1
|
Sun H, Ni J, Yang G, Liu Z, Wang Z, Zhu S, Li Z, Jiang Y, Zhan X, Wang Y, Gao M. A novel coupled fermentation system for low-molecular-weight xanthan gum with diverse biological activities. Int J Biol Macromol 2024; 279:135283. [PMID: 39233163 DOI: 10.1016/j.ijbiomac.2024.135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Xanthan gum (XG) is a bacterial exopolysaccharide widely used in various industries due to its stability and rheological properties. Low-molecular-weight xanthan gum (LXG) exhibits enhanced properties and broader applications, but current degradation methods are limited. This study introduces an innovative coupled fermentation system for the efficient production of LXG. Endo-xanthanase from Microbacterium sp. XT11 was expressed in Pichia pastoris GS115, exhibiting optimal activity at pH 6.0 and 40 °C, with broad pH tolerance. The optimized coupled fermentation system used bean sprouts juice as nitrogen source, the inoculation quantity of X. campestris: P. pastoris was 1: 3, and the pH was controlled at 6.0. In the bioreactor, the total sugar concentration reached 12.12 g/L, the reducing sugar concentration reached 5.32 g/L, and the endo-xanthanase activity increased to 1150.26 U/L, which were 2.13, 2.3, and 3.71 times higher than those at the shake flask level, respectively. The prepared LXG had a molecular weight of 1093 Da and a monosaccharide ratio of 2.0:1.57:0.89 (glucose, mannose, and glucuronic acid). Bioactivity analysis revealed its antioxidant and prebiotic properties, promoting the growth of beneficial intestinal microbiota and metabolite production. This suggests the potential of LXG as a functional ingredient in intestinal health-focused foods and supplements.
Collapse
Affiliation(s)
- Haoqing Sun
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jialin Ni
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guoshuai Yang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhilei Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shengyong Zhu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yun Jiang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Minjie Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
How SC, Hsieh CJ, Yu CY. Entrapment of Cyanase from Thermomyces lanuginosus Using Biomimetic Silica and Its Application for Cyanate Bioremediation. Polymers (Basel) 2024; 16:2594. [PMID: 39339058 PMCID: PMC11435769 DOI: 10.3390/polym16182594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Cyanate, a toxic product from the chemical oxidation treatment of highly toxic cyanide, can be converted to harmless ammonia and carbon dioxide by cyanase (EC 4.2.1.104). Cyanase from Thermomyces lanuginosus was entrapped in biomimetic silica to improve stability and reusability. After entrapment, the enzyme's activity increased by two-fold, and the residual activity after 30-min of incubation at 60 °C also increased by two-fold, compared to the free enzyme. After being stored at room temperature for 28 days, the entrapped cyanase retained 79% of the initial activity, while the free form retained 61%. The immobilized cyanase was successfully applied to cyanate detoxification; the co-entrapment of carbonic anhydrase from Sulfurihydrogenibium azorense decreased the amount of bicarbonate necessary for cyanate detoxification by 50%. The cyanate degradation retained 53% of the initial value after the co-entrapped cyanate and carbonic anhydrase were reused five times.
Collapse
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| | - Chia-Jung Hsieh
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| | - Chi-Yang Yu
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| |
Collapse
|
3
|
Zhang S, Zhang J, Lin R, Lu C, Fang B, Shi J, Jiang T, Zhou M. Design and construction of light-regulated gene transcription and protein translation systems in yeast P. Pastoris. J Adv Res 2024:S2090-1232(24)00330-8. [PMID: 39117107 DOI: 10.1016/j.jare.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION P. pastoris is a common host for effective biosynthesis of heterologous proteins as well as small molecules. Accurate regulation of gene transcription and protein synthesis is necessary to coordinate synthetic gene circuits and optimize cellular energy distribution. Traditional methanol or other inducible promoters, natural or engineered, have defects in either fermentation safety or expression capacity. The utilization of chemical inducers typically adds complexity to the product purification process, but there is no other well-controlled protein synthesis system than promoters yet. OBJECTIVE The study aimed to address the aforementioned challenges by constructing light-regulated gene transcription and protein translation systems with excellent expression capacity and light sensitivity. METHODS Trans-acting factors were designed by linking the N. crassa blue-light sensor WC-1 with the activation domain of endogenous transcription factors. Light inducible or repressive promoters were then constructed through chimeric design of cis-elements (light-responsive elements, LREs) and endogenous promoters. Various configurations of trans-acting factor/LRE pairs, along with different LRE positions and copy numbers were tested for optimal promoter performance. In addition to transcription, a light-repressive translation system was constructed through the "rare codon brake" design. Rare codons were deliberately utilized to serve as brakes during protein synthesis, which were switched on and off through the light-regulated changes in the expression of the corresponding pLRE-tRNA. RESULTS As demonstrated with GFP, the light-inducible promoter 4pLRE-cPAOX1 was 70 % stronger than the constitutive promoter PGAP, with L/D ratio = 77. The light-repressive promoter PGAP-pLRE was strictly suppressed by light, with expression capacity comparable with PGAP in darkness. As for the light-repressive translation system, the "triple brake" design successfully eliminated leakage and achieved light repression on protein synthesis without any impact on mRNA expression. CONCLUSION The newly designed light-regulated transcription and translation systems offer innovative tools that optimize the application of P. pastoris in biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazhen Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ru Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chaoyu Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bohao Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiacheng Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyi Jiang
- China Innovation Center of Roche, Shanghai 201203, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Hsieh CJ, Hu CJ, Yu CY. Biomimetic Carbon Sequestration and Cyanate Detoxification Using Heat-Purified Carbonic Anhydrase from Sulfurihydrogenibium yellowstonense. Biomimetics (Basel) 2023; 8:365. [PMID: 37622970 PMCID: PMC10452739 DOI: 10.3390/biomimetics8040365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The reaction condition for purifying carbonic anhydrase from Sulfurihydrogenibium yellowstonense (SspCA) by direct heating without prior cell lysis was optimized; heating at 70 °C for 5 min resulted in the highest total activity of 23,460 WAU (Wilbur-Anderson unit) from a 50 mL culture. Heat-purified SspCA was examined for its capability to increase the rate of the mineralization of CO2; compared with an uncatalyzed control, the onset time of CaCO3 formation was shortened by up to 71%. Cyanase can be used to degrade toxic cyanate; however, one of the limitations of this biomimetic process is that the reaction needs HCO3- as a substrate. Heat-purified SspCA was combined with heat-purified cyanase from Thermomyces lanuginosus to alleviate the HCO3- dependence; in industrial wastewater, the HCO3- required was reduced by 50% when 0.75 WAU of SspCA was added. Heat-purified SspCA is stable at 4 °C; 88% of the initial activity was retained for up to five weeks. Partially purified SspCA can be obtained with ease and applied to a variety of applications.
Collapse
Affiliation(s)
- Chia-Jung Hsieh
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104327, Taiwan;
| | - Chia-Jung Hu
- Department of Mechanical and Materials Engineering, Tatung University, Taipei 104327, Taiwan;
| | - Chi-Yang Yu
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104327, Taiwan;
| |
Collapse
|
5
|
Cyanate Degradation in Different Matrices Using Heat-Purified Enzymes. Catalysts 2022. [DOI: 10.3390/catal13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A green and low-cost removal method for cyanate, a toxic byproduct from the treatment of cyanide, is still needed. Cyanase converts cyanate to CO2 and NH3, but its industrial practicality is limited because the reaction requires HCO3− as a substrate. In this study, we used carbonic anhydrase from Sulfurihydrogenibium azorense (SazCA) to provide HCO3− for cyanase from Thermomyces lanuginosus (TlCyn); both TlCyn and SazCA were purified by one-step heating without prior cell lysis. The heat treatment resulted in higher activities of both enzymes than the conventional two-step process. From a 50 mL-culture, the highest total activity of 147 U and 47,174 WAU was obtained from 5 min of heating at 60 and 80 °C for TlCyn and SazCA, respectively. The coupled enzymatic system was used to degrade cyanate in three different matrices: 50 mM Tris-HCl (pH 8), industrial wastewater, and artificial wastewater. In the industrial wastewater, with the addition of 0.75 WAU (Wilbur-Anderson unit) of SazCA, cyanate degradation using 0.5 mM NaHCO3 was similar to that using 3 mM NaHCO3, indicating an 83% reduction in NaHCO3. We have demonstrated that the dependence on HCO3− of cyanate degradation can be effectively alleviated by using low-cost heat-purified TlCyn and SazCA; the industrial practicality of the coupled enzymatic system is therefore improved.
Collapse
|
6
|
Comparative Proteomic Analysis of Rhizoctonia solani Isolates Identifies the Differentially Expressed Proteins with Roles in Virulence. J Fungi (Basel) 2022; 8:jof8040370. [PMID: 35448601 PMCID: PMC9029756 DOI: 10.3390/jof8040370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Sheath blight of rice is a destructive disease that could be calamitous to rice cultivation. The significant objective of this study is to contemplate the proteomic analysis of the high virulent and less virulent isolate of Rhizoctonia solani using a quantitative LC-MS/MS-based proteomic approach to identify the differentially expressed proteins promoting higher virulence. Across several rice-growing regions in Odisha, Eastern India, 58 Rhizoctonia isolates were obtained. All the isolates varied in their pathogenicity. The isolate RS15 was found to be the most virulent and RS22 was identified as the least virulent. The PCR amplification confirmed that the RS15 and RS22 belonged to the Rhizoctonia subgroup of AG1-IA with a specific primer. The proteomic information generated has been deposited in the PRIDE database with PXD023430. The virulent isolate consisted of 48 differentially abundant proteins, out of which 27 proteins had higher abundance, while 21 proteins had lower abundance. The analyzed proteins acquired functionality in fungal development, sporulation, morphology, pathogenicity, detoxification, antifungal activity, essential metabolism and transcriptional activities, protein biosynthesis, glycolysis, phosphorylation and catalytic activities in fungi. A Quantitative Real-Time PCR (qRT-PCR) was used to validate changes in differentially expressed proteins at the mRNA level for selected genes. The abundances of proteins and transcripts were positively correlated. This study provides the role of the proteome in the pathogenicity of R. solani AG1-IA in rice and underpins the mechanism behind the pathogen’s virulence in causing sheath blight disease.
Collapse
|
7
|
Gao M, Yang G, Li F, Wang Z, Hu X, Jiang Y, Yan J, Li Z, Zhan X. Efficient endo-β-1,3-glucanase expression in Pichia pastoris for co-culture with Agrobacterium sp. for direct curdlan oligosaccharide production. Int J Biol Macromol 2021; 182:1611-1617. [PMID: 34044029 DOI: 10.1016/j.ijbiomac.2021.05.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023]
Abstract
The production of curdlan oligosaccharides, a multifunctional and valuable carbohydrate, by hydrolyzing polysaccharides is of great interest. The endo-β-1,3-glucanase derived from Trichoderma harzianum was expressed in Pichia pastoris with three commonly used promoters (AOX1, GAP and FLD1). The purified recombinant endo-β-1,3-glucanase expressed by Pichia pastoris with GAP promoter displayed high specific activity at pH 5.5 and 50 °C. Thereafter, a co-culture system of Pichia pastoris GS115 (GAP promoter) and Agrobacterium sp. was constructed in which Agrobacterium sp.-metabolized curdlan can be directly hydrolyzed by Pichia pastoris-secreted endo-β-1,3-glucanase to produce functional curdlan oligosaccharides. The co-culture conditions were optimized and the process was carried out in a 7-L bioreactor. The maximum yield of curdlan oligosaccharides reached 18.77 g/L with 3-10 degrees of polymerization. This study presents a novel and easy curdlan oligosaccharide production strategy that can replace traditional sophisticated production procedures and could potentially be implemented for production of other oligosaccharides.
Collapse
Affiliation(s)
- Minjie Gao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| | - Guoshuai Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Feifei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, PR China
| | - Yun Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Jiajun Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Zhitao Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiaobei Zhan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Ranjan B, Choi PH, Pillai S, Permaul K, Tong L, Singh S. Crystal structure of a thermophilic fungal cyanase and its implications on the catalytic mechanism for bioremediation. Sci Rep 2021; 11:277. [PMID: 33431973 PMCID: PMC7801690 DOI: 10.1038/s41598-020-79489-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022] Open
Abstract
Cyanase catalyzes the bicarbonate-dependent degradation of cyanate to produce ammonia and carbon dioxide, and ammonia is a considerable alternative nitrogen source. Strikingly, the cyanase from the thermophilic fungus Thermomyces lanuginosus (Tl-Cyn) has the highest catalytic efficiency reported among these enzymes. However, its molecular mechanism of action is not clearly understood, because currently there is no structural information available on fungal cyanases. Here we report the crystal structure of Tl-Cyn in complex with inhibitors malonate and formate at 2.2 Å resolution. The structure reveals extensive interactions at the subunit interfaces in a dimer, and a decamer is formed by a pentamer of these dimers. Our biochemical, kinetic and mutagenesis studies confirm the structural observations on the complex and provide further insights into its catalytic mechanism and inhibition. The structure has also aided the creation of a mutant enzyme with enhanced catalytic activity, and such enzymes may have the potential for biotechnological applications, including biotransformation and bioremediation. Moreover, other fungal cyanases with potentially high catalytic activity could also be predicted based on the Tl-Cyn structure, as the active site region among fungal cyanases are highly conserved.
Collapse
Affiliation(s)
- Bibhuti Ranjan
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Philip H Choi
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Kugenthiren Permaul
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Liang Tong
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa.
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa.
| |
Collapse
|
9
|
Dong K, Xie F, Chang Y, Chen C, Wang W, Lu D, Gu X. A novel strategy for the efficient decomposition of toxic sodium cyanate by hematite. CHEMOSPHERE 2020; 256:127047. [PMID: 32446000 DOI: 10.1016/j.chemosphere.2020.127047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Toxic sodium cyanate is always present in cyanide-contaminated waste. A new technology for the efficient decomposition of toxic sodium cyanate by hematite was first proposed in this study. The decomposition of sodium cyanate under various atmospheres has been studied. Studies show that sodium cyanate decomposes above 782 °C in Ar and above 627 °C in air. Sodium cyanate does not decompose even roasted at 400 °C for 120 min in air. Hematite does not promote the decomposition of sodium cyanate in Ar. However, almost all sodium cyanate decomposes efficiently at 400 °C and the mass ration of hematite to sodium cyanate of 1:1 for 30 min in air or oxygen atmosphere. The increased mass ratio of hematite to sodium cyanate and roasting temperature can both favor the efficient decomposition of sodium cyanate. The efficient decomposition of sodium cyanate occurs within 30 min, and it is almost stagnant with the prolongation of roasting time. When roasted in air or oxygen in the presence of hematite, sodium cyanate decomposes to Na2CO3, CO2 and N2 and a small amount of NaNO3 and NOx. The optimal efficient decomposition of sodium cyanate is to roast above 400 °C for 30 min in air or O2 at a mass ration of hematite to sodium cyanate greater than 1:1.
Collapse
Affiliation(s)
- Kaiwei Dong
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Feng Xie
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China.
| | - Yongfeng Chang
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Chunlin Chen
- CSIRO Minerals Resources, Clayton, Victoria, 3168, Australia
| | - Wei Wang
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China.
| | - Diankun Lu
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Xiaowei Gu
- Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| |
Collapse
|
10
|
Karbalaei M, Rezaee SA, Farsiani H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol 2020; 235:5867-5881. [PMID: 32057111 PMCID: PMC7228273 DOI: 10.1002/jcp.29583] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023]
Abstract
One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well‐defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein.
Collapse
Affiliation(s)
- Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Seyed A Rezaee
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | - Hadi Farsiani
- Mashhad University of Medical Sciences, Antimicrobial Resistance Research Center, Mashhad, Iran
| |
Collapse
|
11
|
Ranjan B, Pillai S, Permaul K, Singh S. Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:73-80. [PMID: 30308367 DOI: 10.1016/j.jhazmat.2018.07.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 05/05/2023]
Abstract
Global environmental problems allied with waste management require novel approaches for the simultaneous removal of heavy metals and other associated compounds including cyanate. In this study, iron-oxide filled multi-walled carbon nanotubes (m-MWCNTs) were successfully synthesized and characterized by field emission gun scanning electron microscopy (FEGSEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The m-MWCNTs were amino-functionalized for the covalent immobilization of a recombinant cyanate hydratase (rTl-Cyn), and were characterized by fourier transform infrared (FTIR) spectroscopy. The immobilized rTl-Cyn on the m-MWCNTs (m-MWCNT-rTl-Cyn) had long term storage stability and showed great potential towards cyanate biodegradability. We found that m-MWCNT-rTl-Cyn retained >94% of the initial activity even after 10 repeated cycles of bio-catalysis. Strikingly, the m-MWCNT-rTl-Cyn simultaneously reduced the concentration of chromium (Cr), iron (Fe), lead (Pb) and copper (Cu) by 39.31, 35.53, 34.48 and 29.63%, respectively as well as the concentration of cyanate by ≥84%, in a synthetic wastewater sample.
Collapse
Affiliation(s)
- Bibhuti Ranjan
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Kugenthiren Permaul
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa.
| |
Collapse
|
12
|
Ranjan B, Pillai S, Permaul K, Singh S. A novel strategy for the efficient removal of toxic cyanate by the combinatorial use of recombinant enzymes immobilized on aminosilane modified magnetic nanoparticles. BIORESOURCE TECHNOLOGY 2018; 253:105-111. [PMID: 29331825 DOI: 10.1016/j.biortech.2017.12.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Cyanase detoxifies cyanate by transforming it to ammonia and carbon dioxide in a bicarbonate-dependent reaction, however, dependence on bicarbonate limits its utilization in large-scale applications. A novel strategy was therefore developed for overcoming this bottleneck by the combined application of cyanase (rTl-Cyn) and carbonic anhydrase (rTl-CA). The synergistic effect of rTl-Cyn and rTl-CA could reduce the dependence of bicarbonate by 80%, compared to using rTl-Cyn alone. Complete degradation of cyanate (4 mM) was achieved with buffered conditions and 85 ± 5% degradation with industrial wastewater sample, when 20 U of rTl-Cyn was applied. Furthermore, a similar percentage of degradation was achieved using 80% less bicarbonate, when rTl-Cyn and rTl-CA were used together under identical conditions. In addition, rTl-Cyn and rTl-CA were immobilized onto the magnetic nanoparticles and their catalytic activity, stability and reusability were also evaluated. This is the first report on the synergistic biocatalysis by rTl-Cyn and rTl-CA, for cyanate detoxification.
Collapse
Affiliation(s)
- Bibhuti Ranjan
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Kugenthiren Permaul
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa.
| |
Collapse
|
13
|
Yadav D, Ranjan B, Mchunu N, Roes-Hill ML, Kudanga T. Secretory expression of recombinant small laccase from Streptomyces coelicolor A3(2) in Pichia pastoris. Int J Biol Macromol 2017; 108:642-649. [PMID: 29203348 DOI: 10.1016/j.ijbiomac.2017.11.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 01/14/2023]
Abstract
This work reports for the first time the secretory expression of the small laccase (SLAC) from Streptomyces coelicolor A3(2) in Pichia pastoris. Using an AOX1 promoter and α factor as a secretion signal, the recombinant P. pastoris harbouring the laccase gene (rSLAC) produced high titres of extracellular laccase (500 ± 10 U/l), which were further increased seven fold by pre-incubation at 80 °C for 30 min. The enzyme (∼38 kDa) had an optimum activity at 80 °C, but optimum pH varied with substrate used. Km values for ABTS, SGZ and 2,6-DMP were 142.85 μM, 10 μM and 54.55 μM and the corresponding kcat values were 60.6 s-1, 25.36 s-1 and 27.84 s-1, respectively. The t1/2 values of the rSLAC at 60 °C, 70 °C, 80 °C were 60 h, 32 h and 10 h, respectively. The enzyme deactivation energy (Ed) was 117.275 kJ/mol while ΔG, ΔH and ΔS for thermal inactivation of the rSLAC were all positive. The rSLAC decolourised more than 90% of Brilliant Blue G and Trypan Blue dye in 6 h without the addition of a mediator. High titres of SLAC expressed in P. pastoris enhance its potential for various industrial applications.
Collapse
Affiliation(s)
- Deepti Yadav
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Bibhuti Ranjan
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Nokuthula Mchunu
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Marilize Le Roes-Hill
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, PO Box 1906, Bellville, 7535, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|