methane production (MP) in the anaerobic digestion (AD) process. In this study, to tackle the ammonia inhibition problem, a long-term (operating over 6 months) acclimatized consortia and a well-constructed consortia were selected as the bioaugmentation consortia for sequencing batch AD reactors fed with dairy manure and pig manure under mesophilic condition. Similar responses, in terms of the reactor performance and microorganisms structure to the different consortia, were observed with both manure kinds indicating that the effectiveness of bioaugmentation was mainly decided by the composition of the added consortia, not the feedstock. 39 - 49% increment in MP was obtained in the reactors bioaugmented with well-constructed consortia, which was higher than the acclimatized consortia (about 25% increment in MP). Both acetogenesis and methanogenesis (advantageous) steps were stimulated with well-constructed consortia bioaugmentation. According to key functional enzyme analysis, the increment of glycine hydroxymethyltransferase and phosphoglycerate mutase might be the critical point in the bioaugmented AD system. Based on the higher functional contribution rate of the well-constructed consortia bioaugmentation reactors, Methanosarcina could have expressed more comprehensive functions or performed stronger activities in different functions than Methanosaeta.
Collapse
Affiliation(s)
- Ziyi Yang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hangyu Sun
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Xinjiang Uygur Autonomous Region, Alar 843300, China
| | - Samuel Gyebi Arhin
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Vagelis G Papadakis
- Department of Environmental Engineering, University of Patras, Seferi 2, Agrinio 30100, Greece
| | - Maria A Goula
- Laboratory of Alternative Fuels and Environmental Catalysis, Department of Chemical Engineering, University of Western Macedonia, 50100, Greece
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China
| | - Yi Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Wang
- Biomass Energy and Environmental Engineering Research Center, Beijing University of Chemical Technology, 507 Zonghe Building, 15 North 3rd Ring East Road, Beijing 100029, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Zhou M, Tian X. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. Int J Biol Macromol 2022; 202:256-268. [PMID: 35032493 DOI: 10.1016/j.ijbiomac.2022.01.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Abstract
Lignocellulose, a kind of biological resource widely existing in nature, which can be transformed into value-added biochemical products through saccharification, fermentation or chemical catalysis. Pretreatments are the necessary step to increase the accessibility and digestibility of lignocellulose. This paper comprehensively reviewed different pretreatment progress of lignocellulose in recent year, including mechanical/thermal, biological, inorganic solvent, organic solvent and unconventional physical-chemical pretreatments, focusing on quantifying the influence of pretreatments on subsequent biomass conversion. In addition, related pretreatment techniques such as genetic engineering, reactor configurations, downstream process and visualization technology of pretreatment were discussed. Finally, this review presented the challenge of lignocellulose pretreatment in the future.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
7
|
Naik GP, Poonia AK, Chaudhari PK. Alkaline electro-hydrolysis pretreatment of rice straw for enhanced biogas production under ambient temperature. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biogas production can supplement the renewable energy target of the world. For this abundantly available agricultural waste like wheat and rice straw can be used. Biogas generation using this waste will curb the stubble burning incidences, reduce greenhouse gases, enhance farmer’s income, and strengthen the energy security of many countries. The recalcitrant nature of rice straw is a barrier to its hydrolysis, which is a prerequisite of the anaerobic digestion (AD) process. Alkaline, electro-hydrolysis, and a combination of both pretreatment (alkaline electrohydrolysis) methods are undertaken in the present study. Batch reactors at ambient temperature were used for AD of rice straw at different inoculums to substrate ratios (ISR) of 0.5, 0.75, and 1.0 to observe the effect on biogas/methane yield. Among these, a higher amount of biogas was obtained for ISR of 0.5 in all sets of experiments. The combined pretreatment method yielded biogas of 315.9 mL/gVS (equivalent to methane of 167.4 mL/gVS). For pretreat-ed rice straw by electro-hydrolysis, alkaline, and combined (alkaline and electro-hydrolysis) respectively, the methane yields were 7.03, 18.13, and 49.82% higher than untreated rice straw. The biogas had approximately 53% of methane content. The use of rice straw for biogas production may prove a viable alternative for clean and sustainable energy. In the studies, a first-order kinetic model is found to fit better the experimental results.
Collapse
Affiliation(s)
- Gopal P. Naik
- Department of Chemical Engineering , National Institute of Technology , G.E.Road , Raipur , India
| | - Anil K. Poonia
- Department of Chemical Engineering , National Institute of Technology , G.E.Road , Raipur , India
| | - Parmesh K. Chaudhari
- Department of Chemical Engineering , National Institute of Technology , G.E.Road , Raipur , India
| |
Collapse
|
8
|
Wang Z, Cheng Q, Liu Z, Qu J, Chu X, Li N, Noor RS, Liu C, Qu B, Sun Y. Evaluation of methane production and energy conversion from corn stalk using furfural wastewater pretreatment for whole slurry anaerobic co-digestion. BIORESOURCE TECHNOLOGY 2019; 293:121962. [PMID: 31449921 DOI: 10.1016/j.biortech.2019.121962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 05/22/2023]
Abstract
In this study, corn stalk (CS) was pretreated with furfural wastewater (FWW) for whole slurry anaerobic digestion (AD), which increased the degradability of CS components, changed the parameters in pretreatment slurry and improved the biochemical methane potential (BMP). The ultimate goal was to optimize the time and temperature for FWW pretreatment and evaluate whether FWW pretreatment is feasible from BMP and energy conversion. The results of path analysis suggested that lignocellulosic degradability (LD) was the main factor affecting methane production with the comprehensive decision of 0.7006. The highest BMP (166.34 mL/g VS) was achieved by the pretreatment at 35 °C for 6 days, which was 70.36% higher than that of control check (CK) (97.64 mL/g VS) and the optimal pretreatment condition was predicted at 40.69 °C for 6.49 days by response surface methodology (RSM). The net residual value (NRV) for the pretreatment of 35 °C and 6 days was the highest (0.6201), which was the most appropriate condition for AD in real application.
Collapse
Affiliation(s)
- Zhi Wang
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Qiushuang Cheng
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Zhiyuan Liu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Jingbo Qu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Xiaodong Chu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Nan Li
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Rana Shahzad Noor
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Changyu Liu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Bin Qu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Yong Sun
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China.
| |
Collapse
|
9
|
Panigrahi S, Dubey BK. Electrochemical pretreatment of yard waste to improve biogas production: Understanding the mechanism of delignification, and energy balance. BIORESOURCE TECHNOLOGY 2019; 292:121958. [PMID: 31408777 DOI: 10.1016/j.biortech.2019.121958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
In the present study, electrochemical pretreatment with a pair of graphite electrode was conducted to pretreat yard waste prior to anaerobic digestion. The Response Surface Methodology was employed to optimize the pretreatment conditions. To determine the mechanism of delignification physical and chemical properties of untreated and pretreated yard waste were investigated. In the subsequent anaerobic digestion of pretreated yard waste, the ultimate biogas production of 446 mL/g VS was achieved in comparison to the untreated yard waste of 287 mL/g VS on 35th day of anaerobic digestion. A net energy gain of 4.75 kJ/g VS (Output energy of 5.73 kJ/g VS - Input energy of 0.98 kJ/g VS) and net profit of 518 rupees (US$ 7.4) per 1 ton of yard waste indicates the applicability of electrochemical pretreatment for pilot scale.
Collapse
Affiliation(s)
- Sagarika Panigrahi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
10
|
Rehman KU, Ur Rehman R, Somroo AA, Cai M, Zheng L, Xiao X, Ur Rehman A, Rehman A, Tomberlin JK, Yu Z, Zhang J. Enhanced bioconversion of dairy and chicken manure by the interaction of exogenous bacteria and black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:75-83. [PMID: 30780056 DOI: 10.1016/j.jenvman.2019.02.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Generation of insects' biomass from lignocellulose rich organic wastes is of significant challenges in reducing the environmental impact of wastes and in sustaining feed and food security. This research looked at the effects of lignocellulotic exogenous bacteria in the black soldier fly (BSF) organic waste conversion system for biomass production and lignocellulose biodegradation of dairy and chicken manures. Six exogenous bacteria were investigated for cellulolytic activity with carboxymethyl cellulose and found that these tested bacterial strains degrade the cellulose. In this study; a co-conversion process using Hermetia illucens larvae to convert the previously studied best mixing ratio of dairy manure (DM) and chicken manure (CHM) (2:3) and cellulose degrading bacteria was established to enhance the larval biomass production, waste reduction and manure nutrient degradation. BSF larvae assisted by MRO2 (R5) has the best outcome measures: survival rate (99.1%), development time (19.0 d), manure reduction rate (48.7%), bioconversion rate (10.8%), food conversion ratio (4.5), efficiency of conversion of ingestion (22.3), cellulose (72.9%), hemicellulose (68.5%), lignin (32.8%), and nutrient utilization (protein, 71.2% and fat, 67.8%). By analyzing the fiber structural changes by scanning electron microscopy and Fourier-transformed infrared spectroscopy (FT-IR), we assume that exogenous bacteria assist the BSF larvae that trigger lead to structural and chemical modification of fibers. We hypothesized that these surface and textural changes are beneficial to the associated gut bacteria, thereby helping to larval growth and reduce waste. The finding of the investigation showed that enhanced conversion of DM and CHM by BSF larvae assisted with lignocellulotic exogenous bacteria could play key role in the manure management.
Collapse
Affiliation(s)
- Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Livestock and Dairy Development Department, Poultry Research Institute, Rawalpindi, Government of Punjab, Pakistan
| | | | - Abdul Aziz Somroo
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Abdul Rehman
- Livestock and Dairy Development Department, Poultry Research Institute, Rawalpindi, Government of Punjab, Pakistan
| | | | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
11
|
Kainthola J, Shariq M, Kalamdhad AS, Goud VV. Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:188-196. [PMID: 30472562 DOI: 10.1016/j.jenvman.2018.11.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Biogas has become an alternative clean source of energy. Agricultural residues being renewable and abundant resources could be efficiently used as a feed for methane production. The recalcitrant behaviour of rice straw marks pretreatment an important step to facilitate the transformation into renewable (methane) energy source. Microwave pretreatment has been considered as one of the most effective method, as it can directly (thermal and nonthermal effects) react with the feedstock and destroy its complex matrix. The present study considered the different temperature and exposure time (i.e., 130-230 °C, 2-5 min). Biochemical methane potential was assessed corresponding to the maximum solubilization rate; specific methane yield was obtained as 325.76 mL/g/VS. The total net energy gain of 3288.576 J/g/VS was obtained. The performance parameters were calculated by using different kinetic models. It followed the trend as modified Gompertz > transference function > logistic function models. Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) analysis confirmed the breakdown of lignocellulose structure resulting from the rupture of cuticular surface.
Collapse
Affiliation(s)
- Jyoti Kainthola
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Mohd Shariq
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ajay S Kalamdhad
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vaibhav V Goud
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
12
|
An Y, Zhang X, Wang X, Chen Z, Wu X. Nano@lignocellulose intercalated montmorillonite as adsorbent for effective Mn(II) removal from aqueous solution. Sci Rep 2018; 8:10863. [PMID: 30022147 PMCID: PMC6052037 DOI: 10.1038/s41598-018-29210-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/06/2018] [Indexed: 11/09/2022] Open
Abstract
This paper describes the preparation of nano@lignocellulose (nano@LC) and a nano@lignocellulose/montmorillonite (nano@LC/MT) nanocomposite, as well as the capacity of the nano@LC/MT for adsorbing manganese ions from aqueous solution. The structure of nano@LC and nano@LC/MT was characterised by Fourier-transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy, and Transmission electron microscopy, which revealed that the diffraction peak of montmorillonite almost disappeared, infrared bands of the functional groups shifted, and morphology of the material changed after the formation of the composite. The optimum conditions for the adsorption of Mn(II) on the nano@LC/MT nanocomposite were investigated in detail by changing the initial Mn(II) concentration, pH, adsorption temperature, and time. The results revealed that the adsorption capacity of the nano@LC/MT nanocomposite for Mn(II) reached 628.0503 mg/g at a Mn(II) initial concentration of 900 mg/L, solution pH 5.8, adsorption temperature 55 °C, and adsorption time 160 min. Adsorption kinetics experiments revealed good agreement between the experimental data and the pseudo-second order kinetic model. The experimental data was satisfactorily fitted to the Langmuir isotherm. Adsorption-desorption results showed that nano@LC/MT exhibited excellent reusability. The adsorption mechanism was investigated through FT-IR and EDX spectroscopic analyses. The results suggested that nano@LC/MT have great potential in removing Mn(II) from water.
Collapse
Affiliation(s)
- Yuhong An
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Xiaotao Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
| | - Zhangjing Chen
- Department of Sustainable Biomaterials Virginia Tech University, Blacksburg, VA, 24061, USA
| | - Xiangwen Wu
- College student village officials of Xieji village Xieji town Shanxian Country Shandong province, Heze, 274300, P.R. China
| |
Collapse
|
13
|
Veluchamy C, Raju VW, Kalamdhad AS. Electrohydrolysis pretreatment for enhanced methane production from lignocellulose waste pulp and paper mill sludge and its kinetics. BIORESOURCE TECHNOLOGY 2018; 252:52-58. [PMID: 29306129 DOI: 10.1016/j.biortech.2017.12.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
A novel electrohydrolysis pretreatment enhances methane production from lignocellulose material during anaerobic digestion. A biochemical methane potential assay was carried out to determine the effect of direct current and the efficacy of electrohydrolysis pretreatment on biogas production. Methane yield was increased by 13.8%, to 301 ± 3 mL CH4/g VS, when lignocellulosic waste was pretreated with electrohydrolysis. A net energy gain of 13,224 kJ was realized after electrohydrolysis pretreatment, which was 1.51 times higher than reported for thermal pretreatment. In addition, two kinetic models were used, including the modified Gompertz model to reproduce the experimental data. These finding support the potential for increased methane recovery from lignocellulosic waste using electrohydrolysis as a pretreatment.
Collapse
Affiliation(s)
- C Veluchamy
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - V Wilson Raju
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
14
|
Veluchamy C, Kalamdhad AS. Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review. BIORESOURCE TECHNOLOGY 2017; 245:1206-1219. [PMID: 28893499 DOI: 10.1016/j.biortech.2017.08.179] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Pulp and paper industry is one of the most polluting, energy and water intensive industries in the world. Produced pulp and paper mill sludge (PPMS) faces a major problem for handling and its management. An anaerobic digestion has become an alternative source. This review provides a detailed summary of anaerobic digestion of PPMS - An overview of the developments and improvement opportunities. This paper explores the different pretreatment methods to enhance biogas production from the PPMS. First, the paper gives an overview of PPMS production, and then it reviews PPMS as a substrate for anaerobic digestion with or without pretreatment. Finally, it discuss the optimal condition and concentration of organic and inorganic compounds required for the anaerobic metabolic activity. Future research should focus on the combination of different pretreatment technologies, relationship between sludge composition, reactor design and its operation, and microbial community dynamics.
Collapse
Affiliation(s)
- C Veluchamy
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
15
|
Veluchamy C, Kalamdhad AS. Enhanced methane production and its kinetics model of thermally pretreated lignocellulose waste material. BIORESOURCE TECHNOLOGY 2017; 241:1-9. [PMID: 28549251 DOI: 10.1016/j.biortech.2017.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 05/19/2023]
Abstract
The objective of the study was to assess the effect of substrate concentration by specific methanogenic activity (SMA) of thermally pretreated pulp and paper mill sludge. Different substrate concentration through food to microorganism ratio varied from 1.0 to 3.0 was carried out in a mesophilic condition as biochemical methane potential assay. Experimental results offered that cellulose removal rate spikes up to 60.2%. The specific methane gas production and biodegradability were increased up to 303mL of CH4/g VS and 73% respectively. By increasing the substrate concentration, SMA was significantly improved in a linear manner. The net energy of 8735kJ was gained after thermal pretreatment. In addition to that three kinetics model were used, among that the modified Gompertz and logistic function models represent and reproduce the experimental data, while the earlier has the better fit.
Collapse
Affiliation(s)
- C Veluchamy
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|