1
|
Demeke MM, Echemendia D, Belo E, Foulquié-Moreno MR, Thevelein JM. Enhancing xylose-fermentation capacity of engineered Saccharomyces cerevisiae by multistep evolutionary engineering in inhibitor-rich lignocellulose hydrolysate. FEMS Yeast Res 2024; 24:foae013. [PMID: 38604750 PMCID: PMC11062418 DOI: 10.1093/femsyr/foae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024] Open
Abstract
Major progress in developing Saccharomyces cerevisiae strains that utilize the pentose sugar xylose has been achieved. However, the high inhibitor content of lignocellulose hydrolysates still hinders efficient xylose fermentation, which remains a major obstacle for commercially viable second-generation bioethanol production. Further improvement of xylose utilization in inhibitor-rich lignocellulose hydrolysates remains highly challenging. In this work, we have developed a robust industrial S. cerevisiae strain able to efficiently ferment xylose in concentrated undetoxified lignocellulose hydrolysates. This was accomplished with novel multistep evolutionary engineering. First, a tetraploid strain was generated and evolved in xylose-enriched pretreated spruce biomass. The best evolved strain was sporulated to obtain a genetically diverse diploid population. The diploid strains were then screened in industrially relevant conditions. The best performing strain, MDS130, showed superior fermentation performance in three different lignocellulose hydrolysates. In concentrated corncob hydrolysate, with initial cell density of 1 g DW/l, at 35°C, MDS130 completely coconsumed glucose and xylose, producing ± 7% v/v ethanol with a yield of 91% of the maximum theoretical value and an overall productivity of 1.22 g/l/h. MDS130 has been developed from previous industrial yeast strains without applying external mutagenesis, minimizing the risk of negative side-effects on other commercially important properties and maximizing its potential for industrial application.
Collapse
Affiliation(s)
- Mekonnen M Demeke
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
- NovelYeast bv, Bio-incubator BIO4, Gaston Geenslaan 3, 3001 Leuven-Heverlee, Belgium
| | - Dannele Echemendia
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Edgard Belo
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
- NovelYeast bv, Bio-incubator BIO4, Gaston Geenslaan 3, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
2
|
Yerizam M, Jannah AM, Aprianti N, Yandriani Y, Rendana M, Ernas AQ, Tamba JL. Bioethanol production from coconut husk using DES-NADES pretreatment and enzymatic hydrolysis method. CR CHIM 2023. [DOI: 10.5802/crchim.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Lucaroni AC, Dresch AP, Fogolari O, Giehl A, Treichel H, Bender JP, Mibielli GM, Alves SL. Effects of Temperature and pH on Salt-Stressed Yeast Cultures in Non-Detoxified Coconut Hydrolysate. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana C. Lucaroni
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Aline P. Dresch
- Laboratory of Solid Waste, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Odinei Fogolari
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Solid Waste, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Anderson Giehl
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - João P. Bender
- Laboratory of Solid Waste, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Sérgio L. Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
4
|
Cortivo PRD, Aydos LF, Hickert LR, Rosa CA, Hector RE, Mertens JA, Ayub MAZ. Performance of xylose-fermenting yeasts in oat and soybean hulls hydrolysate and improvement of ethanol production using immobilized cell systems. Biotechnol Lett 2021; 43:2011-2026. [PMID: 34480641 DOI: 10.1007/s10529-021-03182-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
We investigated the fermentation of a mixture of oat and soybean hulls (1:1) subjected to acid (AH) or enzymatic (EH) hydrolyses, with both showing high osmotic pressures (> 1200 Osm kg-1) for the production of ethanol. Yeasts of genera Spathaspora, Scheffersomyces, Sugiymaella, and Candida, most of them biodiverse Brazilian isolates and previously untested in bioprocesses, were cultivated in these hydrolysates. Spathaspora passalidarum UFMG-CM-469 showed the best ethanol production kinetics in suspended cells cultures in acid hydrolysate, under microaerobic and anaerobic conditions. This strain was immobilized in LentiKats® (polyvinyl alcohol) and cultured in AH and EH. Supplementation of hydrolysates with crude yeast extract and peptone was also performed. The highest ethanol production was obtained using hydrolysates supplemented with crude yeast extract (AH-CYE and EH-CYE) showing yields of 0.40 and 0.44 g g-1, and productivities of 0.39 and 0.29 g (L h)-1, respectively. The reuse of the immobilized cells was tested in sequential fermentations of AH-CYE, EH-CYE, and a mixture of acid and enzymatic hydrolysates (AEH-CYE) operated under batch fluidized bed, with ethanol yields ranging from 0.31 to 0.40 g g-1 and productivities from 0.14 to 0.23 g (L h)-1. These results warrant further research using Spathaspora yeasts for second-generation ethanol production.
Collapse
Affiliation(s)
- Paulo Roberto Dall Cortivo
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Luiza Fichtner Aydos
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Lilian Raquel Hickert
- State University of Rio Grande do Sul, Av. Bento Gonçalves, 8855, Porto Alegre, RS, 91540-000, Brazil
| | - Carlos Augusto Rosa
- Department of Microbiology, ICB, C.P. 486, State University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ronald E Hector
- Bioenergy Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL, 61604, USA
| | - Jeffrey A Mertens
- Bioenergy Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, IL, 61604, USA
| | - Marco Antônio Záchia Ayub
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
5
|
Qian S, Li X, Sun L, Shen Y, Ren Q, Diao E, Lu Z. Exploration of production of C 14 and C 15 bacillomycin D homologues with enzymatic hydrolysis from maize straws using fed-batch fermentation by Bacillus subtilis NS-174. RSC Adv 2020. [DOI: 10.1039/c9ra10536k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A strain with strong antifungal activity, Bacillus subtilis NS-174, was identified and the antifungal compounds were purified and structurally analyzed by high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS).
Collapse
Affiliation(s)
- Shiquan Qian
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation
- Huaiyin Normal University
- Huaian 223300
| | - Xuejin Li
- School of Biological and Food Engineering
- Bengbu University
- Bengbu
- China
| | - Lu Sun
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yuanyuan Shen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation
- Huaiyin Normal University
- Huaian 223300
| | - Qingyi Ren
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation
- Huaiyin Normal University
- Huaian 223300
| | - Enjie Diao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation
- Huaiyin Normal University
- Huaian 223300
| | - Zhaoxin Lu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|
6
|
Second-Generation Bioethanol from Coconut Husk. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4916497. [PMID: 30363680 PMCID: PMC6180963 DOI: 10.1155/2018/4916497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/12/2018] [Accepted: 09/03/2018] [Indexed: 11/18/2022]
Abstract
Coconut palm (Cocos nucifera) is an important commercial crop in many tropical countries, but its industry generates large amounts of residue. One way to address this problem is to use this residue, coconut husk, to produce second-generation (2G) ethanol. The aim of this review is to describe the methods that have been used to produce bioethanol from coconut husk and to suggest ways to improve different steps of the process. The analysis performed in this review determined that alkaline pretreatment is the best choice for its delignification potential. It was also observed that although most reported studies use enzymes to perform hydrolysis, acid hydrolysis is a good alternative. Finally, ethanol production using different microorganisms and fermentation strategies is discussed and the possibility of obtaining other added-value products from coconut husk components by using a biorefinery scheme is addressed.
Collapse
|
7
|
Dey P, Pal P, Kevin JD, Das DB. Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process – a critical review. REV CHEM ENG 2018. [DOI: 10.1515/revce-2018-0014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To meet the worldwide rapid growth of industrialization and population, the demand for the production of bioethanol as an alternative green biofuel is gaining significant prominence. The bioethanol production process is still considered one of the largest energy-consuming processes and is challenging due to the limited effectiveness of conventional pretreatment processes, saccharification processes, and extreme use of electricity in common fermentation and purification processes. Thus, it became necessary to improve the bioethanol production process through reduced energy requirements. Membrane-based separation technologies have already gained attention due to their reduced energy requirements, investment in lower labor costs, lower space requirements, and wide flexibility in operations. For the selective conversion of biomasses to bioethanol, membrane bioreactors are specifically well suited. Advanced membrane-integrated processes can effectively contribute to different stages of bioethanol production processes, including enzymatic saccharification, concentrating feed solutions for fermentation, improving pretreatment processes, and finally purification processes. Advanced membrane-integrated simultaneous saccharification, filtration, and fermentation strategies consisting of ultrafiltration-based enzyme recycle system with nanofiltration-based high-density cell recycle fermentation system or the combination of high-density cell recycle fermentation system with membrane pervaporation or distillation can definitely contribute to the development of the most efficient and economically sustainable second-generation bioethanol production process.
Collapse
Affiliation(s)
- Pinaki Dey
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Karunya Nagar Coimbatore 641114 , India
| | - Parimal Pal
- Department of Chemical Engineering , National Institute of Technology , Durgapur , India
| | - Joseph Dilip Kevin
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Diganta Bhusan Das
- Department of Chemical Engineering, School of AACME , Loughborough University , Loughborough, Leicestershire , UK
| |
Collapse
|