1
|
Ahmad HA, Sun X, Wang Z, Ahmad S, El-Baz A, Lee T, Ni BJ, Ni SQ. Metagenomic unveils the promotion of mainstream PD-anammox process at lower nZVI concentration and inhibition at higher dosage. BIORESOURCE TECHNOLOGY 2024; 408:131168. [PMID: 39069143 DOI: 10.1016/j.biortech.2024.131168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The partial-denitrification-anammox (PdNA) process exhibits great potential in enabling the simultaneous removal of NO3--N and NH4+-N. This study delved into the impact of exogenous nano zero-valent iron (nZVI) on the PdNA process. Adding 10 mg L-1 of nZVI increased nitrogen removal efficiency up to 83.12 % and maintained higher relative abundances of certain beneficial bacteria. The maximum relative abundance of Candidatus Brocadia (1.6 %), Candidatus Kuenenia (1.5 %), Ignavibacterium (1.3 %), and Azospira (1.2 %) was observed at 10 mg L-1 of nZVI. However, the greatest relative abundance of Thauera (1.3 %) was recorded under 50 mg L-1. Moreover, applying nZVI selectively enhanced the abundance of NO3--N reductase genes. So, keeping the nZVI concentration at 10 mg L-1 or below is advisable to ensure a stable PdNA process in mainstream conditions. Considering nitrogen removal efficiency, using nZVI in the PD-anammox process could be more cost-effective in enhancing its adoption in industrial and mainstream settings.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaojie Sun
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Pusan 609-735, Republic of Korea
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Peng J, Lei L, Hou Y, Chen S. Study on cultivation of aerobic granular sludge and its application in degrading lignin models in the sequencing batch biofilter granular reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2907-2920. [PMID: 38877621 DOI: 10.2166/wst.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
In this study, three sequencing batch biofilter granular reactors (SBBGRs) were employed to treat model lignin wastewater containing different lignin models (2,6-dimethoxyphenol, 4-methoxyphenol, and vanillin). After 40 days of cultivation, uniform-shaped aerobic granular sludge (AGS) was successfully developed through nutrient supplementation with synthetic wastewater. During the acclimation stage, the chemical oxygen demand (COD) reduction efficiencies of the three reactors showed a trend of initial decreasing (5-20%) and then recovering to a high reduction efficiency (exceeding 90%) in a short period of time. During the stable operation stage, all three reactors achieved COD reduction efficiencies exceeding 90%. These findings indicated the cultivated AGS's robust resistance to changes in lignin models in water. UV-Vis spectra analysis confirmed the effective degradation of the three lignin models. Microbiological analysis showed that Proteobacteria and Bacteroidetes were always the dominant phyla. At the genus level, while Acinetobacter (15.46%) dominated in the inoculation sludge, Kapabacteriales (7.93%), SBR1031 (11.77%), and Chlorobium (25.37%) were dominant in the three reactors (for 2,6-dimethoxyphenol, 4-methoxyphenol, and vanillin) after degradation, respectively. These findings demonstrate that AGS cultured with SBBGR effectively degrades lignin models, with different dominant strains observed for various lignin models.
Collapse
Affiliation(s)
- Jingran Peng
- College of Light Industry Science and Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lirong Lei
- College of Light Industry Science and Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China E-mail:
| | - Yi Hou
- College of Light Industry Science and Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuangshuang Chen
- College of Light Industry Science and Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Ahmad HA, Ahmad S, Gao L, Ismail S, Wang Z, El-Baz A, Ni SQ. Multi-omics analysis revealed the selective enrichment of partial denitrifying bacteria for the stable coupling of partial-denitrification and anammox process under the influence of low strength magnetic field. WATER RESEARCH 2023; 245:120619. [PMID: 37716295 DOI: 10.1016/j.watres.2023.120619] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The microbial consortium involving anaerobic ammonium oxidation (anammox) and partial denitrification (PD), known as PD-anammox, is an emerging energy-efficient and lower carbon nitrogen removal process from wastewater. However, maintaining a stable PD process by locking nitrate reduction until nitrite was challenging. This study established the first stable connection of anammox with constant nitrite generation by PD bacteria under a low-strength (1.3 mT) magnetic field (MF). When the nitrogen loading rate was 1.81 kg-N/m3/d, the nitrogen removal efficiency of the control reactor (R1) was 75%, lower than that of the experimental reactor (R2), which was 85%. The expression of Thauera and Zoogloea, potential PD bacteria was substantially lower in R1 (5.75% and 1.21%, respectively) than in R2 (10.25 and 6.61%, respectively), according to a meta-transcriptomic analysis. At the same time, the mRNA expression of anammox genera Candidatus Brocadia and Candidatus Kuenenia was 33.53% and 3.83% in R1 and 22.86% and 1.87% in R2. Moreover, carbon and nitrogen metabolism pathways were more abundant under the influence of low-strength MF. The selective enrichment of PD bacteria can be attributed to the increased expression of carbon metabolic pathways like the citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism. Interestingly, the control reactor was dominated by a hydroxylamine-dependent anammox process while a low-strength MF-enhanced nitric-oxide-dependent anammox process. For successful anammox-centered nitrogen removal from wastewater, this study demonstrated that low-strength MF is a convenient and applicable technique to lock the nitrate reduction until nitrite.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Linjie Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
4
|
Yang W, Cheng L, Liang H, Xu A, Li Y, Nabi M, Wang H, Hu J, Gao D. Efficient nitrogen removal from mature landfill leachate by single-stage partial-nitritation anammox using expanded granular sludge bed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118460. [PMID: 37384993 DOI: 10.1016/j.jenvman.2023.118460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
The effective retention of anaerobic ammonia oxidizing (anammox) bacteria and its high sensitivity to toxic substances and oxygen posed a major challenge to the application of partial nitrification combined with anammox (PN/A) in mature landfill leachate treatment, although it is a promising and efficient nitrogen removal process. In this study, a single-stage PN/A process based on expanded granular sludge bed was proposed to treat the mature landfill leachate. During the last phase, when the NH+ 4-N concentration of mature landfill leachate in influent was 1150.0 mg/L, the nitrogen removal efficiency (NRE) was 83.64% with 1.07 kg N/(m3·d) nitrogen removal rate (NRR). The activity of anammox bacteria (AnAOB) and ammonia oxidizing bacteria (AOB) was 9.21 ± 0.22 mg N/(gVSS·h) and 14.34 ± 0.65 mg N/(gVSS·h), respectively. The bacteria produced a high amount of tightly bound extracellular polymeric substance (TB-EPS) i.e., 4071.79 mg/(g·VSS). This helped to create granular sludge and provided favorable spatial conditions for the distribution of functional bacteria that were adapted to different environments. Due to the efficient retention of functional bacteria by the granular sludge, the relative abundance of Ca.Brocadia and Ca.Kuneneia was 1.71% and 0.31%, respectively. Redundancy analysis (RDA) and microbial correlation network diagram showed that the relative abundance of Ca. Kuenenia, Nitrosomonas and Truepera had a stronger positive correlation with the increase of the proportion of mature landfill leachate added to the influent. Overall, the PN/A process based on granular sludge provides an effective method for autotrophic biological nitrogen removal from mature landfill leachate.
Collapse
Affiliation(s)
- Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mohammad Nabi
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huan Wang
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai, 201703, China
| | - Jiachen Hu
- Shanghai SUS Environmental Remediation Co., LTD, Shanghai, 201703, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
5
|
Lu Y, Wang J, Feng Y, Li H, Wang Z, Chen H, Suo N, Yu Y. Nitrogen removal performance and rapid start-up of anammox process in an electrolytic sequencing batch reactor (ESBR). CHEMOSPHERE 2022; 308:136293. [PMID: 36058372 DOI: 10.1016/j.chemosphere.2022.136293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, the electrolytic sequencing batch reactor (ESBR) with different current densities was constructed to investigate the nitrogen removal performance and rapid start-up of anaerobic ammonia oxidation (anammox) process. The changes of total nitrogen removal rate (TNRR), specific anammox activity (SAA) and nitrogen concentration under different current densities were analyzed, and then the effect of the optimal current density on the start-up of anammox in ESBR was explored. The results showed that ammonium nitrogen removal efficiency (92.7%), nitrite nitrogen removal efficiency (15.5%) and total nitrogen removal efficiency (28.1%) were obtained with the TNRR and SAA were 0.0118 g N L-1 d-1 and 0.0050 g N (g Vss d)-1, respectively under the optimal conditions (i.e., current density = 0.10 mA cm-2, temperature = 36 °C and pH = 7.6). In addition, the stoichiometric ratio indicated that anammox was initiated successfully for 91 days in ESBR with the current density of 0.10 mA cm-2, which was shortened by 10 days compared with the conventional SBR without current density. These results suggest that an array of rapid start-up processes of anammox can be developed through applying current density to stimulate the activity of anammox bacteria (AnAOB).
Collapse
Affiliation(s)
- Yuyu Lu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Juanting Wang
- Shandong Linuo Paradigma Co., Ltd, Jinan, 250103, China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Honglan Li
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Zhongwei Wang
- Everbright Water (Jinan) Co., Ltd, Jinan, 250022, China
| | - Hao Chen
- Environmental Engineering Co., Ltd., Shandong Academy of Environmental Science, Jinan, 250001, China
| | - Ning Suo
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China; School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan, 250022, China
| |
Collapse
|
6
|
Wang D, Huang K, He X, Zhang XX, Meng Y. Varied interspecies interactions between anammox and denitrifying bacteria enhanced nitrogen removal in a single-stage simultaneous anammox and denitrification system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152519. [PMID: 34968587 DOI: 10.1016/j.scitotenv.2021.152519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 05/05/2023]
Abstract
The simultaneous anammox and denitrification (SAD) system has received growing interest for the enhanced nitrogen removal, while the ecological traits of microbial community including spatial distribution characteristics, assembly processes and interspecies interactions have not been fully unraveled. The present study applied metagenomics and ecological analysis methods to gain the ecological traits of microbial communities in the SAD system across different organic substrate loadings. Results showed that organic matter significantly affected the bioreactor performance, and the optimal total nitrogen removal efficiency reached 93.4 ± 0.7% under the COD concentrations of 180 ± 18.2 mg/L. Functional organisms including Candidatus Brocadia (3.9%), Denitratisoma (1.6%), Dokdonella (4.4%) and Thauera (4.6%) obviously enriched under the optimal organic loading conditions. Moreover, microbial communities were significantly governed by deterministic process under high organic concentrations, and the denitrifying organisms displayed important ecological roles in the communities. Although anammox bacteria obviously enriched at the middle of bioreactor, it possessed the highest expression activities at both bottom and middle sites. Denitrifying bacteria that enriched at the bottom sites strongly achieved nitrate reduction and provided nitrite for anammox bacteria, while these organisms trended to compete nitrite with anammox bacteria at the middle site. These findings highlight the importance of microbial ecology in the SAD systems, which may expand our understanding of the synergistic patterns between anammox and denitrifying bacteria.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing Jiangdao Institute of Environmental Research Co., Ltd., Nanjing 210019, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Metagenomic analysis of microbial community structure and function in a improved biofilter with odorous gases. Sci Rep 2022; 12:1731. [PMID: 35110663 PMCID: PMC8810771 DOI: 10.1038/s41598-022-05858-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
Biofilters have been broadly applied to degrade the odorous gases from industrial emissions. A industrial scale biofilter was set up to treat the odorous gases. To explore biofilter potentials, the microbial community structure and function must be well defined. Using of improved biofilter, the differences in microbial community structures and functions in biofilters before and after treatment were investigated by metagenomic analysis. Odorous gases have the potential to alter the microbial community structure in the sludge of biofilter. A total of 90,016 genes assigned into various functional metabolic pathways were identified. In the improved biofilter, the dominant phyla were Proteobacteria, Planctomycetes, and Chloroflexi, and the dominant genera were Thioalkalivibrio, Thauera, and Pseudomonas. Several xenobiotic biodegradation-related pathways showed significant changes during the treatment process. Compared with the original biofilter, Thermotogae and Crenarchaeota phyla were significantly enriched in the improved biofilter, suggesting their important role in nitrogen-fixing. Furthermore, several nitrogen metabolic pathway-related genes, such as nirA and nifA, and sulfur metabolic pathway-related genes, such as fccB and phsA, were considered to be efficient genes that were involved in removing odorous gases. Our findings can be used for improving the efficiency of biofilter and helping the industrial enterprises to reduce the emission of waste gases.
Collapse
|
8
|
Lai C, Sun Y, Guo Y, Cai Q, Yang P. A novel integrated bio-reactor of moving bed and constructed wetland (MBCW) for domestic wastewater treatment and its microbial community diversity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2653-2668. [PMID: 31902307 DOI: 10.1080/09593330.2019.1709904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
An MBBR and CW combo bio-reactor (MBCW) was designed as a novel hybrid process for simultaneous organic, nitrogen and phosphate removal through the long-term operation. The effect of the internal recycling rate (IRR), hydraulic retention time (HRT) and chemical oxygen demand/total nitrogen (C/N) ratio were all discussed, and the recommended values were 5:1, 12 h and >6, respectively. A higher C/N ratio was a key factor for achieving a higher TN removal. The mixed biocarrier system was realized by inoculating porous polymer carriers (PPC) and cylindrical polyethylene carriers (CPC) and achieving a higher organic biodegradation and nitrification rate compared to a single carrier system. Microorganism activities and plants' uptake or utilization both contributed to the nutrient removal in a constructed wetland. High-throughput sequencing results revealed an abundant microbial diversity and a distinct microbial distribution in the whole system where Flavobacterium (14.2%), Acinetobacter (12.87%) and Rhodobacter (10.83%) dominated on PPC, Terrimonas (8.88%), Reyranella (6.61%) and Rubinisphaera (5.63%) dominated on CPC, Comamonas (4.18%), Gemmobacter (4.02%) and Hydrogenophaga (3.97%) dominated on CWs, as well as Citrobacter (53.13%) on suspended floc.
Collapse
Affiliation(s)
- Changmiao Lai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yu Sun
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Yong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Qin Cai
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Guo Y, Niu Q, Sugano T, Li YY. Biodegradable organic matter-containing ammonium wastewater treatment through simultaneous partial nitritation, anammox, denitrification and COD oxidization process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136740. [PMID: 32018962 DOI: 10.1016/j.scitotenv.2020.136740] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
For both nitrogen and COD removal from biodegradable organic matter (BOM)-containing ammonium wastewater, the simultaneous partial nitritation, anammox, denitrification and COD oxidization (SNADCO) process is a promising solution. In this study, with the stable influent ammonium concentration of 250.0 mg/L (nitrogen loading rate of 0.5 kg/m3/d) and the variation of influent COD/NH4+-N (C/N) ratio from 0.0 to 1.6, the performance of the SNADCO process in a one-stage carrier-packing airlift reactor with continuous mode was investigated for the first time. The results showed that until the C/N ratio of 0.8, both the well nitrogen and COD removal targets could be reached. Mass balance calculations indicated that the average nitrogen removal efficiency (NRE) of 80.9% achieved at the C/N ratio of 0.8 were due to both the anammox and denitrification pathways. Correspondingly, the achieved average COD removal efficiency of 94.6% was attributed to both the denitrification and COD oxidization pathways. Based on the specific sludge activity tests and Fluorescence in Situ Hybridization observation, anammox and denitrification bacteria were mainly distributed in the biofilm sludge, while ammonium oxidizing bacteria and ordinary heterotrophic organisms were mainly in the suspended sludge. At the C/N ratio of 1.6, the washout of suspended sludge became serious while the biofilm sludge was well retained, resulting in inefficient nitritation and a subsequent decrease in NRE. The microbial interaction analysis provided a clear explanation of the performance change of the SNADCO process under different C/N ratios. This research enriches the knowledge of the SNADCO process in BOM-containing ammonium wastewater treatment.
Collapse
Affiliation(s)
- Yan Guo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 27# Shanda South Road, Jinan 250100, China
| | - Takumi Sugano
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
10
|
Sima W, Ma R, Yin F, Zou H, Li H, Ai H, Ai T. Prompt nitrogen removal by controlling the oxygen concentration in sediment microbial fuel cell systems: the electrons allocation and its microbial mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1209-1220. [PMID: 32597407 DOI: 10.2166/wst.2020.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has been proved that the nitrogen can be removed from the sediment in a sediment microbial fuel cell system (SMFCs), but the competition between nitrate and oxygen for electrons would be a key factor that would affect the removal efficiency, and its mechanism is not clear. Based on organic sediment fuel, an SMFC was constructed, and the influence of dissolved oxygen (DO) on nitrogen transformation and cathodic microbial communities was investigated. The results showed that the best total nitrogen removal efficiency of 60.55% was achieved at DO level of 3 mg/L. High DO concentration affected the removal efficiency through the electrons' competition with nitrate, while low DO concentration suppressed the nitrification. Comamonas, Diaphorobacter and Brevundimonas were the three dominant genera responsible for denitrification at DO concentration of 3 mg/L in this study. The establishment of SMFCs for nitrogen removal by regulating DO level would offer a promising method for sediment treatment.
Collapse
Affiliation(s)
- Weiping Sima
- Department of Civil Engineering, Sichuan University of Science and Engineering, Zigong 400045, China
| | - Ruixiang Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Feixian Yin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Haodong Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Hainan Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| | - Tao Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China E-mail:
| |
Collapse
|
11
|
Antwi P, Zhang D, Xiao L, Kabutey FT, Quashie FK, Luo W, Meng J, Li J. Modeling the performance of Single-stage Nitrogen removal using Anammox and Partial nitritation (SNAP) process with backpropagation neural network and response surface methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:108-120. [PMID: 31284185 DOI: 10.1016/j.scitotenv.2019.06.530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Two novel feedforward backpropagation Artificial Neural Networks (ANN)-based-models (8:NH:1 and 7:NH:1) combined with Box-Behnken design of experiments methodology was proposed and developed to model NH4+ and Total Nitrogen (TN) removal within an upflow-sludge-bed (USB) reactor treating nitrogen-rich wastewater via Single-stage Nitrogen removal using Anammox and Partial nitritation (SNAP) process. ANN were developed by optimizing network architecture parameters via response surface methodology. Based on the goodness-of-fit standards, the proposed three-layered NH4+ and TN removal ANN-based-models trained with Levenberg-Marquardt-algorithm demonstrated high-performance as computations exhibited smaller deviations-(±2.1%) as well as satisfactory coefficient of determination (R2), fractional variance-(FV), and index of agreement-(IA) ranging 0.989-0.997, 0.003-0.031 and 0.993-0.998, respectively. The computational results affirmed that the ANN architecture which was optimized with response surface methodology enhanced the efficiency of the ANN-based-models. Furthermore, the overall performance of the developed ANN-based models revealed that modeling intricate biological systems (such as SNAP) using ANN-based models with the view to improve removal efficiencies, establish process control strategies and optimize performance is highly feasible. Microbial community analysis conducted with 16S rRNA high-throughput approach revealed that Candidatus Kuenenia was the most pronounced genera which accounted for 13.11% followed by Nitrosomonas-(6.23%) and Proteocatella-(3.1%), an indication that nitrogen removal pathway within the USB was mainly via partial-nitritation/anammox process.
Collapse
Affiliation(s)
- Philip Antwi
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China.
| | - Dachao Zhang
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China.
| | - Longwen Xiao
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China.
| | - Felix Tetteh Kabutey
- Harbin Institute of Technology, School of Environmental, State Key Laboratory of Urban Water Resource and Environment, 73 Huanghe Road, Harbin 150090, China
| | - Frank Koblah Quashie
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China
| | - Wuhui Luo
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, China
| | - Jia Meng
- Harbin Institute of Technology, School of Environmental, State Key Laboratory of Urban Water Resource and Environment, 73 Huanghe Road, Harbin 150090, China; University of Queensland, Advanced Water Management Centre, Gehrman Building, Research Road, The St Lucia, Brisbane, QLD 4072, Australia
| | - Jianzheng Li
- Harbin Institute of Technology, School of Environmental, State Key Laboratory of Urban Water Resource and Environment, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
12
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Hurtado-Martinez M, de Castro IM, Juarez-Jimenez B, Gonzalez-Martinez A, Gonzalez-Lopez J. Performance and microbial community structure of an aerobic granular sludge system at different phenolic acid concentrations. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:58-67. [PMID: 31121453 DOI: 10.1016/j.jhazmat.2019.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The present work aims to use aerobic granular sludge technology for the treatment of wastewater containing high organic matter loads and a mixture of phenolic compounds normally present in olive washing water. The physicochemical performance of five bioreactors treating different concentrations of mixture of phenolic acid was monitored to observe the response of the systems. The bioreactors that operated at 50, 100 and 300 mg L-1 did not show relevant changes in terms of performance and granules properties, showing high ratio of phenolic compound removal ratio. However, the bioreactors operated with high phenolic compound concentrations showed low rates of organic matter, nitrogen and phenolic acid removal. In the same way, high concentrations of phenolic compounds determined the disintegration of the granular biomass. Next-generation sequencing studies showed a stable community structure in the bioreactors operating with 50, 100 and 300 mg L-1 of phenolic acids, with the genera Lampropedia and Arenimonas, family Xanthobacteraceae and Fungi Pezizomycotina as the dominant phylotypes. Conversely, the reactors operated at 500 and 600 mg L-1 of phenolic substances promoted the proliferation of Oligohymenophorea ciliates. Thus, this study suggests that aerobic granular sludge technology could be useful for the treatment of wastewaters such as olive washing water.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain.
| | | | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Ines Manuel de Castro
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Belén Juarez-Jimenez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | | | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| |
Collapse
|
13
|
Ge CH, Dong Y, Li H, Li Q, Ni SQ, Gao B, Xu S, Qiao Z, Ding S. Nitritation-anammox process - A realizable and satisfactory way to remove nitrogen from high saline wastewater. BIORESOURCE TECHNOLOGY 2019; 275:86-93. [PMID: 30579105 DOI: 10.1016/j.biortech.2018.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 05/14/2023]
Abstract
In this study, acclimation of freshwater nitritation-anammox sludge to remove nitrogen in high saline and hypersaline wastewater was evaluated, during which the microbes activity and microbial community revolution were revealed to understand the fate of a nitritation-anammox process (SNAP) in response to increasing salt stress. By enhanced aeration, the SNAP system can treat saline (3%) ammonium-rich (185 mg/L) wastewater after gradual adaption. Hypersalinity (5%) caused final deterioration of the SNAP system due to a severe inhibition on anammox activity. Genera Kuenenia (anammox), Nitrosomonas (AOB) and Nitrosovibrio (AOB) bacteria were salt adaptable microbes, while genus Nitrospira (NOB) bacteria were sensitive to salinity. Under the enhanced aeration, AOB bacteria could bear 3% salinity with possible enriched ammonia monooxygenase to stimulate the conversion of ammonium to nitrite by producing more intermediate-hydroxylamine, which could alleviate the negative effect of insufficient hydroxylamine oxidase members in AOB bacteria.
Collapse
Affiliation(s)
- Cheng-Hao Ge
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Ying Dong
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Qianxia Li
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shou-Qing Ni
- Shenzhen Research Institute of Shandong University, Shenzhen, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, PR China.
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shiping Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology Co., Ltd., Jinan, PR China
| | - Shaowu Ding
- Shandong Wanhao Fertilizer Co., Ltd., Jinan, PR China
| |
Collapse
|
14
|
Transformation of the zero valent iron dosage effect on anammox after long-term culture: From inhibition to promotion. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Yue X, Liu Z, Yu G, Li Q, Tang J. Performance and microbial community of the completely autotrophic nitrogen removal over nitrite process with a submerged aerated biological filter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:515-522. [PMID: 30207993 DOI: 10.2166/wst.2018.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stable performance is a technical problem in the completely autotrophic nitrogen removal over nitrite (CANON) process with one single stage, which needs to be addressed. In the current work, a laboratory-scale submerged aerated biological filter (SABF) with a 3-L working volume was introduced into the CANON process to enhance its stable performance for 290 days under the following conditions: temperature of 30 ± 1 °C and dissolved oxygen (DO) level of 0.2-0.8 mg·L-1. The results showed that the average ammonium nitrogen removal efficiencies (ANRE) and total nitrogen removal efficiencies (TNRE) were 97.4% and 75.7%, respectively. A 16S rRNA gene high-throughput sequencing technology confirmed the phyla Proteobacteria and Planctomycetes as the ammonium oxidizing bacteria (AOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) of this CANON process with SABF, respectively. The major contributor to nitrogen removal was the genus Candidatus Brocadia, in Brocadiae. The aim is to present an effective strategy as a reference for the design of full-scale plant for the CANON process.
Collapse
Affiliation(s)
- Xiu Yue
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| | - Zhuhan Liu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| | - Guangping Yu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| | - Qianhua Li
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| | - Jiali Tang
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| |
Collapse
|
16
|
Short-Term Effects of Tourmaline on Nitrogen Removals and Microbial Communities in a Sequencing Batch Reactor at Low Temperatures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061280. [PMID: 29914192 PMCID: PMC6024927 DOI: 10.3390/ijerph15061280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/30/2023]
Abstract
Tourmaline is a ring borosilicate with unique pyro-electricity and piezoelectricity values. Non-gem tourmaline is usually used as an environmental material. The short-term effects of ultrafine tourmaline particles on nitrogen removal performs microbial population dynamics. Key functional species in a sequencing batch reactor were investigated at 9 ± 1 °C. The investigation results showed that 1 g·L−1 ultrafine tourmaline particles could resist the effect of temperature shock on the metabolism of NH4+-N and were beneficial to the restoration of the metabolism capacity of NH4+-N. 1 g·L−1 ultrafine tourmaline particles, which increased the oxidation rate of NH4+-N in the aerobic phase, the formation rate of NO3−-N in the aerobic phase, and the denitrification rate in the hypoxia phase at low temperatures. However, the community richness or diversities were not changed after short-term exposure to 1 g·L−1 ultrafine tourmaline particles at low temperatures and 1 g·L−1 ultrafine tourmaline particles could not change the relative abundances of functional microbes except nitrite oxidizing bacteria.
Collapse
|
17
|
Zhang Q, Wang C, Jiang L, Qi J, Wang J, He X. Impact of dissolved oxygen on the microbial community structure of an intermittent biological aerated filter (IBAF) and the removal efficiency of gasification wastewater. BIORESOURCE TECHNOLOGY 2018; 255:198-204. [PMID: 29414167 DOI: 10.1016/j.biortech.2018.01.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
A novel IBAF system (altered conventional biological aerated filter (BAF) for intermittent aeration) was used to treat BDD anodes electrochemical oxidation gasification wastewater effluent, after which 454 pyrosequencing was applied to investigate the bacterial community of IBAF and demonstrate the relationship between dissolved oxygen (DO) and the bacterial community. The results showed that the concentration of COD, NH4+-N and NO3--N reached 55.08, 7.64 and 7.76 mg/L, respectively, in IBAF effluent because of changes in the DO concentration at 30 days after system start-up. The bacterial community results revealed that the 40 cm sample had the highest bacterial diversity. The bacterial species were approximate in total samples at phylum and family level, but the relative abundance was significantly different because of change in DO concentration. In addition, sample distance analysis indicated that the similarity of different samples was related to the DO concentration at different heights.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Longxin Jiang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Ji Qi
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| |
Collapse
|
18
|
Yue X, Yu G, Liu Z, Tang J, Liu J. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity. BIORESOURCE TECHNOLOGY 2018; 254:157-165. [PMID: 29413917 DOI: 10.1016/j.biortech.2018.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
The long start-up time of the completely autotrophic nitrogen removal over nitrite (CANON) process is one of the main disadvantages of this system. In this paper, the CANON process with a submerged aerated biological filter (SABF) was rapidly started up within 26 days. It gave an average ammonium nitrogen removal rate (ANR) and a total nitrogen removal rate (TNR) of 94.2% and 81.3%, respectively. The phyla Proteobacteria and Planctomycetes were confirmed as the ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB). The genus Candidatus Brocadia was the major contributor of nitrogen removal. pH and temperature affect the performance of the CANON process. This experimental results showed that the optimum pH and temperature were 8.0 and 30 °C, respectively, which gave the highest average ANR and TNR values of 94.6% and 85.1%, respectively. This research could promote the nitrogen removal ability of CANON process in the future.
Collapse
Affiliation(s)
- Xiu Yue
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China.
| | - Guangping Yu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Zhuhan Liu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Jiali Tang
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Jian Liu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China
| |
Collapse
|
19
|
Ge CH, Sun N, Kang Q, Ren LF, Ahmad HA, Ni SQ, Wang Z. Bacterial community evolutions driven by organic matter and powder activated carbon in simultaneous anammox and denitrification (SAD) process. BIORESOURCE TECHNOLOGY 2018; 251:13-21. [PMID: 29257992 DOI: 10.1016/j.biortech.2017.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
A distinct shift of bacterial community driven by organic matter (OM) and powder activated carbon (PAC) was discovered in the simultaneous anammox and denitrification (SAD) process which was operated in an anti-fouling submerged anaerobic membrane bio-reactor. Based on anammox performance, optimal OM dose (50 mg/L) was advised to start up SAD process successfully. The results of qPCR and high throughput sequencing analysis indicated that OM played a key role in microbial community evolutions, impelling denitrifiers to challenge anammox's dominance. The addition of PAC not only mitigated the membrane fouling, but also stimulated the enrichment of denitrifiers, accounting for the predominant phylum changing from Planctomycetes to Proteobacteria in SAD process. Functional genes forecasts based on KEGG database and COG database showed that the expressions of full denitrification functional genes were highly promoted in RC, which demonstrated the enhanced full denitrification pathway driven by OM and PAC under low COD/N value (0.11).
Collapse
Affiliation(s)
- Cheng-Hao Ge
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Na Sun
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, PR China
| | - Hafiz Adeel Ahmad
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China
| | - Shou-Qing Ni
- Shenzhen Research Institute, School of Environmental Science and Engineering, Shandong University, PR China.
| | - Zhibin Wang
- Institute of Marine Science and Technology, Shandong University, PR China
| |
Collapse
|