1
|
Biodiesel production from wet microalgae: Progress and challenges. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Ideris F, Zamri MFMA, Shamsuddin AH, Nomanbhay S, Kusumo F, Fattah IMR, Mahlia TMI. Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production. ENERGIES 2022; 15:7190. [DOI: 10.3390/en15197190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Global warming and the depletion of fossil fuels have spurred many efforts in the quest for finding renewable, alternative sources of fuels, such as biodiesel. Due to its auxiliary functions in areas such as carbon dioxide sequestration and wastewater treatment, the potential of microalgae as a feedstock for biodiesel production has attracted a lot of attention from researchers all over the world. Major improvements have been made from the upstream to the downstream aspects related to microalgae processing. One of the main concerns is the high cost associated with the production of biodiesel from microalgae, which includes drying of the biomass and the subsequent lipid extraction. These two processes can be circumvented by applying direct or in situ transesterification of the wet microalgae biomass, hence substantially reducing the cost. In situ transesterification is considered as a significant improvement to commercially produce biodiesel from microalgae. This review covers the methods used to extract lipids from microalgae and various in situ transesterification methods, focusing on recent developments related to the process. Nevertheless, more studies need to be conducted to further enhance the discussed in situ transesterification methods before implementing them on a commercial scale.
Collapse
|
3
|
Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Karpagam R, Jawaharraj K, Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144236. [PMID: 33422843 DOI: 10.1016/j.scitotenv.2020.144236] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
In recent years, microalgal feedstocks have gained immense potential for sustainable biofuel production. Thermochemical, biochemical conversions and transesterification processes are employed for biofuel production. Especially, the transesterification process of lipid molecules to fatty acid alkyl esters (FAAE) is being widely employed for biodiesel production. In the case of the extractive transesterification process, biodiesel is produced from the extracted microalgal oil. Whereas In-situ (reactive) transesterification allows the direct conversion of microalgae to biodiesel avoiding the sequential steps, which subsequently reduces the production cost. Though microalgae have the highest potential to be an alternate renewable feedstock, the minimization of biofuel production cost is still a challenge. The biorefinery approaches that rely on simple cascade processes involving cost-effective technologies are the need of an hour for sustainable bioenergy production using microalgae. At the same time, combining the biorefineries for both (i) high value-low volume (food and health supplements) and (ii) low value- high volume (waste remediation, bioenergy) from microalgae involves regulatory and technical problems. Waste-remediation and algal biorefinery were extensively reviewed in many previous reports. On the other hand, this review focuses on the cascade processes for efficient utilization of microalgae for integrated bioenergy production through the transesterification. Microalgal biomass remnants after the transesterification process, comprising carbohydrates as a major component (process flow A) or the carbohydrate fraction after bio-separation of pretreated microalgae (process flow B) can be utilized for bioethanol production. Therefore, this review concentrates on the cascade flow of integrated bioprocessing methods for biodiesel and bioethanol production through the transesterification and biochemical routes. The review also sheds light on the recent combinatorial approaches of transesterification of microalgae. The applicability of spent microalgal biomass residue for biogas and other applications to bring about zero-waste residue are discussed. Furthermore, techno-economic analysis (TEA), life cycle assessment (LCA) and challenges of microalgal biorefineries are discussed.
Collapse
Affiliation(s)
- Rathinasamy Karpagam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - Kalimuthu Jawaharraj
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City 57701, SD, United States
| | - Ramasamy Gnanam
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology (CPMB & B), Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| |
Collapse
|
5
|
Production of levulinic acid from wet microalgae in a biphasic one-pot reaction process. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0622-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Kim B, Yang J, Kim M, Lee JW. One-pot selective production of levulinic acid and formic acid from spent coffee grounds in a catalyst-free biphasic system. BIORESOURCE TECHNOLOGY 2020; 303:122898. [PMID: 32032939 DOI: 10.1016/j.biortech.2020.122898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
This study introduces the catalyst-free production of levulinic acid (LA) and formic acid (FA) from spent coffee grounds (SCGs) as a starting material in a biphasic system of 1,2-dichloroethane (DCE)-water at temperatures above 160 °C. In addition to the advantage of using the biphasic system attributed to the product equilibrium, DCE served as a source of hydrogen induced by subcritical water (SCW). The effect of temperature, the amount of DIW and DCE, and the pretreatment on SCG (raw or lipid extracted SCG (LE-SCG)) on the overall reaction and humin formation were studied. The maximum conversion of LA and FA was 47 and 29 w/w% of the total convertible monosaccharides in raw SCGs while 43 and 28 w/w% of the conversion were obtained at 180 °C when LE-SCG was used. The solvothermal effects of two media provides a non-catalytic route to utilize undried SCG for the production of LA and FA.
Collapse
Affiliation(s)
- Bora Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongwoo Yang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minji Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
7
|
Abstract
This study reviewed and summarized the literature regarding the use of alcohols during hydrothermal liquefaction (HTL) of algal biomass feedstocks. The use of both pure alcohols and alcohol-water co-solvents were considered. Based upon this review, laboratory experiments were conducted to investigate the impacts of different alcohol co-solvents (ethanol, isopropanol, ethylene glycol, and glycerol) on the HTL treatment of a specific saltwater microalga (Tetraselmis sp.) at two temperatures: 300 °C and 350 °C. Based on their performance, two co-solvents, isopropanol and ethylene glycol, were selected to explore the effects of varying solvent concentrations and reaction temperatures on product yields and biocrude properties. The type and amount of added alcohol did not significantly affect the biocrude yield or composition. Biocrude yields were in the range of 30–35%, while a nearly constant yield of 21% insoluble products was observed, largely resulting from ash constituents within the algal feedstock. The benefits of using alcohol co-solvents (especially isopropanol) were the reduced viscosity of the biocrude products and reduced rates of viscosity increase with biocrude aging. These effects were attributed mainly to the physical properties of the co-solvent mixtures (solubility, polarity, density, etc.) rather than chemical processes. Under the reaction conditions used, there was no evidence that the co-solvents participated in biocrude production by means of hydrogen donation or other chemical processes. Recovery and recycling of the co-solvent present various challenges, depending upon the type and amount of the co-solvent that is used. For example, glycol solvents are recovered nearly completely within the aqueous product stream, whereas simple alcohols are partitioned between the biocrude and aqueous product streams. In commercial applications, the slight benefits provided by the use of co-solvents must be balanced by the challenges of co-solvent recovery and recycling.
Collapse
|
8
|
Dissolution of lignocellulosic biomass in ionic liquid-water media: Interpretation from solubility parameter concept. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0363-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101557] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Khanra S, Mondal M, Halder G, Tiwari O, Gayen K, Bhowmick TK. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Son J, Kim B, Park J, Yang J, Lee JW. Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel. BIORESOURCE TECHNOLOGY 2018; 259:465-468. [PMID: 29573886 DOI: 10.1016/j.biortech.2018.03.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
This work introduces biodiesel production from wet spent coffee grounds (SCGs) with supercritical methanol without any pre-drying process. Supercritical methanol and subcritical water effectively produced biodiesel via in situ transesterification by inducing more porous SCG and enhancing the efficiency of lipid extraction and conversion. It was also found that space loading was one of the critical factors for biodiesel production. An optimal biodiesel yield of 10.17 wt% of dry SCG mass (86.33 w/w% of esterifiable lipids in SCG) was obtained at reaction conditions of 270 °C, 90 bars, methanol to wet SCG ratio 5:1, space loading 58.4 ml/g and reaction time 20 min. Direct use of wet SCG waste as feedstock for supercritical biodiesel production eliminates the conventional dying process and the need of catalyst and also reduces environmental problems caused by landfill accumulation.
Collapse
Affiliation(s)
- Jeesung Son
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Bora Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jeongseok Park
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jeongwoo Yang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
12
|
Yellapu SK, Kaur R, Kumar LR, Tiwari B, Zhang X, Tyagi RD. Recent developments of downstream processing for microbial lipids and conversion to biodiesel. BIORESOURCE TECHNOLOGY 2018; 256:515-528. [PMID: 29472122 DOI: 10.1016/j.biortech.2018.01.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
With increasing global population and depleting resources, there is an apparent demand for radical unprecedented innovation to satisfy the basal needs of lives. Hence, non-conventional renewable energy resources like biodiesel have been worked out in past few decades. Biofuel (e.g. Biodiesel) serves to be the most sustainable answer to solve "food vs. fuel crisis". In biorefinery process, lipid extraction from oleaginous microbial lipids is an integral part as it facilitates the release of fatty acids. Direct lipid extraction from wet cell-biomass is favorable in comparison to dry-cell biomass because it eliminates the application of expensive dehydration. However, this process is not commercialized yet, instead, it requires intensive research and development in order to establish robust approaches for lipid extraction that can be practically applied on an industrial scale. This review aims for the critical presentation on cell disruption, lipid recovery and purification to support extraction from wet cell-biomass for an efficient transesterification.
Collapse
Affiliation(s)
- Sravan Kumar Yellapu
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Lalit R Kumar
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhagyashree Tiwari
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Rajeshwar D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
13
|
Park J, Kim B, Son J, Lee JW. Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of biodiesel. BIORESOURCE TECHNOLOGY 2018; 249:494-500. [PMID: 29073560 DOI: 10.1016/j.biortech.2017.10.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
This work addresses non-catalytic biodiesel production from spent coffee ground (SCG) by integrating solvo-thermal effect of 1,2-dichloroethane (DCE) with in situ transesterification over 160 °C. The SCG water content has a positive effect on the DCE hydrolysis up to 60 wt% due to the bimolecular substitution mechanism. The hydrolysis gives an acidic environment favorable for cellulose decomposition, SCG particle size reduction and lipid conversion. The optimal fatty acid ethyl ester yield was 11.8 wt% based on the mass of dried SCG with 3.36 ml ethanol and 3.16 ml DCE at 196.8 °C through the response surface methodology. Using the solvo-thermal effect, direct utilization of wet SCG as a biodiesel feedstock provides not only economic feasibility without using drying process and additional acid catalyst but also environmental advantage of recycling the municipal waste.
Collapse
Affiliation(s)
- Jeongseok Park
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Bora Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jeesung Son
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|