1
|
Anaerobic Acidogenic Fermentation of Cellobiose by Immobilized Cells: Prediction of Organic Acids Production by Response Surface Methodology. Processes (Basel) 2021. [DOI: 10.3390/pr9081441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Response surface methodology was used to derive a prediction model for organic acids production by anaerobic acidogenic fermentation of cellobiose, using a mixed culture immobilized on γ-alumina. Three parameters (substrate concentration, temperature, and initial pH) were evaluated. In order to determine the limits of the parameters, preliminary experiments at 37 °C were conducted using substrates of various cellobiose concentrations and pH values. Cellobiose was used as a model sugar for subsequent experiments with lignocellulosic biomass. The culture was well adapted to cellobiose by successive subculturing at 37 °C in synthetic media (with 100:5:1 COD:N:P ratio). The experimental data of successive batch fermentations were fitted into a polynomial model for the total organic acids concentration in order to derive a predictive model that could be utilized as a tool to predict fermentation results when lignocellulosic biomass is used as a substrate. The quadratic effect of temperature was the most significant, followed by the quadratic effect of initial pH and the linear effect of cellobiose concentration. The results corroborated the validity and effectiveness of the model.
Collapse
|
2
|
Long-Term Storage and Use of Artificially Immobilized Anaerobic Sludge as a Powerful Biocatalyst for Conversion of Various Wastes Including Those Containing Xenobiotics to Biogas. Catalysts 2019. [DOI: 10.3390/catal9040326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of this paper is to demonstrate the possibilities of anaerobic sludge cells immobilized into poly(vinyl alcohol) cryogel for the methanogenic conversion of various lignocellulosic waste and other media containing antibiotics (ampicillin, kanamycin, benzylpenicillin) or pesticides (chlorpyrifos or methiocarb and its derivatives). It was established that the immobilized cells of the anaerobic consortium can be stored frozen for at least three years while preserving a high level of metabolic activity. The cells after the long-term storage in an immobilized and frozen state were applied for the methanogenesis of a wide number of wastes, and an increase in both methane yield and methane portion in the produced biogas as compared to the conventionally used suspended anaerobic sludge cells, was ensured. It was shown that the “additional” introduction of bacterial Clostridium acetobutylicum, Pseudomonas sp., Enterococcus faecalis cells (also immobilized using same support) improves characteristics of methanogenesis catalyzed by immobilized anaerobic sludge.
Collapse
|
3
|
Xin F, Dong W, Jiang Y, Ma J, Zhang W, Wu H, Zhang M, Jiang M. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. Crit Rev Biotechnol 2017; 38:529-540. [PMID: 28911245 DOI: 10.1080/07388551.2017.1376309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.
Collapse
Affiliation(s)
- Fengxue Xin
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Weiliang Dong
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Yujia Jiang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China
| | - Jiangfeng Ma
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Wenming Zhang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Hao Wu
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Min Zhang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| | - Min Jiang
- a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing , P.R. China.,b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , Nanjing , P.R. China
| |
Collapse
|